» » Как найти размер молекулы воды. Kvant

Как найти размер молекулы воды. Kvant

Понятно, что мы не сможем непосредственно измери ть такую малую частичку вещества. Мы проведем опыт, из которого путем простых расчетов можно определить размер молекул. Вы, конечно, видели на поверхности воды тонкие цветные пленки, образуемые нефтепродуктами (смазочные масла, дизельное топливо и т. п.). Цвет тонких пленок возникает из-за наложения световых лучей, отраженных от верхней и нижней поверхностей пленки - такое явление называется интерференцией света. ПотоЙ же причине переливаются всеми цветами радуги мыльные пузыри.
Явление интерференции вы будете изучать на уроках физики. А сейчас нас интересует толщина пленки - !зы никогда не задумывались, насколько она ййїкіія? Определить толщину пленки очень просто: надо ее объем разделить на площадь поверхности. Еще древние мореплаватели заметили, что если на поверхность воды вылить растительное масло, то оно растечется очень большим пятном (тогда же появилось довольно странное мнение о том, что таким способом можно «утихомирить» море во время бури). Вероятно, впервые измерил площадь масляного пятна на воде выдающийся американский ученый и дипломат Бенджамин Франклин (1706- 1790), изображение которого красуется на стодолларовой купюре. Его самое знаменитое изобретение - громоотвод (вернее, молниеотвод). В 1774 году Франклин поехал в Европу, чтобы уладить очередной конфликт между Англией и США. В свободное от переговоров время он экспериментировал с масляными пленками на поверхности воды. К его удивлению, одна ложка растительного масла растеклась по всей поверхности небольшого пруда. Если же налить па воду не растительное, а невязкое машинное масло, пятно от него будет не таким большим: одна капля дает круг диаметром около 20 см. Площадь такой пленки равна примерно 300 см3, объем одной капли - около 0,03 см3. Следовательно, толщина пленки равна 0,03 см1 / 300 см3 = 0,0001 см = 0,001 мм - 1 мкм. Тысячная доля миллиметра - это очень малая величина, не во всякий микроскоп разглядишь час тичку такого размера.
Но есть ли у нас гарантия, что молекулы машинного масла растеклись по воде в один слой? Ведь только в этом случае толщина пленки будет соответствовать размеру молекул. Такой гарантии у нас нет, и вот почему. Молекулы, входящие в состав машинного масла, называют гидрофобными (в переводе с греческого «гидрофобные» - «боящиеся воды»). Они довольно хорошо «сцепляются» между собой, очень неохотно - с молекулами воды. Если вещество, подобное машинному маслу, налить на поверхность воды, оно образует на ней довольно толстую (по молекулярным меркам) пленку, состоящую из сотен и даже тысяч молекулярных слоев. Помимо того, что подобные расчеты любопытны и сами по себе, они имеют большое практическое значение. Например, по сей день не удается избежать аварий огромных танкеров, перевозящих нефть за тысячи километров от места ее добычи. В результате такой аварии в море может вылиться огромное количество нефти, что губительно скажется на живых организмах. Нефть более вязкая по сравнению с машинным маслом, поэтому ее пленка на водной поверхности может оказаться несколько толще. Так, в одной из аварий вылилось 120 000 тонн нефти, которая покрыла площадь 500 км3. Как показывает несложный расчет, средняя толщина такой пленки равна 200 мкм. Толщина пленки зависит как от сорта нефти, так и от температуры воды: в холодных морях, где нефть делается более густой, пленка толще, в теплых морях, где нефть становится менее вязкой, - тоньше. Но в любом случае авария большого танкера, когда в море попадают десятки тысяч тонн нефти, - это катастрофа. Ведь если вся пролитая нефть растечется тонким слоем, то образуется пятно огромной площади, и ликвидировать такую пленку чрезвычайно трудно.
А можно ли заставить вещество растекаться по воде так, чтобы образовался всего один слой молекул (такая пленка называется мономолекулярной)? Оказывается, это возможно, только вместо машинного масла или нефти надо взять другое вещество. Молекулы такого вещества должны на одном конце иметь гак называемую гидрофильную (т. е. «водолюбивую») группу атомов, а на другом конце - гидрофобную. Что будет, если вещество, состоящее из таких молекул, поместить на поверхность воды? Гидрофильная часть молекул, стремясь раствориться в воде, будет тянуть молекулу в воду, тогда как гидрофобная часть, которая воды «боится», будет упорно избегать контакта с водой. В результате такого взаимного «непонимания» молекулы (если их слегка «поджать» сбоку с помощью планочки) выстроятся па поверхности воды так, как показано нарис. 3.1: их гидрофильные концы утоплены в воду, а гидрофобные торчат наружу.
\6666666666Ы/
Рис. 3.1. Так ориентируются на границе вода-воздух молекулы поверхностно-активных веществ, образуя «частокол Ленгмюра» - по имени американского химика и физика Ирвинга Ленгмюра (1881-1957), который в 1916 году создал теорию строения таких слоев на поверхности жидкостей
Вещества, которые ведут себя таким образом, называют поверхностно-активными. К ним относятся, например, мыло и другие моющие средства; олеиновая кислота, входящая в состав подсолнечного масла; паль-митиновый спирт, который входит в состав пальмового масла и китового жира. Растекание таких веществ по поверхности воды дает значительно более тонкие пленки, чем машинное масло. Это явление было известно давно, подобные опыты проводили еще в XVIII веке. Нотолько в конце XIX - начале XX столетия в результате экспериментов, проведенных английским физиком Джоном Уильямом Рэлеем (1842-1919), немецким физиком Вильгельмом Конрадом Рент- геном (1845-1923) и рядом других ученых, было показано, что толщина пленки может достигать таких малых размеров, которые сопоставимы с размерами отдельных молекул.
В одном из таких опытов английский химик НеЙл Кенсингтон Адам Размеры порядка I нм имеют большинство молекул и ионов знакомых нам веществ. Так, диаметр молекул водорода равен примерно 0,2 нм, иода - 0,5 нм, этилового спирта - 0,4 нм; радиус ионов алюминия - 0,06 нм, натрия - 0,10 нм, к&чия - 0,13 нм, хлора - 0,18 нм, иода - 0,22 нм. Но есть среди молекул и гиганты, размеры которых, по молекулярным меркам, поистине астрономические. Так, в ядрах клеток высших животных и растений находятся молекулы наследственности - дезоксирибонуклеиновые кислоты (ДНК). Их длина может превышать 2 000 000 нм, т. е. 2 мм!
В заключение этого раздела - небольшой рассказ о том, какой остро- умный (хотя и не самый точный) метод использовал в 1908 году французский ученый Жан Перрен, чтобы «взвесить» молекулы. Как известно, плотность воздуха уменьшается с высотой. Еще в начале XIX века французский ученый Пьер Лаплас вывел формулу, позволяющую рассчитать давление на разных высотах. В соответствии с этой формулой атмосферное давление падает вдвое при подъеме на каждые 6 км. Это значение зависит, конечно, от силы земного притяжения, а также от массы молекул воздуха. Если бы воздух состоял не из азота и кислорода, а из очень легких молекул водорода (они в 16 раз легче молекул кислорода), то падение атмосферного давления вдвое наблюдалосьбы на высоте не 6 км, а примерно в 16 раз больше, т. е. около 100 км. И наоборот, если бы молекулы были очень тяжелые, атмосфера была бы «прижата» к поверхности Земли и давление быстро падало бы с высотой.
Рассуждая таким образом. Перрен решил вместо молекул использовать крошечные шарики краски гуммигута, взвешенные в воде. Он постарался приготовить взвесь (эмульсию) с одинаковыми по размеру шариками - около 1 мкм в диаметре. Затем он поместил капельку эмульсии под микроскоп и, перемещая винт микроскопа по вертикали, считал число шариков гуммигута на разных высотах. Оказалось, что формула Лапласа вполне применима и к эмульсиям: при подъеме на каждые 6 мкм число шариков в поле зрения уменьшалось в два раза. Поскольку 6 км ровно в миллиард раз больше 6 мкм, Перрен сделал вывод, что во столько же раз молекулы кислорода и азота легче шариков гуммигута (а их массу уже можно определить экспериментально).

Размер молекулы является величиной условной. Его оценивают так. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния d (рис. 1).

Расстояние предельного сближения центров двух молекул называют эффективным диаметром молекулы d (при этом считают, что молекулы имеют сферическую форму).

В настоящее время существует много методов определения размеров молекул. Самый простой, хотя и не самый точный, состоит в следующем. В твердых и жидких телах молекулы расположены очень близко одна к другой, почти вплотную. Поэтому можно считать, что объем V , занимаемый телом некоторой массы m , приблизительно равен сумме объемов всех его молекул.

Тогда объем одной молекулы будет \(V_{0} =\frac{V}{N},\) где V - объем тела, \(N=\frac{m}{M} \cdot N_{A}\) - число молекул в теле. Следовательно,

\(V_{0} =\frac{V\cdot M}{m\cdot N_{A}}.\)

Так как \(\frac{m}{V} =\rho,\) где ρ - плотность вещества, то

\(V_{0} =\frac{M}{\rho \cdot N_{A}}.\) (6.5)

Считая, что молекула - маленький шарик, диаметр которого d = 2r , где r - радиус, имеем

\(V_{0} = \frac{4}{3} \pi \cdot r^{3} = \frac{\pi \cdot d^{3}}{6}.\)

Подставив сюда значение V 0 (6.5), получим

\(\frac{\pi \cdot d^{3}}{6} = \frac{M}{\rho \cdot N_{A}}.\)

\(d = \sqrt[{3}]{\frac{6M}{\pi \cdot \rho \cdot N_{A}}}.\)

Так, для воды

\(d = \sqrt[{3}]{\frac{6\cdot 18\cdot 10^{-3}}{3,14 \cdot 10^{3} \cdot 6,02 \cdot 10^{23}}} = 3,8 \cdot 10^{-10}\) м.

Размеры молекул различных веществ неодинаковы, но все они порядка 10 -10 м, т.е. очень малы.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 125-126.

Кикоин А.К. Простой способ определения размеров молекул // Квант. - 1983. - № 9. - C.29-30.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

В молекулярной физике главные «действующие лица» - это молекулы, невообразимо маленькие частицы, из которых состоят все на свете вещества. Ясно, что для изучения многих явлений важно знать, каковы они, молекулы. В частности каковы их размеры.

Когда говорят о молекулах, их обычно считают маленькими упругими твердыми шариками. Следовательно, знать размер молекул значит знать их радиус.

Несмотря на малость молекулярных размеров, физики сумели разработать множество способов их определения. В «Физике 9» рассказывается о двух из них. В одном используется свойство некоторых (очень немногих) жидкостей растекаться в виде пленки толщиной в одну молекулу. В другом размер частицы определяется с помощью сложного прибора - ионного проектора.

Существует, однако, очень простой, хотя и не самый точный, способ вычисления радиусов молекул (или атомов) Он основан на том, что молекулы вещества, когда оно находится в твердом или жидком состоянии, можно считать плотно прилегающими друг к другу. В таком случае для грубой оценки можно считать, что объем V некоторой массы m вещества просто равен сумме объемов содержащихся в нем молекул. Тогда объем одной молекулы мы получим, разделив объем V на число молекул N .

Число молекул в теле массой m равно, как известно, \(~N_a \frac{m}{M}\), где М - молярная масса вещества N A - число Авогадро. Отсюда объем V 0 одной молекулы определяется из равенства

\(~V_0 = \frac{V}{N} = \frac{V M}{m N_A}\) .

В это выражение входит отношение объема вещества к его массе. Обратное же отношение \(~\frac{m}{V} = \rho\) есть плотность вещества, так что

\(~V_0 = \frac{M}{\rho N_A}\) .

Плотность практически любого вещества можно найти в доступных всем таблицах. Молярную массу легко определить, если известна химическая формула вещества.

\(~\frac{4}{3} \pi r^3 = \frac{M}{\rho N_A}\) .

откуда мы и получаем выражение для радиуса молекулы:

\(~r = \sqrt {\frac{3M}{4 \pi \rho N_A}} = \sqrt {\frac{3}{4 \pi N_A}} \sqrt {\frac{M}{\rho}}\) .

Первый из этих двух корней - постоянная величина, равная ≈ 7,4 · 10 -9 моль 1/3 , поэтому формула для r ринимает вид

\(~r \approx 7,4 \cdot 10^{-9} \sqrt {\frac{M}{\rho}} (m)\) .

Например, радиус молекулы воды, вычисленный по этой формуле, равен r В ≈ 1,9 · 10 -10 м.

Описанный способ определения радиусов молекул не может быть точным уже потому, что шарики нельзя уложить так, чтобы между ними не было промежутков, даже если они соприкасаются друг с другом. Кроме того, при такой «упаковке» молекул- шариков были бы невозможны молекулярные движения. Тем не менее вычисления размеров молекул по формуле, приведенной выше, дают результаты, почти совпадающие с результатами других методов, несравненно более точных.

Молекулярно-кинетическая теория идеальных газов

В физике для описания тепловых явлений используют два основных метода: молекулярно-кинетический (статистический) и термодинамиче­ский.

Молекулярно-кинетический метод (статистический) основан на представлении о том, что все вещества состоят из молекул, находящихся в хаотическом движении. Так как число молекул огромно, то можно, применяя законы статистики, найти определенные закономерности для всего вещества в целом.

Термодинамический метод исходит из основных опытных законов, получивших название законов термодинамики. Термодинамический метод подходит к изучению явлений подобно классической механике, которая базируется на опытных законах Ньютона. При таком подходе не рассматривается внутреннее строение вещества.

Основные положения молекулярно-кинетической теории

И их опытное обоснование. Броуновское движение.

Масса и размер молекул.

Теорию, которая изучает тепловые явления в макроскопических телах и объясняет зависимости внутренних свойств тел от характера движения и взаимодействия между частицами, из которых состоят тела, называют молекулярно-кинетической теорией ( сокращённо МКТ) или просто молекулярной физикой .

В основе молекулярно-кинетической теории лежат три важнейшие положения:

Согласно первому положению МКТ , все тела состоят из огромного количества частиц (атомов и молекул), между которыми есть промежутки .

Атом – это электрически нейтральная микрочастица, состоящая из положительно заряженного ядра и окружающей его электронной оболочки. Совокупность атомов одного вида называют химическим элементом . В естественном состоянии в природе встречаются атомы 90 химических элементов, наиболее тяжёлым из которых является уран. При сближении атомы могут объединяться в устойчивые группы. Системы из небольшого числа связанных друг с другом атомов называют молекулой . Например, молекула воды состоит из трёх атомов (рис.): двух атомов водорода (Н) и одного атома кислорода (О), поэтому её обозначают Н 2 О. Молекулыявляютсянаименьшими устойчивыми частицами данного вещества, обладающими его основными химическими свойствами. Например, наименьшая частица воды – это молекула воды, наименьшая частица сахара – молекула сахара.

Про вещества, состоящие из атомов, не объединённых в молекулы, говорят, что они находятся в атомарном состоянии ; в противном случае говорят о молекулярном состоянии . В первом случае мельчайшей частицей вещества является атом (например Не), во втором случае – молекула (например Н 2 О).

Если два тела состоят из одного и того же числа частиц, то говорят, что эти тела содержат одинаковое количество вещества . Количество вещества обозначается греческой буквой ν(ню) и измеряется в молях . За 1 моль принимают количество вещества в 12 г углерода. Так как в 12 г углерода содержится приблизительно 6∙10 23 атомов, то для количества вещества (т.е. числа молей) в теле, состоящем из N частиц, можно написать

Если ввести обозначения N A = 6∙10 23 моль -1 .

то соотношение (1) примет вид следующей простой формулы:

Таким образом, количество вещества - это отношение числа N молекул (атомов) в данном макроскопическом теле к числу N A атомов в 0,012 кг атомов углерода:

В 1 моле любого вещества содержится N A = 6,02·10 23 молекул. Число N A называют постоянной Авогадро . Физический смысл постоянной Авогадро заключается в том, что её значение показывает число частиц (атомов- в атомарном веществе, молекул –в молекулярном), содержащееся в 1 моле любого вещества.

Массу одного моля вещества называют молярной массой . Если молярную массу обозначить буквой μ, то для количества вещества в теле массой m можно записать:

Из формул (2) и (3) следует, что число частиц в любом теле можно определить по формуле:

Молярная масса определяется по формуле

М=М г ·10 -3 кг/моль

Здесь через М г обозначена относительная молекулярная (атомная) масса вещества, измеренная в а.е.м. (атомные единицы массы), которой в молекулярной физике принято характеризовать массу молекул (атомов).Относительную молекулярную массуМ г можно определить, если среднюю массу молекулы (m m) данного вещества разделить на 1/12 массы изотопа углерода 12 С:

1/12 m 12 C = 1а.е.м =1,66·10 -27 кг.

При решении задач эту величину находят с помощью таблицы Менделеева. В этой таблице указаны относительные атомные массы элементов. Складывая их в соответствии с химической формулой молекулы данного вещества, и получают относительную молекулярную М г. Например, для

углерода (С) М г =12·10 -3 кг/моль

воды (Н 2 О)М г =(1·2+16)=18·10 -3 кг/моль.

Аналогично определяется и относительная атомная масса .

Моль газа при нормальных условиях занимает объем V 0 = 22,4·10 23 м 3

Следовательно, в 1 м 3 любого газа при нормальных условиях (определяемых давлением Р=101325 Па =10 5 Па=1атм; температурой 273ºК (0ºС), объёмом 1 моля идеального газа V 0 =22,4 10 -3 м 3) содержится одинаковое число молекул:

Это число получило название постоянной Лошмидта.

Чётких границ молекулы (как и атомы) не имеют. Размеры молекул твёрдых тел можно ориентировочно оценить следующим образом:

где - объём приходящийся на 1 молекулу, - объём всего тела,

m и ρ – его масса и плотность, N – число молекул в нём.

Атомы и молекулы нельзя увидеть невооружённым глазом или с помощью оптического микроскопа. Поэтому сомнения многих учёных конца XIX в. в реальности их существования понять можно. Однако в XX в. ситуация стала иной. Сейчас с помощью электронного микроскопа, а также средств голографической микроскопии можно наблюдать изображение не только молекул, но даже отдельных атомов.

Данные рентгеноструктурного анализа показывают, что диаметр любого атома имеет порядок d = 10 -8 см (10 -10 м). Размеры молекул больше размеров атомов. Поскольку молекулы состоят из нескольких атомов, то чем больше количество атомов в молекуле, тем больше её размер. Размеры молекул лежат в пределах от 10 -8 см (10 -10 м) до 10 -5 см (10 -7 м).

Массы отдельных молекул и атомов очень малы, например абсолют­ное значение массы молекулы воды порядка 3·10 -26 кг. Массу отдельных молекул экспериментально определяют с помощью специального прибора – масс-спектрометра.

Кроме прямых экспериментов, позволяющих наблюдать атомы и молекулы, в пользу их существования говорит и множество других косвенных данных. Таковы, например, факты, касающиеся теплового расширения тел, их сжимаемости, растворения одних веществ в других и т.д.

Согласно второму положению молекулярно-кинетической теории , частицы непрерывно и хаотически (беспорядочно) движутся.

Это положение подтверждается существованием диффузии, испарения, давление газа на стенки сосуда, а также явлением броуновского движения.

Хаотичность движения означает, что у молекул не существует каких-либо предпочтительных путей и их движения имеют случайные направления.

Диффузия (от латинского diffusion – растекание, распространение) – явление, когда в результате теплового движения вещества происходит самопроизвольное проникновение одного вещества в другое (если эти вещества соприкасаются). Согласно молекулярно-кинетической теории, такое перемешивание происходит в результате того, что беспорядочно движущиеся молекулы одного вещества проникают в промежутки между молекулами другого вещества. Глубина проникновения зависит от температуры: чем выше температура, тем больше скорость движения частиц вещества и тем быстрее протекает диффузия. Диффузия наблюдается во всех состояниях вещества – в газах, жидкостях и твёрдых телах. Наиболее быстро диффузия происходит в газах (именно поэтому так быстро распространяется запах в воздухе). В жидкостях диффузия происходит медленнее, чем в газах. Это объясняется тем, что молекулы жидкости расположены значительно гуще, и потому «пробираться» через них значительно труднее. Медленнее всего диффузия происходит в твёрдых телах. В одном из опытов гладко отшлифованные пластины свинца и золота положили одна на другую и сжали грузом. Через пять лет золото и свинец проникли друг в друга на 1мм. Диффузия в твёрдых телах обеспечивает соединение металлов при сварке, пайке, хромировании и т.п. Диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Например, именно благодаря диффузии кислород из лёгких проникает в кровь человека, а из крови - в ткани.

Броуновским движением называют беспорядочное движение взвешенных в жидкости или газе мелких частичек другого вещества. Это движение было открыто в 1827 г. английским ботаником Р.Броуном, который наблюдал в микроскоп движение цветочной пыльцы, взвешенной в воде. В наше время для таких наблюдений используют маленькие части краски гуммигут, которая не растворяется в воде. В газе броуновское движение совершают, например, взвешенные в воздухе частицы пыли или дыма. Броуновское движение частицы возникает потому, что импульсы, с которыми молекулы жидкости или газа действуют на эту частицу, не компенсируют друг друга. Молекулы среды (то есть молекулы газа или жидкости) движутся хаотично, поэтому их удары приводят броуновскую частицу в беспорядочное движение: броуновская частица быстро меняет свою скорость по направлению и по величине (рис.1).



В ходе изучения броуновского движения было обнаружено, что его интенсивность: а) увеличивается с ростом температуры среды; б) увеличивается при уменьшении размеров самих броуновских частиц; в)уменьшается в более вязкой жидкости и г) совершенно не зависит от материала (плотности) броуновских частиц. Кроме того, было установлено, что это движение универсально (поскольку наблюдается у всех веществ, взвешенных в распыленном состоянии в жидкости), непрерывно (в закрытом со всех сторон кювете, его можно наблюдать неделями, месяцами, годами) и хаотично (беспорядочно).

Согласно третьему положению МКТ , частицы вещества взаимодействуют друг с другом: притягиваются на небольших расстояниях и отталкиваются, когда эти расстояния уменьшаются.

Наличие сил межмолекулярного взаимодействия (сил взаимного притяжения и отталкивания) объясняет существование устойчивых жидких и твёрдых тел.

Этими же причинами объясняется малая сжимаемость жидкостей и способность твёрдых тел сопротивляться деформациям сжатия и растяжения.

Силы межмолекулярного взаимодействия имеют электромагнитную природу и сводятся к двум типам: притяжению и отталкиванию. Эти силы проявляются на расстояниях, сравнимых с размерами молекул. Причиной этих сил является то, что молекулы и атомы состоят из заряженных частиц с противоположными знаками зарядов – отрицательных электронов и положительно заряженных атомных ядер. В целом молекулы электрически нейтральны. На рисунке 2.2 с помощью стрелок показано, что ядра атомов, внутри которых находятся положительно заряженные протоны, отталкиваются друг от друга, так же ведут себя и отрицательно заряженные электроны. А вот между ядрами и электронами действуют силы притяжения.

Зависимость сил взаимодействия молекул от расстояния между ними качественно объясняет молекулярный механизм появления сил упругости в твёрдых телах. При растяжении твёрдого тела частицы удаляются друг от друга. При этом появляются силы притяжения молекул, которые возвращают частицы в первоначальное положение. При сжатии твёрдого тела частицы сближаются на расстояния. Это приводит к увеличению сил отталкивания, которые возвращают частицы в первоначальное положение и препятствуют дальнейшему сжатию.

Поэтому при малых деформациях (в миллионы раз превышающих размер молекул) выполняется закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях закон Гука не действует

О справедливости этого положения свидетельствует сопротивляемость всех тел сжатию, а также (за исключением газов) –их растяжению.

Многие опыты показывают, что размер молекулы очень мал. Линейный размер молекулы или атома можно найти различными способами. Например, с помощью электронного микроскопа, получены фотографии некоторых крупных молекул, а с помощью ионного проектора (ионного микроскопа) можно не только изучить строение кристаллов, но определить расстояние между отдельными атомами в молекуле.

Используя достижения современной экспериментальной техники, удалось определить линейные размеры простых атомов и молекул, которые составляют около 10-8 см. Линейные размеры сложных атомов и молекул намного больше. Например, размер молекулы белка составляет 43*10 -8 см.

Для характеристики атомов используют представление об атомных радиусах, которые дают возможность приближённо оценить межатомные расстояния в молекулах, жидкостях или твёрдых телах, так как атомы по своим размерам не имеют чётких границ. То есть атомный радиус – это сфера, в которой заключена основная часть электронной плотности атома (не менее 90…95%).

Размер молекулы настолько мал, что представить его можно только с помощью сравнений. Например, молекула воды во столько раз меньше крупного яблока, во сколько раз яблоко меньше земного шара.

Моль вещества

Массы отдельных молекул и атомов очень малы, поэтому в расчётах удобнее использовать не абсолютные значения масс, а относительные.

Относительная молекулярная масса (или относительная атомная масса ) вещества М r – это отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода.

М r = (m 0) : (m 0C / 12)

где m 0 – масса молекулы (или атома) данного вещества, m 0C – масса атома углерода.

Относительная молекулярная (или атомная) масса вещества показывает, во сколько раз масса молекулы вещества больше 1/12 массы изотопа углерода С 12 . Относительная молекулярная (атомная) масса выражается в атомных единицах массы.

Атомная единица массы – это 1/12 массы изотопа углерода С 12 . Точные измерения показали, что атомная единица массы составляет 1,660*10 -27 кг, то есть

1 а.е.м. = 1,660 * 10 -27 кг

Относительная молекулярная масса вещества может быть вычислена путём сложения относительных атомных масс элементов, входящих в состав молекулы вещества. Относительная атомная масса химических элементов указана в периодической системе химических элементов Д.И. Менделеева.

В периодической системе Д.И. Менделеева для каждого элемента указана атомная масса , которая измеряется в атомных единицах массы (а.е.м.). Например, атомная масса магния равна 24,305 а.е.м., то есть магний в два раза тяжелее углерода, так как атомная масса углерода равна 12 а.е.м. (это следует из того, что 1 а.е.м. = 1/12 массы изотопа углерода, который составляет большую часть атома углерода).

Зачем измерять массу молекул и атомов в а.е.м., если есть граммы и килограммы? Конечно, можно использовать и эти единицы измерения, но это будет очень неудобно для записи (слишком много чисел придётся использовать для того, чтобы записать массу). Чтобы найти массу элемента в килограммах, нужно атомную массу элемента умножить на 1 а.е.м. Атомная масса находится по таблице Менделеева (записана справа от буквенного обозначения элемента). Например, вес атома магния в килограммах будет:

m 0Mg = 24,305 * 1 a.e.м. = 24,305 * 1,660 * 10 -27 = 40,3463 * 10 -27 кг

Массу молекулы можно вычислить путём сложения масс элементов, которые входят в состав молекулы. Например, масса молекулы воды (Н 2 О) будет равна:

m 0Н2О = 2 * m 0H + m 0O = 2 * 1,00794 + 15,9994 = 18,0153 a.e.м. = 29,905 * 10 -27 кг

Моль равен количеству вещества системы, в которой содержится столько же молекул, сколько содержится атомов в 0,012 кг углерода С 12 . То есть, если у нас есть система с каким-либо веществом, и в этой системе столько же молекул этого вещества, сколько атомов в 0,012 кг углерода, то мы можем сказать, что в этой системе у нас 1 моль вещества .

Постоянная Авогадро

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.

ν = N / N A

где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело.

N A – это постоянная Авогадро. Количество вещества измеряется в молях.

Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856).

В 1 моле любого вещества содержится одинаковое количество частиц.

N A = 6,02 * 10 23 моль -1

Молярная масса – это масса вещества, взятого в количестве одного моля:

μ = m 0 * N A

где m 0 – масса молекулы.

Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1).

Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]

Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:

m = m 0 N = m 0 N A ν = μν

Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ

Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:

m 0 = m / N = m / νN A = μ / N A

Более точное определение массы атомов и молекул достигается при использовании масс-спректрометра – прибора, в котором происходит разделение пучком заряженных частиц в пространстве в зависимости от их массы заряда при помощи электрических и магнитных полей.

Для примера найдём молярную массу атома магния. Как мы выяснили выше, масса атома магния равна m0Mg = 40,3463 * 10 -27 кг. Тогда молярная масса будет:

μ = m 0Mg * N A = 40,3463 * 10 -27 * 6,02 * 10 23 = 2,4288 * 10 -2 кг/моль

То есть в одном моле «помещается» 2,4288 * 10 -2 кг магния. Ну или примерно 24,28 грамм.

Как видим, молярная масса (в граммах) практически равна атомной массе, указанной для элемента в таблице Менделеева. Поэтому когда указывают атомную массу, то обычно делают так:

Атомная масса магния равна 24,305 а.е.м. (г/моль).