» » Основные сведения о рациональных выражениях и их преобразованиях. Видеоурок «Преобразование рациональных выражений Упрощение рациональных выражений

Основные сведения о рациональных выражениях и их преобразованиях. Видеоурок «Преобразование рациональных выражений Упрощение рациональных выражений

Любое дробное выражение (п. 48) можно записать в виде , где Р и Q - рациональные выражения, причем Q обязательно содержит переменные. Такую дробь - называют рациональной дробью.

Примеры рациональных дробей:

Основное свойство дроби выражается тождеством справедливым при условиях здесь - целое рациональное выражение. Это значит, что числитель и знаменатель рациональной дроби можно умножить или разделить на одно и то же отличное от нуля число, одночлен или многочлен.

Например, свойство дроби может быть использовано для перемены знаков у членов дроби. Если числитель и знаменатель дроби - умножить на -1, получим Таким образом, значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свои знак:

Например,

60. Сокращение рациональных дробей.

Сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Возможность такого сокращения обусловлена основным свойством дроби.

Для того чтобы сократить рациональную дробь, нужно числитель и знаменатель разложить на множители. Если окажется, что числитель и знаменатель имеют общие множители, то дробь можно сократить. Если общих множителей нет, то преобразование дроби посредством сокращения невозможно.

Пример. Сократить дробь

Решение. Имеем

Сокращение дроби выполнено при условии .

61. Приведение рациональных дробей к общему знаменателю.

Общим знаменателем нескольких рациональных дробей называется целое рациональное выражение, которое делится на знаменатель каждой дроби (см. п. 54).

Например, общим знаменателем дробей и служит многочлен так как он делится и на и на и многочлен и многочлен и многочлен и т. д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на Еыбранный. Такой простейший знаменатель называют иногда наименьшим общим знаменателем.

В рассмотренном выше примере общий знаменатель равен Имеем

Приведение данных дробей к общему знаменателю достигнуто путем умножения числителя и знаменателя первой дроби на 2. а числителя и знаменателя второй дроби на Многочлены называются дополнительными множителями соответственно для первой и второй дроби. Дополнительный множитель для данной дроби равен частному от деления общего знаменателя на знаменатель данной дроби.

Чтобы несколько рациональных дробей привести к общему знаменателю, нужно:

1) разложить знаменатель каждой дроби на множители;

2) составить общий знаменатель, включив в него в качестве сомножителей все множители полученных в п. 1) разложений; если некоторый множитель имеется в нескольких разложениях, то он берется с показателем степени, равным наибольшему из имеющихся;

3) найтн дополнительные множители для каждой из дробей (для этого общий знаменатель делят на знаменатель дроби);

4) домножив числитель и знаменатель каждой дроби на дополнительный множитель, привести дробн к общему знаменателю.

Пример. Привести к общему знаменателю дроби

Решение. Разложим знаменатели на множители:

В общий знаменатель надо включить следующие множители: и наименьшее общее кратное чисел 12, 18, 24, т. е. . Значит, общий знаменатель имеет вид

Дополнительные множители: для первой дроби для второй для третьей Значит, получаем:

62. Сложение и вычитание рациональных дробей.

Сумма двух (и вообще любого конечного числа) рациональных дробей с одинаковыми знаменателями тождественно равна дроби с тем же знаменателем и с числителем, равным сумме числителей складываемых дробей:

Аналогично обстоит дело в случае вычитания дробей с одинаковыми знаменателями:

Пример 1. Упростить выражение

Решение.

Для сложения или вычитания рациональных дробей с разными знаменателями нужно прежде всего привести дроби к общему знаменателю, а затем выполнить операции над полученными дробями с одинаковыми знаменателями.

Пример 2. Упростить выражение

Решение. Имеем

63. Умножение и деление рациональных дробей.

Произведение двух (и вообще любого конечного числа) рациональных дробей тождественно равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей перемножаемых дробей:

Частное от деления двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителя первой дроби на знаменатель второй дроби, а знаменатель - произведению внаменателя первой дроби на числитель второй дроби:

Сформулированные правила умножения и деления распространяются и на случай умножения или деления на многочлен: достаточно записать этот, многочлен в виде дроби со знаменателем 1.

Учитывая возможность сокращения рациональной дроби, полученной в результате умножения или деления рациональных дробей, обычно стремятся до выполнения этих операций разложить на множители числители и знаменатели исходных дробей.

Пример 1. Выполнить умножение

Решение. Имеем

Использовав правило умножения дробей, получаем:

Пример 2. Выполнить деление

Решение. Имеем

Использовав правило деления, получаем:

64. Возведение рациональной дроби в целую степень.

Чтобы возвести рациональную дробь - в натуральную степень , нужно возвести в эту степень отдельно числитель и знаменатель дроби; первое выражение - числитель, а второе выражение - знаменатель результата:

Пример 1. Преобразовать в дробь степень 3.

Решение Решение.

При возведении дроби в целую отрицательную степень используется тождество справедливое при всех значениях переменных, при которых .

Пример 2. Преобразовать в дробь выражение

65. Преобразование рациональных выражений.

Преобразование любого рационального выражения сводится к сложению, вычитанию, умножению и делению рациональных дробей, а также к возведению дроби в натуральную степень. Всякое рациональное выражение можно преобразовать в дробь, числитель и знаменатель которой - целые рациональные выражения; в этом, как правило, состоит цель тождественных преобразований рациональных выражений.

Пример. Упростить выражение

66. Простейшие преобразования арифметических корней (радикалов).

При преобразовании арифметических корией используются их свойства (см. п. 35).

Рассмотрим несколько примеров на применение свойств арифметических корней для простейших преобразований радикалов. При этом все переменные будем считать принимающими только неотрицательные значения.

Пример 1. Извлечь корень из произведения

Решение. Применив свойство 1°, получим:

Пример 2. Вынести множитель из-под знака корня

Решение.

Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования - упростить подкоренное выражение.

Пример 3. Упростить .

Решение. По свойству 3° имеем Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак кория. Имеем

Пример 4. Упростить

Решение. Преобразуем выражение, внеся множитель под знак корня: По свойству 4° имеем

Пример 5. Упростить

Решение. По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом, примере разделить указанные показатели на 3, то получим .

Пример 6. Упростить выражения:

Решение, а) По свойству 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения и из полученного результата извлечь корень той же степени. Значит,

б) Прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5° мы можем показатель корня показатель степени подкоренного выражения умножить на одно и то же натуральное число. Поэтому Далее имеем теперь в полученном результате раз делив показатели корня и степени подкоренного выражения На 3, получим .

На предыдущем уроке уже было введено понятие рационального выражения, на сегодняшнем уроке мы продолжаем работать с рациональными выражениями и основной упор делаем на их преобразования. На конкретных примерах мы рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Преобразование рациональных выражений

Вспомним сначала определение рационального выражения.

Определение. Рациональное выражение - алгебраическое выражение, не содержащее корней и включающее только действия сложения, вычитания, умножения и деления (возведения в степень).

Под понятием «преобразовать рациональное выражение» мы имеем в виду, прежде всего, его упрощение. А это осуществляется в известном нам порядке действий: сначала действия в скобках, затем произведение чисел (возведение в степень), деление чисел, а затем действия сложения/вычитания.

Основной целью сегодняшнего урока будет приобретение опыта при решении более сложных задач на упрощение рациональных выражений.

Пример 1.

Решение. Сначала может показаться, что указанные дроби можно сократить, т. к. выражения в числителях дробей очень похожи на формулы полных квадратов соответствующих им знаменателей. В данном случае важно не спешить, а отдельно проверить, так ли это.

Проверим числитель первой дроби: . Теперь числитель второй: .

Как видно, наши ожидания не оправдались, и выражения в числителях не являются полными квадратами, т. к. у них отсутствует удвоение произведения. Такие выражения, если вспомнить курс 7 класса, называют неполными квадратами. Следует быть очень внимательными в таких случаях, т. к. перепутывание формулы полного квадрата с неполным - очень частая ошибка, а подобные примеры проверяют внимательность учащегося.

Поскольку сокращение невозможно, то выполним сложение дробей. У знаменателей нет общих множителей, поэтому они просто перемножаются для получения наименьшего общего знаменателя, а дополнительным множителем для каждой из дробей является знаменатель другой дроби.

Конечно же, далее можно раскрыть скобки и привести затем подобные слагаемые, однако, в данном случае можно обойтись меньшими затратами сил и заметить, что в числителе первое слагаемое является формулой суммы кубов, а второе - разности кубов. Для удобства вспомним эти формулы в общем виде:

В нашем же случае выражения в числителе сворачиваются следующим образом:

, второе выражение аналогично. Имеем:

Ответ. .

Пример 2. Упростить рациональное выражение .

Решение. Данный пример похож на предыдущий, но здесь сразу видно, что в числителях дробей находятся неполные квадраты, поэтому сокращение на начальном этапе решения невозможно. Аналогично предыдущему примеру складываем дроби:

Здесь мы аналогично способу, указанному выше, заметили и свернули выражения по формулам суммы и разности кубов.

Ответ. .

Пример 3. Упростить рациональное выражение .

Решение. Можно заметить, что знаменатель второй дроби раскладывается на множители по формуле суммы кубов. Как мы уже знаем, разложение знаменателей на множители является полезным для дальнейшего поиска наименьшего общего знаменателя дробей.

Укажем наименьший общий знаменатель дробей, он равен: , т. к. делится на знаменатель третьей дроби, а первое выражение вообще является целым, и для него подойдет любой знаменатель. Указав очевидные дополнительные множители, запишем:

Ответ.

Рассмотрим более сложный пример с «многоэтажными» дробями.

Пример 4. Доказать тождество при всех допустимых значениях переменной.

Доказательство. Для доказательства указанного тождества постараемся упростить его левую часть (сложную) до того простого вида, который от нас требуется. Для этого выполним все действия с дробями в числителе и знаменателе, а затем разделим дроби и упростим результат.

Доказано при всех допустимых значениях переменной.

Доказано.

На следующем уроке мы подробно рассмотрим более сложные примеры на преобразование рациональных выражений.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.

2. Разработки уроков, презентации, конспекты занятий ().

Домашнее задание

1. №96-101. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

2. Упростите выражение .

3. Упростите выражение .

4. Докажите тождество .


Эта статья посвящена преобразованию рациональных выражений , преимущественно дробно рациональных, – одному из ключевых вопросов курса алгебры для 8 классов. Сначала мы напомним, выражения какого вида называют рациональными. Дальше остановимся на проведении стандартных преобразований с рациональными выражениями, таких как группировка слагаемых, вынесение за скобки общих множителей, приведение подобных слагаемых и т.п. Наконец, научимся представлять дробные рациональные выражения в виде рациональных дробей.

Навигация по странице.

Определение и примеры рациональных выражений

Рациональные выражения являются одним из видов выражений , изучаемых на уроках алгебры в школе. Дадим определение.

Определение.

Выражения, составленные из чисел, переменных, скобок, степеней с целыми показателями, соединенных с помощью знаков арифметических действий +, −, · и:, где деление может быть обозначено чертой дроби, называются рациональными выражениями .

Приведем несколько примеров рациональных выражений: .

Рациональные выражения начинают целенаправленно изучаться в 7 классе. Причем в 7 классе познаются основы работы с так называемыми целыми рациональными выражениями , то есть, с рациональными выражениями, которые не содержат деления на выражения с переменными. Для этого последовательно изучаются одночлены и многочлены , а также принципы выполнения действий с ними. Эти все знания в итоге позволяют выполнять преобразование целых выражений .

В 8 классе переходят к изучению рациональных выражений, содержащих деление на выражение с переменными, которые называют дробными рациональными выражениями . При этом особое внимание уделяется так называемым рациональным дробям (их также называют алгебраическими дробями ), то есть дробям, в числителе и знаменателе которых находятся многочлены. Это в итоге дает возможность выполнять преобразование рациональных дробей .

Полученные навыки позволяют перейти к преобразованию рациональных выражений произвольного вида. Это объясняется тем, что любое рациональное выражение можно рассматривать как выражение, составленное из рациональных дробей и целых выражений, соединенных знаками арифметических действий. А работать с целыми выражениями и алгебраическими дробями мы уже умеем.

Основные виды преобразований рациональных выражений

С рациональными выражениями можно проводить любые из основных тождественных преобразований , будь то группировка слагаемых или множителей, приведение подобных слагаемых, выполнение действий с числами и т.п. Обычно целью выполнения этих преобразований является упрощение рационального выражения .

Пример.

.

Решение.

Понятно, что данное рациональное выражение представляет собой разность двух выражений и , причем данные выражения являются подобными, так как имеют одинаковую буквенную часть. Таким образом, мы можем выполнить приведение подобных слагаемых :

Ответ:

.

Понятно, что при проведении преобразований с рациональными выражениями, как, впрочем, и с любыми другими выражениями, нужно оставаться в рамках принятого порядка выполнения действий .

Пример.

Выполните преобразование рационального выражения .

Решение.

Мы знаем, что сначала выполняются действия в скобках. Поэтому в первую очередь преобразуем выражение в скобках: 3·x−x=2·x .

Теперь можно подставить полученный результат в исходное рациональное выражение: . Так мы пришли к выражению, содержащему действия одной ступени – сложение и умножение.

Избавимся от скобок в конце выражения, применив свойство деления на произведение: .

Наконец, мы можем сгруппировать числовые множители и множители с переменной x, после чего выполнить соответствующие действия с числами и применить : .

На этом преобразование рационального выражения завершено, и в результате мы получили одночлен.

Ответ:

Пример.

Преобразуйте рациональное выражение .

Решение.

Сначала преобразуем числитель и знаменатель. Такой порядок преобразования дробей объясняется тем, что черта дроби по своей сути есть другое обозначение деления, и исходное рациональное выражение по сути есть частное вида , а действия в скобках выполняются в первую очередь.

Итак, в числителе выполняем действия с многочленами, сначала умножение, затем – вычитание, а в знаменателе сгруппируем числовые множители, и вычислим их произведение: .

Еще представим числитель и знаменатель полученной дроби в виде произведения: вдруг возможно сокращение алгебраической дроби . Для этого в числителе воспользуемся формулой разности квадратов , а в знаменателе вынесем двойку за скобки, имеем .

Ответ:

.

Итак, начальное знакомство с преобразованием рациональных выражений можно считать состоявшимся. Переходим, так сказать, к самому сладкому.

Представление в виде рациональной дроби

Наиболее часто конечной целью преобразования выражений является упрощение их вида. В этом свете самым простым видом, к которому можно преобразовать дробно рациональное выражение, является рациональная (алгебраическая) дробь, и в частном случае многочлен, одночлен или число.

А любое ли рациональное выражение возможно представить в виде рациональной дроби? Ответ утвердительный. Поясним, почему это так.

Как мы уже сказали, всякое рациональное выражение можно рассматривать как многочлены и рациональные дроби, соединенные знаками плюс, минус, умножить и разделить. Все соответствующие действия с многочленами дают многочлен или рациональную дробь. В свою очередь любой многочлен можно преобразовать в алгебраическую дробь, записав его со знаменателем 1 . А сложение, вычитание, умножение и деление рациональных дробей в результате дают новую рациональную дробь. Следовательно, выполнив все действия с многочленами и рациональными дробями в рациональном выражении, мы получим рациональную дробь.

Пример.

Представьте в виде рациональной дроби выражение .

Решение.

Исходное рациональное выражение представляет собой разность дроби и произведения дробей вида . Согласно порядку выполнения действий мы сначала должны выполнить умножение, а уже потом – сложение.

Начинаем с умножения алгебраических дробей :

Подставляем полученный результат в исходное рациональное выражение: .

Мы пришли к вычитанию алгебраических дробей с разными знаменателями:

Итак, выполнив действия с рациональными дробями, составляющими исходное рациональное выражение, мы его представили в виде рациональной дроби .

Ответ:

.

Для закрепления материала разберем решение еще одного примера.

Пример.

Представьте рациональное выражение в виде рациональной дроби.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.