» » Системы разработки нефтяных залежей. Системы разработки месторождений и оборудования для хранения нефти и газа

Системы разработки нефтяных залежей. Системы разработки месторождений и оборудования для хранения нефти и газа

СИСТЕМЫ РАЗРАБОТКИ

Разработка – это научно-обоснованный процесс (комплекс работ) управления движением флюида в залежи нефти, газа или конденсата за счет:

Выбора объекта разработки;

Размещения скважин или выбора плотности сетки скважин;

Определения оптимального забойного давления;

Выбора природного режима эксплуатации залежи или необходимости применения метода искусственного воздействия на залежь;

Метода и агентаППД;

Использования определенных технологий разработки;

Определения градиента давления;

Комплекса мероприятий по контролю и регулированию процесса разработки.

Под системой разработки месторождения понимают совокупность технологических и технических мероприятий, обеспечивающих извлечение нефти, газа, конденсата и попутных компонентов из пластов и управление этим процессом.

В зависимости от количества, мощности, типов и фильтрационной характеристики коллекторов, глубины залегания каждого из продуктивных пластов, степени их гидродинамической сообщаемости и т.д. система разработки месторождения может предусматривать выделение в его геологическом разрезе одного, двух и более объектов разработки (эксплуатационных объектов).

При выделении на месторождении двух или более объектов для каждого из них обосновывается своя рациональная система разработки . Будучи увязанными между собой, системы разработки отдельных эксплуатационных объектов составляют рациональную систему разработки месторождения в целом .

Рациональной называют систему разработки, которая обеспечивает:

Потребности страны в нефти (газе);

Возможно более полное извлечение из пластов нефти, газа, конденсата и полезных попутных компонентов при наименьших затратах.

Вплоть до середины 40-х гг. разработка нефтяных месторождений осуществлялась только с использованием природной энергии залежей.

С середины 40-х гг. в результате открытия новых нефтегазоносных районов развитие нефтяной промышленности связывается в основном с освоением месторождений платформенного типа, которым свойственны большие размеры площадей нефтеносности, значительные глубины залегания основных продуктивных пластов и в большинстве случаев малоэффективный природный режим - упруговодонапорный, быстро переходящий в режим растворенного газа.

Ученые и производственники в сравнительно короткий срок обосновали теоретически и доказали на практике необходимость и возможность применения принципиально новых систем разработки с искусственным вводом в продуктивные нефтяные пласты дополнительной энергии путем нагнетания в них воды. Широкое распространение метода заводнения началось в середине 40-х гг. Первоначально он был внедрен на новых нефтяных месторождениях Башкирии и Татарии - Туймазинском, Ромашкинском, Шкаповском, Бавлинском и др., затем был распространен во всех нефтедобывающих районах страны на новых месторождениях с недостаточно эффективными природными режимами.

Применение заводнения позволило разрабатывать залежи нефти достаточно высокими темпами при значительно меньшем количестве скважин, ускорять вывод эксплуатационных объектов на высокие уровни добычи и увеличивать в среднем вдвое нефтеотдачу по сравнению с разработкой при малоэффективных режимах.

Системы разработки с заводнением обеспечивают наибольший эффект при разработке залежей маловязкой нефти, приуроченных к продуктивным пластам с умеренной неоднородностью и повышенной проницаемостью. При разработке залежей с ухудшенной геологопромысловой характеристикой (повышенная вязкость пластовой нефти, пониженная проницаемость пород-коллекторов) с помощью заводнения также достигается повышение коэффициента извлечения нефти почти в 2 раза по сравнению с его величиной при разработке на природном режиме, но абсолютные значения этого коэффициента не во всех случаях достаточно высоки.

По каждому из названных пунктов должны приниматься решения, наиболее полно отвечающие геологической характеристике эксплуатационного объекта. При этом по одним пунктам рекомендации могут быть даны однозначно уже по данным промыслово-геологических исследований, по другим - могут быть предложены две-три близкие рекомендации. На этой основе специалистами в области технологии разработки месторождений выполняются гидродинамические расчеты нескольких вариантов системы разработки. Варианты различаются сочетанием рекомендаций по пунктам, обоснованных по геологическим данным. Из них выбирают оптимальный вариант, соответствующий требованиям, предъявляемым к рациональноной системе разработки. Выбор оптимального варианта выполняют на основе сравнения динамики годовых технологических и экономических показателей разработки рассмотренных вариантов.

Исследования по обобщению опыта разработки нефтяных месторождении при вытеснении нефти водой, выполненные в разные годы и в разных масштабах, свидетельствуют о том, что основное влияние на динамику технико-экономических показателей разработки оказывает геологопромысловая характеристика объектов . Вместе с тем применение системы разработки, соответствующей геолого-физическим условиям, дает возможность в значительной мере снивелировать неблагоприятные геологопромысловые особенностн эксплуатационных объектов.

Обоснование выделения эксплуатационных объектов и оптимальных вариантов систем разработки каждого из них базируется на сформированной к началу проектных работ геологической модели каждой из залежей и месторождения в целом .

Геологическая модель залежи.

Обоснование выделения эксплуатационных объектов и оптимальных вариантов систем разработки каждого из них базируется на сформированной к началу проектных работ геологической модели каждой из залежей и месторождения в целом.

Геологическая модель представляет собой:

Комплекс промыслово-геологических графических карт и схем;

Цифровых данных;

Кривых, характеризующих зависимости между различными параметрами залежей,

А также словесное описание особенностей залежей (текстовая часть).

Среди графических карт и схем обязательны:

Сводный литолого-стратиграфический разрез месторождения;

Схемы детальной корреляции;

Структурные карты, отражающие тектоническое строение эксплуатационного объекта;

Карты поверхностей коллекторов объекта с нанесением начальных контуров нефтегазоносности;

Геологические профили по эксплуатационному объекту с отражением условий залегания нефти и газа;

Карты распространения коллекторов (для каждого пласта в отдельности);

Карты полной, эффективной, эффективной нефтенасыщенной и газонасыщенной мощности в целом по объекту и по отдельным пластам.

При специфических особенностях залежи приводятся необходимые дополнительные карты и схемы (схема обоснования положения ВНК и ГВК, карты распространения коллекторов разных типов, карта температуры, карта коэффициента светопоглощения, карта проницаемости и др.).

Цифровыми данными характеризуются:

Пористость,

Проницаемость,

Начальная нефте(газо)насыщенность пород-коллекторов;

Полная, эффективная, эффективная нефте(газо)насыщенная мощность;

Мощность проницаемых разделов между пластами;

Физико-химические свойства пластовых нефти, газа, конденсата, воды.

При этом для каждого параметра указываются: число определений разными методами и число исследованных скважин; интервалы значений; оценка неоднородности на всех иерархических уровнях; среднее значение по объекту в целом и по его частям.

К группе цифровых данных относятся также;

Статистические ряды распределения проницаемости; микро- и макронеоднородность пластов (соотношение объемов коллекторов разных типов, коэффициенты песчанистости, расчлененности, прерывистости, слияния и др.); термобарические условия; результаты проведенных в лабораторных условиях физико-гидродинамических исследований вытеснения нефти (газа) агентами, использование которых предполагается при разработке объекта.

К важнейшим цифровым данным, характеризующим геологическую модель месторождения, относятся:

Балансовые и извлекаемые запасы нефти, газа, конденсата, ценных попутных компонентов;

Размеры площади нефтеносности;

Ширина, длина и высота залежи;

Размеры частей залежи - чисто нефтяной, водонефтяной, нефтегазовой, нефтегазоводяной, газоводяной зон.

В числе кривых, характеризующих зависимости между параметрами, приводят:

Кривые зависимости физических свойств нефти и газа от давления и температуры,

Характеристику фазовых проницаемостей,

Зависимости коэффициента вытеснения от проницаемости.

В текстовой части геологической модели залежи описывается ее природный режим и на основе всех названных выше материалов излагаются основные геолого-физические особенности залежи, определяющие выбор технологических решений и системы разработки в целом, а также влияющие на ожидаемые показатели разработки.

Системы разработки нефтяных залежей

При естественных режимах.

К числу нефтяных залежей с эффективными природными режимами относят залежи с водонапорным и активным упруговодонапорным режимами.

Наиболее распространенный метод воздействия - заводнение - не приносит нужных результатов при вязкости нефти в пластовых условиях более 30-40 мПа×с, поскольку при этом в пласте не создается устойчивого фронта вытеснения нефти водой: последняя быстро перемещается по тонким наиболее проницаемым прослоям пласта, оставляя невыработанным основной объем залежи. Заводнение не может быть ос

Система разработки нефтяной залежи с использованием напора краевых вод. Систему применяют для нефтяных залежей пластового типа с природным водонапорным или активным упруговодонапорным режимом. Она предусматривает разбуривание залежи добывающими скважинами с расположением их в основном в чисто нефтяной части залежи замкнутыми (“кольцевыми”) рядами, параллельными внутреннему контуру нефтеносности. По возможности соблюдается шахматный порядок расположения скважин. Для продления безводного периода эксплуатации скважин расстояния между рядами скважин могут устанавливаться несколько большими, чем между скважинами в рядах. С этой же целью в скважинах внешнего ряда нижнюю часть нефтенасыщенной мощности пласта обычно не перфорируют. В скважинах внутренних рядов нефтенасыщенный пласт перфорируют по всей мощности. В процессе разработки происходит “стягивание” контуров нефтеносности, размеры залежи уменьшаются. Соответственно постепенно обводняются и выводятся из эксплуатации скважины внешнего кольцевого ряда, затем, через определенные этапы, - скважины последующих рядов.

Система разработки с использованием напора подошвенных вод. Систему применяют для нефтяных залежей массивного типа (обычно на всей или почти всей площади залежи подстилаются водой), которые обладают водонапорным или активным упруговодонапорным режимом. При разработке таких залежей вытеснение нефти водой сопровождается повсеместным подъемом ВНК, т.е. последовательно обводняются интервалы залежи, расположенные примерно на одних гипсометрических отметках; размеры залежи уменьшаются.

При высоте залежи, измеряемой десятками метров, скважины располагают равномерно и пласт в них перфорируют от кровли до некоторой условно принятой границы, отстоящей от ВНК на несколько метров. При высоте залежи, составляющей 200-300 м и более (что свойственно некоторым массивным залежам в карбонатных коллекторах), предпочтительнее располагать скважины по сетке, сгущающейся к центру залежи, выдерживая принцип равенства запасов нефти, приходящихся на одну скважину. При этом подход к вскрытию продуктивной части разреза в скважинах зависит от фильтрационной характеристики залежи. При низкой вязкости нефти - до 1-2 мПа×с, высокой проницаемости и относительно однородном строении продуктивной толщи возможно вскрытие в скважинах верхней части нефтенасыщенной мощности, поскольку в таких условиях нефть из нижней части может быть вытеснена к вскрытым интервалам. При низкой вязкости нефти и неоднородном строении пород-коллекторов или при повышенной вязкости нефти может быть реализовано последовательное вскрытие нефтенасыщенной мощности.

Система разработки с использованием энергии выделяющегося из нефти газа. Система применяется при режиме растворенного газа и предусматривает разбуривание эксплуатационного объекта обычно по равномерной сетке с перфорацией во всех скважинах всей нефтенасыщенной мощности.

Система разработки с совместным использованием напора пластовых вод и газа газовой шапки. Система разработки нефтяной части газонефтяной залежи предусматривает использование смешанного режима залежи и вытеснение нефти контурной водой и газом газовой шапки. При этой системе скважины располагают по равномерной сетке и перфорируют в них лишь часть нефтенасыщенной мощности со значительным отступлением от контактов.

Поскольку вода обладает лучшей отмывающей способностью по сравнению с газом, систему предпочтительнее применять для залежей с относительно небольшими газовыми шапками.

При значительном объеме нефтяной части залежи по сравнению с газовой шапкой более эффективное действие напора вод и уменьшение влияния газовой шапки проявляются при больших углах падения пластов и значительной высоте нефтяной части залежи, высоком пластовом давлении, повышенных значениях проницаемости и гидропроводности пород-коллекторов. В рассматриваемых условиях разработка залежи в значительной мере усложняется вследствие образования конусов газа и воды. Это необходимо учитывать при обосновании интервалов перфорации и дебитов скважин.

Система с использование напора пластовых вод при неподвижном ГНК. Система предусматривает обеспечение отбора нефти из нефтегазовой залежи (с потенциально смешанным природным режимом) только за счет внедрения пластовых вод при неизменном объеме газовой шапки. Стабилизация ГНК в начальном его положении обеспечивается регулированием давления в газовой шапке путем отбора из нее через специальные скважины строго обоснованных объемов газа, соответствующих темпам снижения давления в нефтяной части залежи. При такой системе разработки интервал перфорации в скважинах может быть расположен несколько ближе к ГНК по сравнению с его положением при совместном использовании напора вод и газа. Однако и здесь при выборе интервала перфорации следует учитывать возможность образования конусов газа и воды и необходимость продления периода безводной эксплуатации скважин в условиях подъема ВНК.


Похожая информация.


Выбор и обоснование системы гидравлической разработки


Под системой открытой разработки месторождения понимается установленный порядок выполнения горно-подготовительных, вскрышных и добычных работ в пределах карьерного поля. Принятая система должна обеспечить планомерную и безопасную разработку месторождения при рациональном использовании его запасов, выполнение требований по охране окружающей среды и восстановлению земель, нарушенных открытыми горными выработками.
Рациональная система открытой разработки должна обеспечивать добычу полезного ископаемого в объеме, соответствующем плану, по качеству, отвечающему нормальным требованиям, максимальное его извлечение из недр, высокую производительность труда и экономичность при максимальной безопасности работ. Таким образом, правильный выбор системы открытой разработки должен обеспечивать высокую эффективность эксплуатации месторождения.
Принятая система открытой разработки предопределяет тип горно-транспортного оборудования, размеры карьера и его основные элементы, а также технико-экономические показатели работы карьера.
В настоящее время известны классификации систем открытых горных работ профессора Е.Ф. Шешко, академиков Н.В. Мельникова и В.В, Ржевского.
Е.Ф. Шешко в основу классификации систем разработки месторождений положил направление перемещения вскрышных пород в отвалы (1947 г.). Акад. Н.В, Мельниковым была предложена классификация систем разработки по способу производства вскрышных работ (1952 г.).
Классификация акад. В.В. Ржевского, в основу которой положены горно-геологические и геометрические предпосылки, характеризует сущность технологии открытых горных работ и облегчает последующий расчет систем разработок (табл. 7.3). В.В. Ржевский в качестве ведущих признаков открытых горных работ принимает направление выемки горной массы в плане и профиле и месторасположения отвалов.

При разработке горизонтальных или пологих залежей по окончании горно-подготовительных работ создается первичный фронт вскрышных и добычных работ карьера; возобновление горно-подготовительных работ возможно при реконструкции карьера. Таким образом, системы разработки в период эксплуатации характеризуются только порядком и последовательностью ведения вскрышных и добычных работ и изменением длины фронта работ или высоты отдельных уступов и размеров рабочих площадок. Такие системы разработки называются сплошными (рис. 7.9).
При разработке наклонных и крутых залежей горно-подготовительные работы ведутся как в период строительства, так и при эксплуатации карьера для создания фронта добычных и вскрышных работ. В состав горно-подготовительных работ в эксплуатационный период входят вскрытие и нарезка новых рабочих горизонтов. Таким образом, системы разработки наклонных и крутых залежей характеризуются порядком выполнения вскрышных, добычных и регулярных горно-подготовительных работ. Такие системы называются углубочными.

Имеются и другие специальные системы открытой разработки месторождений, которые применяются при проектировании открытых горных работ с использованием средств гидромеханизации.
На наш взгляд, классификация систем разработки, приведенная в табл. 7.3, является наиболее применимой, так как она учитывает не только горно-геологические и геометрические параметры месторождения, но и те признаки, которые указаны в других классификациях.
Исходными данными для обоснования системы разработки являются сведения о месторождении и карьерном поле.
Наибольшее применение при использовании гидромеханизации получила группа сплошных систем, ввиду незначительной мощности покрывающих пород: разработка вскрыши и россыпных месторождений гидромониторно-землесосными комплексами; разработка обводненных песчано-гравийных месторождений земснарядами (рис. 7.10).
Эти системы применяются в основном при разработке горизонтальных и пологих месторождений с небольшой мощностью вскрыши и полезного ископаемого.
Применение гидромеханизации при углубочных системах разработки ограничивается крепостью разрабатываемых пород, за исключением отработки четвертичных пород на передовых уступах.

Элементы системы разработки и их расчет


Основными элементами системы разработки являются: высота уступа, угол откоса уступа и бортов, ширина заходок, ширина рабочей площадки, длина фронта работ на уступе, длина и число блоков на уступе, скорость подвигания забоя и фронта горных работ и др. (рис. 7.11).
Высота уступа определяется с учетом физико-механических свойств пород, применяемого оборудования, мощности карьера, безопасности работ. Анализ полученных решений, проведенный автором, показал, что рациональная высота уступа при гидромониторном размыве по условию безопасного ведения работ и минимальных затрат составляет около 30 м. Затраты на разработку 1 м3 породы при увеличении высоты уступа с 10 до 25 м и с 25 до 35 м уменьшаются соответственно на 35-50 и 4-5 % (рис. 7.12).

Увеличение высоты уступа дает значительные экономические преимущества: уменьшается число уступов в карьере, благодаря чему сокращается общая длина трубопроводов, снижается стоимость их монтажа и обслуживания; повышается производительность землесосных установок, так как уменьшается число их передвижек в забое; уменьшаются объем недомыва и время, затрачиваемое на подрезку уступа, на 1 м3 разрабатываемой породы.
В то же время при увеличении высоты уступа по требованию техники безопасности увеличивается расстояние от гидромонитора до откоса уступа, ухудшается качество струи и снижается эффективность размыва.
Ширина рабочей площадки уступа определяется главным образом шириной и числом гидромониторных заходок.
При разработке четвертичных отложений наименьшую ширину рабочей площадки, м, можно приближенно определить по выражениям:
- при продольных заходках (рис. 7.13, а)

- при поперечных заходках (рис. 7.13, б)

где Aз - ширина заходки землесосной установки, м,

где Aг - ширина заходки гидромонитора, м; n - число гидромониторных заходок; С - расстояние от нижней бровки разрабатываемого уступа до полосы укладки труб, м; Вт - ширина полосы укладки труб (зависит от числа параллельно уложенных труб), м; Вт.т - расстояние от полосы укладки труб до транспортной (автомобильной) полосы (Bт.т = 1,5 м); T - ширина транспортной полосы (для автотранспорта T=4,5 м); Z - ширина призмы возможного обрушения (ширина полосы безопасности), м,

где αн - угол откоса нерабочего борта уступа (αн = 45*60°), град; αр - угол откоса рабочего борта уступа (αр = 60*80°), град; lmin - минимальное расстояние гидромонитора от забоя уступа [см. формулу (7.23)], м; Bз - ширина зумпфа (Bз = 12 м); Bз.у - ширина места расположения забойной землесосной установки (Вз.у = 10 м).
Длина фронта работ уступа Lф.у равна длине полной заходки (длине уступа). Часть уступа по длине, отрабатываемая одной гидроустановкой, называется блоком фронта работ. Длина блока Lб зависит от длины фронта работ уступа и числа гидроустановок, расположенных на уступе (при продольных заходках) (см. рис. 7.2, 7.13). Часть блока, разрабатываемая с одной стоянки забойной землесосной станции, называется картой. Длина карты Lк зависит от уклона пульпоотводной канавы i и принятой высоты недомыва породы hн уступа. Ширина и длина карты определяются шагом передвижки и шириной заходки гидроустановки. Число блоков в пределах одного уступа определяется по формуле

Фронт работ карьера составляет суммарную протяженность фронтов работ отдельных уступов. Фронт вскрышных и добычных работ в процессе эксплуатации карьера непрерывно перемещается к его конечным контурам.
Интенсивность отработки месторождения характеризуется скоростью подвигания фронта работ за год. Скорость подвигания фронта горных работ на гидровскрыше зависит от мощности полезного ископаемого, производственной мощности карьера и режима работы средств гидромеханизации и может составлять от 60 до 400 м.
Высокие темпы подвигания фронта горных работ достигаются при разработке маломощных горизонтальных пластов полезного ископаемого. Меньшее подвигание фронта работ имеет место при отработке наклонных и крутонаклонных залежей.
Уступы на вскрыше и добыче при круглогодовом режиме работ должны отрабатываться с одинаковым годовым подвиганием.

При сезонном режиме работы гидромеханизации скорость подвигания на гидровскрыше будет равна частному от деления скорости подвигания фронта работ на нижерасположенных уступах на коэффициент сезонности.
Скорость подвигания фронта горных работ, м/год,

где Qг.в - годовой объем пород на гидровскрыше, м3; Hр.з - высота рабочей зоны, отрабатываемой средствами гидромеханизации (Нр.з = Hуnу), м; Hу - высота разрабатываемого уступа, м; ny - число разрабатываемых уступов.
Скорость подвигания забоя гидроустановки, м/сут,

где Qс.з - суточная производительность землесосной установки по породе, м3.
Перемещение фронта вскрышных и добычных работ может быть чаще всего параллельное продольное, параллельное поперечное, веерное и смешанное (рис. 7.14), что соответствует принятой системе разработки (см. табл. 7.4).

Система разработки месторождения - это совокупность технологических и технических мероприятий, направленных на извлечение нефти, газа, конденсата и попутных компонентов из пласта, и управление этим процессом.

В зависимости от количества, мощности, типов и фильтрационной характеристики коллекторов, глубины залегания каждого из продуктивных пластов, степени их гидродинамической сообщаемости система разработки месторождения предусматривает выделение в его геологическом разрезе одного, двух и более объектов разработки эксплуатационных объектов. При выделении на месторождении двух или более объектов для каждого из них обосновывается своя рациональная система разработки.

Рациональной называют систему разработки, которая обеспечивает наиболее полное извлечение из пластов флюидов при наименьших затратах. Она предусматривает соблюдение правил охраны недр и окружающей среды, учитывает природные, производственные и экономические особенности района.

Система разработки включает в себя схему и план разбуривания залежей с учетом мероприятий по воздействию на пласт. Схема разбуривания - это схема расположения скважин на залежи и расстояние между скважинами. План разбуривания предусматривает объемы, место и очередность бурения скважин. Мероприятия по воздействию на пласт определяют систему воздействия и методы повышения нефтеотдачи.

Различают системы разработки залежей на естественных (природных) режимах и с поддержанием пластового давления. В настоящее время применяются следующие виды заводнения:

  • а) законтурное - нагнетательные скважины располагаются за контуром нефтеносности. Этот вид заводнения применяется для небольших залежей с хорошими коллекторскими свойствами.
  • б) приконтурное - нагнетательные скважины располагаются на некотором удалении от контура нефтеносности в пределах водонефтяной части залежи. Условия применения те же, что и для законтурного заводнения, но при значительной ширине водонефтяной зоны.
  • в) внутриконтурное заводнение - имеет целый ряд разновидностей, а именно: блоковое заводнение - нефтяную залежь разрезают на полосы (блоки) рядами нагнетательных скважин, в пределах которых размещают ряды добывающих скважин такого же направления. Ширину блоков выбирают от 4 до 1,5 км в соответствии с коллекторскими свойствами пласта. Количество рядов добывающих скважин в блоке - 3 (трехрядное) и 5 (пятирядное заводнение).

Разновидностями блокового заводнения являются:

  • 1. Осевое заводнение - для узких вытянутых залежей;
  • 2. Центральное заводнение - для небольших залежей круглой формы;
  • 3. Кольцевое заводнение - для больших круглых залежей;

4. Очаговое и избирательное заводнение - для усиления воздействия на слабо выработанные участки залежи;

  • 5. Барьерное заводнение - применяется для изоляции газовой шапки от нефтяной части залежи.
  • 6. Площадное заводнение - разновидность внутриконтурного заводнения, при котором в условиях общей равномерной сетки скважин нагнетательные и добывающие скважины чередуются в строгой закономерности, установленной проектным документом на разработку. Эта система разработки обладает большей активностью по сравнению с вышеуказанными системами.
  • 3. Размещение скважин по площади залежи

При разработке газовых и газоконденсатных месторождений широко применяют следующие системы размещения эксплуатационных скважин по площади газоносности:

  • 1) равномерное по квадратной или треугольной сетке;
  • 2) батарейное;
  • 3) линейное по «цепочке» ;
  • 4) в сводовой части залежи;
  • 5) неравномерное.
  • 1) В случае равномерного размещения скважины бурят в вершинах правильных треугольников или углах квадратов. Во время эксплуатации залежи удельные площади дренирования скважин в однородных по геологофизическим параметрам газонасыщенных коллекторах одинаковы при одинаковых дебитах скважин. Равномерная сетка скважин обеспечивает равномерное падение пластового давления. Дебиты скважин в данном случае обусловливаются средним пластовым давлением по залежи в целом. Выполнение указанного условия целесообразно в том случае, когда пласт достаточно однороден по своим коллекторским свойствам. В неоднородных по геолого-физическим параметрам коллекторах при равномерном размещении скважин соблюдается постоянство отношения дебита скважины к запасам газа в удельном объеме дренирования, т.е. при равномерном размещении скважин темп снижения средневзвешенного по объему порового пространства приведенного давления в удельном объеме дренирования равен темпу снижения приведенного давления в залежи в целом.

Недостатком равномерной системы расположения скважин является увеличение протяженности промысловых коммуникаций и газосборных сетей.

2) Системы размещения скважин по площади газоносности в виде кольцевых или линейных батарей широко применяют при разработке газоконденсатных месторождений с поддержанием пластового давления путем осуществления закачки газа или закачки в пласт воды. На месторождениях природного газа, имеющих значительную площадь газоносности, батарейное размещение эксплуатационных скважин может быть обусловлено желанием обеспечить заданный температурный режим системы пласт-скважина-промысловые газосборные сети, например, в связи с возможным образованием гидратов природного газа.

При батарейном размещении скважин образуется местная воронка депрессии, что значительно сокращает период бескомпрессорной эксплуатации месторождения и срок использования естественной энергии пласта для низкотемпературной сепарации газа.

  • 3) Линейное расположение скважин по площади газоносности обусловливается геометрией залежи. Оно обладает теми же преимуществами и недостатками, что и батарейное.
  • 4) Размещение скважин в сводовой части залежи может быть рекомендовано в случае, если газовая залежь обладает водонапорным режимом и приурочена к однородному по коллекторским свойствам пласту.

На практике газовые и газоконденсатные залежи разрабатываются, как правило, при неравномерном расположении скважин по площади газоносности. Это обстоятельство обусловлено рядом организационно-технических и экономических причин.

5) При неравномерном размещении скважин на площади газоносности темпы изменения средневзвешенного приведенного давления в удельных объемах дренирования скважин и всей залежи различны. В этом случае возможно образование глубоких депрессионных воронок давления в отдельных объемах залежи.

Равномерное размещение скважин на площади газоносности приводит к лучшей геологической изученности месторождения, меньшей интерференции скважин при их совместной работе, более быстрому извлечению газа из залежи при одном и том же числе скважин и одинаковых условиях отбора газа на забое скважины.

Преимущество неравномерного размещения скважин на площади газоносности по сравнению с равномерным заключается в уменьшении капитальных вложений при строительстве скважин, сроков строительства скважин, общей протяженности промысловых дорог и т.д.

Наблюдательные скважины (около 10% эксплуатационных) бурят, как правило, в местах наименьшей геологической изученности залежи, вблизи мест тектонических нарушений в водоносной зоне около начального газоводяного контакта в районах расположения скважин, эксплуатирующих одновременно несколько пластов, в центре кустов при батарейно-кустовом размещении скважин. Они позволяют получать разнообразную информацию о конкретных свойствах пласта, изменении давления, температуры и состава газа, перемещении газоводяного контакта, газо-, водо- и конденсатонасыщенности пласта, а также направлении и скорости перемещения газа в пласте.

При разработке газоконденсатных залежей с поддержанием пластового давления размещение нагнетательных и эксплуатационных скважин на структуре и площади газоносности зависит от рабочего агента, закачиваемого в пласт для поддержании давления, геометрической формы площади газоносности в плане и коллекторских свойств залежи.

При закачке в пласт газообразного рабочего агента, в основном сухого газа, агнетательные скважины размещают в виде батарей в приподнятой, купольной части залежи, эксплуатационные -- также в виде батарей, но в пониженной части, на погружении складки. При закачке в пласт воды нагнетательные скважины размещают в пониженной части залежи, а эксплуатационные -- в повышенной, купольной.

При таком размещении скважин на структуре увеличивается коэффициент охвата вытеснением пластового газа рабочим агентом за счет различия вязкостей и плотностей пластового газа и закачиваемого рабочего агента.

Нагнетательные и эксплуатационные скважины при разработке залежей с поддержанием давления размещаются на площади газоносности в виде кольцевых или лилейных цепочек скважин.

Обычно расстояние между нагнетательными скважинами принимают 800 - 1200м, а между добывающими 400 - 800м.

Разработку газоконденсатных месторождений следует вести при постоянном числе нагнетательных и добывающих скважин.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Понятие системы разработки

2. Последовательность решения задач проектирования разработки нефтяных месторождений

3. Стадии разработки залежи

Заключение

Используемая литература

Введение

Нефть и газ относятся к горючим полезным ископаемым. Они представляют собой сложную природную смесь углеводородов различного строения с примесями неуглеводородных соединений. В зависимости от состава, давления и температуры углеводороды могут находиться в твердом, жидком или газообразном состояниях. При определенных условиях часть углеводородов может находиться в жидком состоянии и одновременно другая часть -- в газообразном. Смеси углеводородов, которые как в пластовых, так и в поверхностных условиях находятся в жидком состоянии называют нефтью.

Состав нефти чрезвычайно сложен и разнообразен. Он может заметно изменяться даже в пределах одной залежи. Вместе с тем все физико-химические свойства нефти и в первую очередь ее товарные качества определяются составом.

Классификация нефтегазоносных территорий и нефтегеологическое районирование являются основой выявления закономерностей размещения скоплений нефти и газа в земной коре, познание которых необходимо при научно обоснованном прогнозировании нефтегазоносности недр и выбора направлений поисково-разведочных работ.

1. Понятие системы разработки

Система разработки нефтяного месторождения (залежи нефти) характеризуется как комплекс технологических и технических мероприятий, обеспечивающих управление процессом разработки залежей нефти и направленных на достижение высокой выработки запасов нефти из продуктивных пластов при соблюдении условий охраны недр. Система разработки определяет число объектов самостоятельной разработки в разрезе месторождения, число скважин, размещение и последовательности их бурения, обосновывает необходимость и метод искусственного воздействия на продуктивные пласты, способ эксплуатации скважин и определяет основные мероприятия по регулированию процесса разработки для достижения высокой нефтеотдачи, устанавливает комплекс мероприятий по исследовательским работам на залежи нефти и контролю за состоянием разработки.

Для одного и того же месторождения можно назвать множество систем, отличающихся по числу добывающих скважин, по их расположению на структуре, по методу воздействия на продуктивные пласты и т. д., поэтому существует необходимость сформулировать понятие рациональной системы разработки. В качестве критериев рациональной системы разработки принимаются следующие основные положения.

1.Наименьшую степень взаимодействия между скважинами должна обеспечить рациональная система разработки. Минимальное взаимодействие между скважинами достигается увеличением расстояния между ними. С другой стороны, при увеличении расстояния между скважинами общее их число на месторождении уменьшается, что ведет к снижению суммарного дебита скважин. Кроме того, в условиях неоднородного пласта увеличение расстояния между скважинами может привести к тому, что часть нефтенасыщенных линз, полулинз или пропластков не будет охвачено скважинами и они не будут приобщены к разработке.

Тем самым, наименьшее взаимодействие между скважинами не может служить единственным всеохватывающим критерием рациональности системы разработки.

2.Наибольший коэффициент нефтеотдачи должна обеспечить рациональная система. При полном охвате нефтепродуктивного пласта процессом вытеснения можно достигнуть максимальную нефтеотдачу. Это условие, особенно в неоднородных пластах, можно выполнить при более тесном размещении скважин. Кроме того, так как наиболее высокие коэффициенты достигаются при водонапорном режиме, а естественные притоки воды чаще не обеспечивают высоких темпов разработки, то существует необходимость создания искусственного водонапорного режима закачкой воды или газа в пласт.

Внимательное рассмотрение двух названных критериев указывает на то, что они содержат два противоположных требования. Первый критерий требует применения редких сеток, второй -- более плотной сетки. Кроме того, сгущение скважин и поддержание пластового давления увеличивают себестоимость нефти. Следовательно, ни наименьшая степень взаимодействия между скважинами, ни максимальный коэффициент нефтеотдачи отдельно не могут быть приняты в качестве единственных критериев рациональности системы разработки.

3. Минимальную себестоимость нефти должна обеспечить рациональная система разработки. Из рассмотренных в процессе проектирования нескольких вариантов разработки выбирается вариант, обеспечивающий наивысшую нефтеотдачу. Названные выше критерии хотя и правильно определяют ориентиры для выбора системы разработки, тем не менее ни один из них не может быть принят за определяющий, так как они не учитывают потребностей страны в нефти, устанавливаемых народнохозяйственными планами.

Таким образом, понятие рациональной системы разработки в окончательном виде формулируется так: рациональная система разработки должна обеспечить заданную планом добычу нефти при минимальных затратах и возможно больших коэффициентах нефтеотдачи.

Следует отметить, что в начале 70-х годов рядом исследователей был поставлен вопрос об исключении требования минимума себестоимости в качестве критерия рациональности вариантов разработки и принятии в качестве определяющего критерия прибыли.

Если обратиться к структуре формулы прибыли

П = Q(Ц-- С),

где П -- прибыль; Q -- накопленная добыча нефти; Ц -- отпускная цена нефти; С -- себестоимость, то при регламентированной (установленной) отпускной цене на нефть прибыль определяется себестоимостью и накопленной добычей нефти.

Некоторое увеличение себестоимости за счет бурения дополнительного числа скважин не всегда уменьшает прибыль, так как на рассматриваемом этапе разработки увеличение добычи и получаемая при этом дополнительная прибыль перекрывают издержки, связанные с бурением и обслуживанием дополнительных скважин.

В условиях ограниченных государственных ресурсов по количеству буровых установок, трубам и другому оборудованию принятие этого условия означало бы отвлечение на месторождения больших материальных затрат за счет сокращения разведки месторождения и развития нефтедобычи в новых районах. Кроме того, показанная выше формула отражает текущую прибыль, а так как добыча нефти во времени после достижения максимума снижается, причем, чем более высокого уровня достигает текущая добыча (в % от запасов), тем быстрее идет последующее снижение, а поэтому максимум текущей прибыли вовсе не означает максимум накопленной прибыли.

Таким образом, минимум затрат или минимум себестоимости и в настоящее время остается определяющим при принятии решения о рациональном варианте разработки. Проектирование разработки заключается в подборе такого варианта, который бы отвечал требованиям рациональной системы разработки.

Приступая к проектированию разработки последовательно прорабатываются такие вопросы:

· анализируются экономические и технологические показатели разработки и выбирается вариант рациональной системы разработки;

· выполняются гидродинамические расчеты по установлению технологических показателей разработки по нескольким вариантам, отличающимся по числу скважин, методу воздействия на продуктивные пласты, условиям эксплуатации скважин и т. д.;

· определяются исходные геолого-физические данные о нефтепродуктивном пласте и свойствах насыщающих его жидкостей и газов;

· рассчитывается экономическая эффективность вариантов разработки.

При водонапорном режиме процесс обводнения газовых скважин - это естественный процесс. Но при этом необходимо предусматривать такое число добывающих газовых скважин, такое размещение их по площади газоносности и соответствующие технологические режимы эксплуатации газовых скважин, систему обустройства и транспорта газа, которые обеспечивали бы наибольшее газоизвлечение, получение максимальной прибыли при наименьших капитальных затратах.

Различают три периода разработки газовых залежей:

I - период нарастающей добычи газа;

II - период постоянной (максимально достигнутой) добычи газа;

III - период падающей добычи газа.

В первом периоде нарастающей добычи газа ведется разбуривание месторождения, обустройство газового промысла, ввод месторождения в планомерную разработку и в конце первого периода - выход на максимально запланированную (предусмотренную проектом разработки) добычу газа. Этот период в зависимости от размеров залежи и запасов длится от 2-3 лет до 5-7 лет и более. Период постоянной добычи газа продолжается до отбора из залежи 65-75% запасов газа, а иногда и более.

Период падающей добычи газа продолжается до достижения минимального рентабельного отбора газа из месторождения, который зависит от цены на газ и существующего закона по налогообложению.

2. Последовательность решения задач проектирования разработки нефтяных месторождений

нефть месторождение разработка

На основании опыта разработки нефтяных месторождений установлен следующий порядок проектирования и содержание основных проектных документов:

1) схема (план) опытной эксплуатации;

2) технологическая-схема разработки;

3) проект разработки;

4) комплексный проект разработки.

Схема опытной эксплуатации. Эта схема составляется с целью получения дополнительных данных о геолого-промысловых характеристиках пласта, пластовых жидкостях, условиях эксплуатации скважин с определением предельных депрессий и предельных дебитов, проведения исследовательских работ гидропрослушивания (гидроразведки), изучения приемистости нагнетательных скважин.

Схема опытной эксплуатации обосновывает первоочередное бурение добывающих скважин, когда разведка месторождения еще не закончена, запасы нефти и газа еще не утверждены в ГКЗ РФ (Государственная Комиссия по запасам).

Схема опытной эксплуатации составляется с учетом данных опробования разведочных скважин и предварительной оценки запасов нефти. В содержании схемы опытной эксплуатации находят отражение следующие вопросы:

· обосновывается необходимый комплекс геолого-промысловых и геофизических исследований;

· кратко освещается геологическое строение месторождения и геолого-физическая характеристика пластов и жидкостей;

· определяется (ориентировочно) объем капитальных вложений и ожидаемая себестоимость нефти;

· рассчитываются (ориентировочно) основные технологические показатели по добыче нефти, газа, воды, изменению пластового давления на несколько лет разработки, определяется расположение и число добывающих скважин;

· выполняется ориентировочный подсчет запасов нефти и газа;

· намечаются работы по опытной закачке воды или испытанию других способов воздействия на залежь.

Схемы опытной эксплуатации для некрупных месторождений составляются технологическими отделами объединений, ЦНИЛ-ами. После согласования с территориальными органами Госгортехнадзора схема утверждается в нефтедобывающем объединении.

Для крупных месторождений схемы опытной эксплуатации составляются научно-исследовательскими и проектными институтами, согласовываются с органами Госгортехнадзора, объединениями и утверждаются Министерством.

Технологическая схема разработки составляется для месторождений со значительной сложностью геологического строения, когда запасы нефти утверждены в ГКЗ по невысоким категориям (В и С1), а результаты разведки и опытной эксплуатации не позволяют окончательно определить систему разработки.

Цель технологической схемы:

1) наметить систему расстановки скважин на залежи и установить их число;

2) установить необходимость и наметить систему поддержания пластового давления;

3) определить изменение технико-экономических показателей разработки на срок до 10--15 лет;

4) установить порядок разбуривания объектов при многопластовом месторождении и очередность бурения скважин на объекте;

5) обосновать необходимый комплекс исследований с целью контроля за разработкой и получения дополнительной информации о геолого-промысловых характеристиках объектов разработки.

Технологическая схема разработки по содержанию включает следующие разделы:

Геологическая часть. Здесь приводятся данные о геологическом строении месторождения, результаты изучения коллекторских свойств продуктивных пластов, свойств пластовых жидкостей, дается оценка нефтеносности и запасов нефти и газа, освещается состояние опытной эксплуатации залежей нефти,

Технологическая часть. В этой части обосновываются исходные данные к гидродинамическим расчетам, устанавливается схема (варианты) разработки и методика гидродинамических расчетов. Выполняются гидродинамические расчеты по определению технологических показателей вариантов разработки на 10-- 15 лет.

Экономическая часть. В ней обосновывается эффективность вариантов разработки с определением объема капитальных вложений, эксплуатационных затрат, себестоимости, сроков окупаемости капитальных вложений и т. д. В заключительной части технологической схемы даются рекомендации по внедрению выбранного варианта разработки с обоснованием комплексов исследований скважин и наблюдений за состоянием разработки месторождения с целью получения обширной геолого-промысловой информации для последующего составления проекта разработки.

Технологическая схема, как правило, составляется научно-исследовательскими и проектными институтами, согласовывается в окружном Госгортехнадзоре и объединении и утверждается Министерством нефтяной промышленности РФ.

Проект разработки составляется для месторождения, введенного в разработку на основе схемы опытной эксплуатации, когда геологическое строение месторождения несложное, или технологической схемы.

Проект разработки определяет и обосновывает те же вопросы, что и технологическая схема с более глубокой их проработкой. Так, технологические и экономические показатели определяются по этапам и за весь срок разработки. В проекте обосновывается конечная нефтеотдача и методы ее повышения, намечаются мероприятия по регулированию процесса разработки. Обосновывается резервный фонд скважин. Гидродинамические расчеты в проекте разработки выполняются с учетом неоднородности продуктивных пластов с использованием апробированных методик.

При разработке крупных месторождений составляются комплексные проекты (схемы) разработки, в которых вместе с обоснованием системы разработки дается схема обустройства нефтяного месторождения с решением следующих задач: проектирование сбора, подготовки и транспорта нефти и газа; определение объема и очередности строительства объектов сбора; проектирование объектов поддержания пластового давления.

3. Стадии разработки залежи

Разработка нефтяных залежей характеризуется четырьмя стадиями:

I стадия - нарастающая добыча нефти;

стадия - выход на максимальный уровень добычи нефти и его стабилизация;

стадия - падающая добыча нефти;

IV стадия - поздняя (завершающая) добыча нефти.

На I стадии идет рост добычи нефти за счет ввода в разработку новых скважин из бурения. Этот период характеризуется безводной добычей нефти. В конце I стадии в отдельных скважинах появляется вода. Ведутся подготовительные работы, а иногда начинается закачка воды или иного агента воздействия с целью поддержания пластового давления. После завершения бурения и ввода в эксплуатацию всего фонда скважин наступает стабилизация, т.е. выход на максимальный уровень добычи нефти и удержание его. Этот период может быть 4-5 лет. Разработчики недр принимают меры, чтобы как можно дольше удержать максимальный уровень добычи нефти. Достигается это за счет выхода на проектный уровень закачки воды (или иного агента воздействия) для поддержания пластового давления, проведения различных геолого-технических мероприятий как в нефтяных, так и в нагнетательных скважинах, внедрения насосов большей производительности (при механизированном способе добычи нефти), проведения ремонтно-изоляционных работ. При необходимости бурят резервные скважины. Применяются также меры по увеличению коэффициента эксплуатации скважин, а также снижению бездействующего фонда скважин. Важное место занимает проведение исследовательских работ в добывающих и нагнетательных скважинах и т.д.

III стадия - падающая добыча нефти. В этот период снижение дебитов в нефтяных скважинах происходит за счет роста обводненности, снижения пластового давления, выхода скважин в ремонт и т.д. Промысловиками принимаются меры по снижению темпов падения добычи нефти. Достигается это теми же мерами, что и на II стадии. С учетом большей изученности и проведения детальных исследований внедряются более эффективные геолого-технические мероприятия. На основе анализа полученных промысловых исследований большое внимание уделяется включению в работу неработающих продуктивных пропластков за счет бурения боковых горизонтальных стволов, проведения поинтервальных кислотных обработок, направленных гидравлических разрывов, щелевой разгрузке, обработке скважин оксидатом и т.д. Проводятся большие работы по снижению водопритоков в добывающих скважинах, применяется циклическое заводнение и т.д. Появляется проблема с утилизацией больших объемов пластовых вод. Скорость обводнения эксплуатационных скважин при разработке нефтяных залежей зависит от отношения вязкостей нефти и воды:

W0 =

Промысловыми исследованиями установлено, что (при условии равномерной проницаемости продуктивного пласта) если W0 < 3, то происходит более полное вытеснение нефти из пласта и не наблюдается преждевременное опережающее обводнение нефтяных скважин. Если W0 > 3 - происходит преждевременное опережающее продвижение воды к забою эксплуатационных скважин и быстрое обводнение скважин. В этой связи проводят работы по снижению значения W0 за счет загущения закачиваемой воды в пласт полиакриламидом или биополимером. На I - II - Ш стадиях разработки планируется отбор основных запасов нефти (80-90% от извлекаемых запасов).

IV стадия разработки месторождения является завершающей. На IV стадии отмечаются низкие дебиты и отборы нефти, но большие отборы пластовой воды. Этот период длится сравнительно долго - до рентабельности разработки месторождения.

В конце III и IV стадий разработки возможна форсированная эксплуатация скважин с извлечением из пласта больших объемов воды (8-12 м 3 пластовой воды на 1 т добываемой нефти).

Сроки и объемы добычи каждой стадии определяются в технологической схеме разработки месторождения.

Заключение

Очень огромно значение нефтегазовой отрасли в народном хозяйстве страны. Практически все отрасли промышленности, сельское хозяйство, транспорт, медицина и просто население страны на современном уровне развития потребляют нефть, природный газ и нефтепродукты. Тем самым, потребление их внутри страны из года в год возрастает.

С огромными потенциальными ресурсами нефти и газа, которые залегают в недрах связаны перспективы развития нефтегазового комплекса. К ним относятся большие площади перспективных земель, как в пределах суши, так и на акваториях, где имеются предпосылки для обнаружения значительных скоплений нефти и газа.

Это относится и к районам, где давно проводится добыча УВ, и к тем, где поисковые работы практически не проводились. Среди первых находятся Урало-Поволжье, Тимано-Печора, Западная Сибирь, Предкавказье, Прикаспий, Восточная Сибирь, Дальний Восток (Сахалин). В указанных районах сосредоточены еще значительные прогнозные ресурсы нефти и газа, которые необходимо разведать и прирастить запасы УВ в стране в ближайшем будущем.

В указанных регионах перспективы поисков новых объектов нефти и газа могут быть связаны:

· с поисками и разведкой нефти и газа в карбонатных коллекторах;

· с выявлением перспективных горизонтов на большой глубине (более 4,5 км);

· с выявлением неструктурных ловушек и поисками залежей УВ на склонах сводовых поднятий и бортах впадин и др.

Кроме этого, перспективы обнаружения новых нефтегазовых объектов имеются и в неизученных частях России, где работы вообще не проводились, либо проводились в небольших объемах и не дали положительного результата. К ним относятся, например, центральные районы европейской части России. Здесь имеются впадины земной коры (Московская и Мезенская), выполненные мощной толщей древних отложений. Перспективы нефтегазоносности этих впадин связаны с отложениями венда (протерозой), нижнего и верхнего палеозоя.

Перспективы нефтегазоностности связаны также с неизученными частями Восточной Сибири и Дальнего Востока, где возможные продуктивные горизонты могут быть в палеозойских и мезозойских отложениях. К ним относятся, например, Тургузская впадина (глубиной 4 км). Новые открытия могут быть сделаны в арктических акваториях России, на шельфе Баренцева и Карского морей, которые являются геологическим продолжением платформенных частей суши Русской и Западно-Сибирских плит, а последние являются наиболее продуктивными частями России.

Используемая литература

1. Дунаев Ф.Ф., Егоров В.И., Н.Н.Победоносцева Н.Н., Сыромятников Е.С. Экономика нефтяной и газовой промышленности. М: «Недра», 2003.

2. Егоров В.И., Злотникова Л.Г. Экономика нефтегазовой и нефтехимической промышленности. - М: «Химия», 2002.

3. Зыкин М.Я., Козлов В.А., Плотников А.А. Методика ускоренной разведки газовых месторождений. - М.: Недра, 2000.

4. Мстиславская Л.П. Нефтегазовое производство (Вопросы, проблемы, решения): Учебное пособие. - М.: РГУ нефти и газа, 1999.

5. Салманов Ф.К., Нестеров И.И., Потеряева В.В. Закономерности распределения крупных месторождений нефти и газа в земной коре. - М.: Недра, 2001.

6. Калинина В.П., Диденко Т.В. Средства производства и технический прогресс на предприятиях нефтяной и газовой промышленности. - М: МИНГ, 1999.

Размещено на Allbest.ru

Подобные документы

    Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.

    контрольная работа , добавлен 21.10.2014

    Рассмотрение основ разработки нефтегазовых месторождений. Характеристика продуктивных пластов и строения залежей; состав и свойства нефти, газа и воды. Утверждение технологических решений разработки; сравнение проектных и фактических показателей.

    курсовая работа , добавлен 03.10.2014

    Изучение методов системы разработки месторождений нефти и газа. Определение рациональной системы извлечения нефти из недр. Выбор оборудования для хранения нефти после добычи из залежей, а также для транспортировки. Описание основных видов резервуаров.

    курсовая работа , добавлен 11.11.2015

    Геолого-физическая характеристика залежей месторождения. Физические свойства пластовых жидкостей. Анализ выработки запасов нефти. Проектирование бокового горизонтального ствола и процесса разработки скважины с помощью математического моделирования.

    курсовая работа , добавлен 05.03.2015

    Внешне оптимистичные и проблемные тенденции в разработке нефтяных месторождений. Нарушения проектных систем разработки. Методы и основные направления повышения эффективности разработки нефтяных месторождений и обеспечения стабильной добычи нефти.

    презентация , добавлен 30.03.2010

    Физико-химическая характеристика нефти и газа. Вскрытие и подготовка шахтного поля. Особенности разработки нефтяного месторождения термошахтным способом. Проходка горных выработок. Проектирование и выбор вентиляторной установки главного проветривания.

    дипломная работа , добавлен 10.06.2014

    Геологическое строение месторождения. Стратиграфия и литология осадочного разреза. Физико-химические свойства и состав нефти, газа и вод. Анализ технологических показателей разработки залежи. Анализ современного этапа разработки, проводимых мероприятий.

    дипломная работа , добавлен 11.12.2013

    Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

    реферат , добавлен 14.07.2011

    Геофизические и гидродинамические исследования технологических показателей разработки нефтяных пластов АВ Самотлорского месторождения. Гидродинамическое моделирование герметичности и выработки остаточных запасов при условии активизации разработки пласта.

    статья , добавлен 28.08.2013

    Сведения о Западно-Коммунарском месторождении. Коллекторские свойства пласта. Физико-химические свойства нефти, газа и воды. Подсчет запасов нефти и газа. Характеристика системы воздействия на пласт. Определение эффективности разработки нефтяных залежей.

Под разработкой нефтяных месторождений понимают управление движением нефти в залежах к нефтедобывающим скважинам путем надлежащего размещения и последовательного ввода всего заданного фонда нефтедобывающих и водогазонагнетательных скважин с целью поддержания намеченных режимов их работы при равномерном и экономном расходовании пластовой энергии.

Из всех возможных систем разработки необходимо выбирать наиболее рациональную, при которой месторождение разбуривается минимальным числом скважин, обеспечивающим заданные планом темпы отбора нефти и высокую конечную нефтеотдачу при возможно минимальных капитальных вложениях и эксплуатационных затратах. Рациональная система разработки месторождений предусматривает решение и осуществление следующих мероприятий.

1. Выделение эксплуатационных объектов на многопластовом месторождении и определение порядка их ввода в разработку. Эксплуатационный объект - продуктивный пласт или группа пластов, разрабатываемых самостоятельной сеткой скважинах при обеспечении контроля и регулирования процесса их эксплуатации. Эксплуатационные объекты на многопластовом месторождении подразделяются на базисные (основные) и возвратные. В качестве базисных выбирают более изученные, высокопроизводительные и сравнительно крупные по запасам нефти пласты. Возвратными объектами можно считать менее продуктивные и с меньшими запасами пласты, разработку которых предусматривается проводить путем возврата скважин с базисного объекта.

2. Определение сетки скважин, размещение их на эксплуатационном объекте и порядок ввода скважин в эксплуатацию. Размещение скважин на объектах может быть равномерным на залежах с неподвижными контурами нефтеносности при наличии подошвенных вод или вообще при отсутствии пластовых вод. На месторождениях с перемешающимися контурами нефтеносности скважины на объектах размещаются рядами параллельно контурам нефтеносности (рис. 10.2.1) .Расстояния между скважинами и рядами скважин выбираются с учетом геологического строения эксплуатационного объекта с тем, чтобы охватить разработкой все участки продуктивных пластов, а также по экономическим соображениям. Необходимо стремиться разбуривать объекты редкой сеткой с тем, чтобы не было интерференции между нефтедобывающими скважинами. Это обеспечит высокую производительность каждой скважины. Однако при этом из-за литологической неоднородности продуктивных пластов возможно оставление невыработанных целиков нефти. Редкую сетку иногда вынуждены применять из-за большой глубины залегания продуктивных пластов, или сильно пересеченного гористого заболоченного рельефа местности, или в условиях моря.

Рисунок – 10.2.1. – Схема расположения скважин при перемещающихся контурах нефтеносности:

1 – нефтяные скважины; 2 – нагнетательные скважины; 3 – контрольные скважины; 4 – внутренний контур нефтеносности; 5 – внешний контур нефтеносности.

Порядок ввода нефтедобывающих скважин может быть одновременным по сгущающей или ползущей системам. Условно одновременным можно считать ввод скважин в эксплуатацию в течение одного - трех лет разработки объекта, что не будет иметь существенного значения в общем его сроке разработки. Сгущающую сетку скважин применяют при разбуривании и разработке крупных месторождений со сложным геологическим строением продуктивных пластов. При этом сначала скважины закладывают равномерно по редкой сетке, затем по данным бурения и гидродинамических исследований скважин уточняют геологические строения и коллекторские свойства пластов и намечают бурение последующих скважин. При этом возможно изменение сетки скважин в сторону увеличения или уменьшения их числа. Ползущую систему разбуривания применяют при напорных режимах или на месторождениях со сложным рельефом местности. При напорном режиме первый ряд скважин располагают вдоль контура питания, а следующие ряды - вверх по восстанию при водонапорном режиме (см. рис. 10.2.1.) или вниз по падению при газонапорном режиме.

3. Установление режима работы нефтедобывающих и водонагнетательных скважин сводится к планированию темпов отбора нефти и закачки воды в пласт для поддержания пластового давления на определенный промежуток времени. Дебиты и приемистости скважин могут быть самыми разнообразными и зависят от геологического строения продуктивных пластов и принятых режимов работы залежей. Режимы работы скважин изменяются во времени в зависимости от состояния разработки залежей (положения контура нефтеносности, обводненности скважин, прорыва газа к ним, технического состояния эксплуатационной колонны, применяемого оборудования для подъема жидкости из пласта на поверхность, закачки рабочего агента в пласт (вода, газ) для поддёржания пластового давления и др.).

4. Регулирование баланса пластовой энергии в залежах нефти проводится воздействием на пласт в целом. В настоящее время основной метод интенсификации добычи нефти - поддержание пластового давления искусственным заводнением пластов. На отдельных месторождениях проводят также закачку газа в газовую шапку.



Заводнение пластов бывает: законтурное, приконтурное, внутриконтурное.

Законтурное заводнение применяют при разработке сравнительно небольших по размерам залежей. Нагнетательные скважины располагают за контуром нефтеносности на расстоянии 200 - 100 м и более (см. рис. 10.2.1) .

Приконтурное заводнение применяют на месторождениях с низкой проницаемостью продуктивных пластов в водяной части залежи. Расстояние между нагнетательными скважинами и контуром нефтеносности - очень небольшое или же их располагают непосредственно на контуре нефтеносности.

Внутриконтурное заводнение применяют на крупном месторождении разделением его рядами нагнетательных скважин на отдельные эксплуатационные объекты, которые в дальнейшем эксплуатируются как самостоятельные залежи. Нагнетательные скважины располагают с учетом геологического строения месторождений в основном на высокопроницаемых участках. При этом источниками питания для краевых участков месторождения являются напор краевых вод и напор воды на линии искусственного заводнения рядами водонагнетательных скважин, расположенных около контура нефтеносности или несколько отодвинутых от него, а также рядами водонагнетательных скважин, пробуренных в нефтяной части пласта. Эти внутриконтурные водонагнетательные скважины являются источниками питания и для других отдельных нефтяных участков залежей.

Внутриконтурное заводнение позволяет значительно увеличить темпы отбора нефти и сократить сроки разработки крупных месторождений. Это объясняется тем, что одновременно можно эксплуатировать только два-три ряда нефтедобывающих скважин. При одновременной эксплуатации большего числа рядов скважин энергия напора пластовых вод или напора газовой шапки будет экранироваться первыми двумя-тремя рядами нефтедобывающих скважин, а другие ряды нефтедобывающих скважин, расположенные внутри контура нефтеносности, будут работать за счет энергии упругого сжатия пород продуктивного пласта и расширения жидкостей и растворенного в ней газа, насыщающих коллектор, т. е. при режиме растворенного газа. Чтобы не допустить эксплуатации внутренних, участков залежи при режимах растворенного газа, необходимо центральные участки залежи законсервировать на многие десятки лет.

Рисунок – 10.2.2. – Схемы внутриконтурного заводнения:

1 – нагнетательные скважины; 2 – нефтяные скважины; 3 – контур нефтеносности.

В настоящее время применяется несколько видов внутриконтурного заводнения, отличающихся друг от друга расположением водонагнетательных скважин, последовательностью ввода их в эксплуатацию, темпами и последовательностью закачки воды в пласт и отборами нефти из нефтедобывающих скважин.

«Разрезание» залежей нефти рядами водонагнетательных скважин на площади самостоятельной разработки (рис. 10.2.2, а) и блоковое заводнение разрезанием залежей поперечными рядами водонагнетательных скважин на отдельные площади (блоки), в пределах которых размещается нечетное число нефтедобывающих скважин (рис. 10.2.2, б) .

При «разрезании» залежей на площади и блоки ширина их не превышает 4-5 км, а при пониженных проницаемости пластов и вязкости нефти в пластовых условиях - еще меньше.

Линии нагнетательных скважин намечают заранее с учетом геологического строения залежей или же скважины располагают по линиям наибольшего обводнения (прорыва воды) по высокопроницаемым участкам пласта. Обычно это становится очевидным в процессе разработки залежей. На участках высокой проницаемости происходит быстрое обводнение скважин первого ряда, затем - второго и третьего рядов. Такой же характер обводнения наблюдается и с противоположной стороны залежи. Тогда обводненные нефтедобывающие скважины переводят в разряд водонагнетательных. При необходимости на этой же линии бурят и новые нагнетательные скважины. Таким образом, вода как бы сама находит себе путь и отделяет одну эксплуатационную площадь от другой. При блоковом заводнении залежей линии нагнетания обычно располагают вкрест простиранию площадей с учетом геологического строения продуктивных пластов.

Избирательное заводнение пластов (рис. 10.2.2.в) . При этой системе обосновывается рациональное общее число скважин, которые располагают по равномерной сетке. Затем после проведения детальной корреляции разрезов залежи и гидродинамических исследований из числа пробуренных скважин выбирают скважины для нагнетания воды в пласт. При этом соблюдают следующие условия: водонагнетательные скважины должны иметь хорошую приемистость и хорошее сообщение с окружающими скважинами, но вместе с тем должны быть рассредоточены по площади с целью исключения возможности взаимовлияния с другими водонагнетательными скважинами.

При разработке месторождений с внутриконтурным заводнением дополнительно применяют очаговое заводнение в том случае, когда на отдельных участках залежи не наблюдается влияния этого заводнения и происходит падение пластового давления и снижение отборов нефти. Водонагнетательные скважины при очаговом заводнении выбирают из числа нефтедобывающих по тем же признакам, что и при избирательном заводнении. Одно из основных условий при очаговом заводнении - размещение водонагнетательных скважин в середине участка, что обеспечивает равномерное воздействие закачиваемой воды на окружающие нефтедобывающие скважины.

С целью интенсификации добычи нефти и увеличения нефтеотдачи пластов в пласт также нагнетают газ или воздух. Благоприятными факторами закачки газа (воздуха) являются значительные углы наклона пластов и небольшая вязкость нефти. Однако закачка газа для поддержания пластового давления в настоящее время применяется реже, так как для этого нужно иметь источник газа и высоконапорные большой производительности компрессоры.


Различают четыре стадии разработки нефтяной залежи (рис. 10.2.3.) : I стадия - нарастающая добыча нефти, II стадия - стабилизация добычи, нефти, III стадия - падающая добыча нефти, IV стадия - поздняя эксплуатация залежи.

При I стадии нарастание объема добычи нефти обеспечивается в основном введением в разработку новых нефтедобывающих скважин в условиях высоких пластовых давлений. Обычно в период I стадии разработки добывается безводная нефть, наблюдается некоторое падение пластового давления. В случае быстрого падения пластового давления и его приближения к давлению насыщения начинают поддерживать пластовое давление закачкой воды или газа в пласт. После разбуривания основного фонда скважин начинается II стадия - стабилизация добычи нефти. Задача разработчиков состоит в том, чтобы продлить этот период разработки как можно дольше. Это достигается следующим: сгущением сетки за счет ввода резервного фонда скважин; увеличением нагнетания воды или газа в пласт для поддержания пластового давления, что достигается также сгущением нагнетательных скважин в зонах пониженных проницаемостей; проведением работ по воздействию на призабойные зоны пластов нефтяных и нагнетательных скважин с целью увеличения продуктивности нефтяных и нагнетательных скважин, изоляции притоков пластовых вод, крепления неустойчивых пород призабойной зоны пластов и др.

III стадия - падающая добыча нефти - характеризуется увеличением обводненности скважин и большим падением пластового давления. Наблюдается увеличение газового фактора. Задача состоит в том, чтобы замедлить падение добычи нефти, что достигается теми же способами, что и во II стадии разработки залежи. Скорость обводнения скважин при разработке залежей зависит от отношения вязкостей нефти и воды:

Исследованиями установлено, что (в условиях равномерной проницаемости пород пласта), если µ О <3, происходит более полное вытеснение нефти из пласта и не наблюдается преждевременного прорыва воды к нефтяным скважинам. Если µ О > 3- наблюдается опережающее движение воды и быстрое обводнение скважин. Поэтому проводят работы по уменьшению значения µ О путем загущения закачиваемой воды в пласт, например добавкой в нее полиакриламида (ПАА).

Рисунок – 10.2.3. – Динамика основных показателей разработки месторождения:

1 – годовой объем добычи нефти Q Н; 2 – годовой объем закачки воды Q З; 3 – годовой объем добычи воды Q В; 4 – пластовое давление P ПЛ; 5 – газовый фактор G 0 ; I, II, III, IV – стадии разработки.

В течение I, II и III стадий разработки проектируют отбор основных запасов нефти, составляющей 80 - 90 % от промышленных запасов.

IV стадия характеризуется сравнительно низкими объемами отбора нефти и большими отборами воды. Этот период может длиться очень долго - до рентабельности разработки месторождения. Для увеличения коэффициента нефтеотдачи на IV стадии применяются вторичные методы добычи нефти по извлечению оставшейся пленочной нефти из пласта.

В конце III и в течение IV стадий разработки возможна форсированная эксплуатация скважин с извлечением больших объемов воды. Поэтому необходимо предусмотреть возможность больших затрат на сбор, подготовку и закачку промысловых сточных вод в пласт. Контроль и регулирование эксплуатации залежи сводятся к равномерному стягиванию водонефтяного и газонефтяного контактов и к рациональному расходованию пластовой энергии. При этом очень важно, чтобы в зоне замещения нефти водой или газом обеспечивался высокий коэффициент нефтеотдачи пласта. Равномерное стягивание контуров нефтеносности, прежде всего, достигается надлежащим размещением нефтедобывающих и нагнетательных скважин по залежи в соответствии с проницаемостью различных участков продуктивных пластов и регулированием режимов работы каждой скважины в отдельности.

В процессе разработки залежи ведут постоянный контроль за дебитом нефтедобывающих скважин по нефти, процентом обводненности нефти, газовым фактором, выносом песка, изменением забойного и пластового давления. Ежедневно контролируют приемистость водонагнетательных скважин, давления нагнетания насосов по кустовым насосным станциям и систематически определяют количество механических примесей в воде. Систематически проводят гидротермодинамические исследования скважин.

На основе результатов всех исследований строят карты обводненности скважин, изобар, проницаемостей, удельных продуктивностей и др.

При преждевременном прорыве воды в нефтяные скважины или ограничивают отбор из этой скважины, или ограничивают закачку воды в нагнетательные скважины. В случае увеличения прорыва газа в нефтяные скважины при газонапорном режиме рекомендуется их закрывать. Увеличение газового фактора по нефтяным скважинам при водонапорном режиме указывает на падение пластового давления в зоне этих скважин. Поэтому нужно или уменьшить отборы нефти по этим скважинам, или увеличить закачку воды в пласт на этом участке.

По данным определения приведенного пластового давления по скважинам ежеквартально строят карты изобар - карты равных пластовых давлений. Сопоставление карт обводненности и карт изобар позволяет судить о продвижении контуров нефтеносности.

Для определения полноты выработки продуктивных пластов между нефтяными и нагнетательными рядами скважин бурят оценочные скважины со сплошным отбором керна из продуктивного пласта, по которому в лабораторных условиях определяют промытость пород водой, т. е. остаточную нефтеносность. Затем эти скважины используют в качестве контрольных, оборудовав специальными приборами, называемыми пьезографами, или периодически замеряют забойные давления в них.

Для выявления зон слабой или улучшенной проницаемости отдельных участков пластов проводят гидродинамические исследования скважин на взаимодействие. В случае плохой проницаемости на этих участках бурят новые нефтяные или нагнетательные скважины, что обеспечивает большую полноту отбора нефти.

За скоростью продвижения контуров нефтеносности можно следить по изменению коэффициентов светопоглощений нефти k сп и по кривым восстановления забойного давления. За единицу k cn принят коэффициент светопоглощения такого вещества, при проникновении света через 1 см слоя которого интенсивность светового потока уменьшается в е (2,718) раз. Установлено, что k сп чувствителен к изменению в нефти концентрации окрашенных веществ - смол, асфальтенов. Поскольку содержание смол и асфальтенов в нефти больше в зонах, расположенных ближе к контуру нефтеносности, то по увеличению во времени k сп нефтей, извлеченных из внутриконтурных скважин, можно определить скорость движения нефти по каждому участку пласта.

На основе результатов всех перечисленных исследований строят фактические графики основных показателей разработки пласта (см. рис. 10.2.3) , которые позволяют следить за отборами нефти и воды из пласта, закачкой воды или газа в пласт, изменением пластового давления и газового фактора. При отставании фактических показателей от проектных проводят те или другие мероприятия с целью регулирования разработки и достижения проектных показателей.