» » Альпийско гималайский сейсмический пояс находится. Альпийско гималайский складчатый пояс

Альпийско гималайский сейсмический пояс находится. Альпийско гималайский складчатый пояс

В этой статье мы расскажем вам о Альпийско-Гималайском сейсмическом поясе, ведь вся история формирования ландшафта планеты Земля связана с теорией и сопровождающими это движения сейсмическими и вулканическими проявления, вследствие которых и сформировался существующий ныне рельеф земной коры… Рельефообразующие движения тектонических плит сопровождаются нарушениями сплошного поля земной коры, которые приводят к образованию в ней тектонических разломов и вертикальных горных хребтов. Такие разрывные процессы, происходящие в земной коре - носят название сбросы и надвиги, соответственно приводящие к образованию горстов и грабенов. Движение тектонических плит в конечном итоге и приводят к интенсивным сейсмическим проявлениям и извержениям вулканов. Таких видов движения плит есть три:
1. Жёсткие подвижные тектонические плиты надвигаются друг на друга, образуя при этом горные хребты, как в океанах, так и на суше.
2. Соприкасающиеся тектонические плиты опускаются в мантию, образуя в земной коре тектонические желоба.
3. Двигающиеся тектонические плиты скользят между собой, образуя при этом трансформные разломы.
С линией контакта двигающихся тектонических плит примерно совпадают и пояса максимальной сейсмической активности планеты. Таких основных поясов выделено два:
1. Альпийско–Гималайский сейсмический пояс
2. Тихоокеанский сейсмический пояс.

Ниже остановимся на Альпийско – Гималайском сейсмическом поясе, который простирается полосой от горных структур Испании до Памира, включая в себя горы Франции, горные сооружения центра и юга Европы, её юго-востока и далее – Карпаты, горы Кавказа и Памира, а также горные проявления Ирана, севера Индии, Турции и Бирмы. В указанной полосе активного проявления тектонических процессов и происходит большинство катастрофических землетрясений, приносящих странам, попадающих в зону Альпийско – Гималайского сейсмического пояса, неисчислимые бедствия. Это и катастрофические разрушения в населённых пунктах, многочисленные человеческие жертвы, нарушения транспортной инфраструктуры и прочее… Так в Китае, в 1566 году произошло мощнейшее землетрясение в провинциях Ганьсу и Шэньси. Во время этого землетрясения погибло более 800 тысяч человек, а многие города были стёрты с лица земли. Калькутта в Индии, 1737 год – погибло около 400 тысяч человек. 1948 год – Ашхабад (Туркмения, СССР). Погибших - более 100 тысяч. 1988 год, Армения (СССР), города Спитак и Ленинакан разрушены до основания. Погибло 25 тысяч человек. Можно перечислить и другие достаточно мощные землетрясения в Турции, Иране, Румынии, сопровождавшиеся большими разрушениями и человеческими жертвами. Почти ежедневно сейсмические службы мониторинга регистрируют более слабые землетрясения по всему Альпийско–Гималайскому сейсмическому поясу . Они свидетельствуют о том, что тектонические процессы в этих районах не прекращаются ни на минуту, движение тектонических плит тоже не прекращается, а после очередного мощного землетрясения и очередного сброса напряжения земной коры, оно опять нарастает до критической точки, в которой, рано или поздно - неизбежно произойдёт очередная разрядка напряжённой земной коры, вызывающая землетрясение.
К сожалению, современная наука не может точно определять место и время очередного землетрясения. В активных сейсмических поясах земной коры они неизбежны, так как процесс движения тектонических плит непрерывный, а значит и непрерывное нарастание напряжённости в зонах соприкосновения движущихся платформ. С развитием цифровых технологий, с появлением супер мощных и сверхскоростных компьютерных комплексов, современная сейсмология все ближе будет подходить к тому, что она сможет производить математическое моделирование тектонических процессов в , что даст возможность предельно точно и достоверно определять точки очередного землетрясения. Это, в свою очередь – предоставит возможность человечеству готовиться к таким катастрофам и поможет избежать многочисленных человеческих жертв, а современные и перспективные строительные технологии сведут к минимуму разрушительные последствия мощных землетрясений. Следует отметить тот факт, что и другие активные сейсмические пояса на планете достаточно близко совпадают с поясами вулканической активности . Наукой доказано, что в большинстве случаев вулканическая активность прямо связана с сейсмической активностью. Как и землетрясения, повышенная вулканическая активность несёт прямую угрозу человеческой жизнедеятельности. Многие вулканы расположены в густонаселённых районах, с развитой промышленностью. Любое внезапное извержение вулканов несёт в себе опасность для людей, проживающих в зоне действия вулканов. Помимо перечисленного, землетрясения в океанах и морях приводят к возникновению цунами, которые не менее разрушительны для прибрежных зон, чем сами землетрясения. Именно по этой причине задача совершенствования методов сейсмического мониторинга активных сейсмических поясов - остаётся актуальной всегда.

На Земле существуют особые зоны повышенной сейсмической активности, где постоянно происходят землетрясения. Почему так происходит? Почему землетрясения чаще происходят в горной местности и очень редко в пустынях? Почему в Тихом океане землетрясения происходят постоянно, порождая цунами различной степени опасности, а вот о землетрясениях в Северном Ледовитом океане мы почти ничего не слышали. Все дело в сейсмических поясах земли.

Введение

Сейсмическими поясами земли называют места, где литосферные плиты планеты соприкасаются между собой. В этих зонах, где сейсмические пояса Земли образуются, наблюдается повышенная подвижность земной коры, вулканическая активность, обусловленная процессом горообразования, который длится тысячелетиями.

Протяженность этих поясов невероятно большая – пояса тянутся на тысячи километров.

На планете существуют два больших сейсмических пояса: Средиземноморско-Трансазиатский и Тихоокеанский.

Рис. 1. Сейсмические пояса Земли.

Средиземноморско-Трансазиатский пояс берет свое начало у берегов Персидского залива и заканчивается в середине Атлантического океана. Этот пояс еще называют широтным, так как он тянется параллельно экватору.

ТОП-1 статья которые читают вместе с этой

Тихоокеанский пояс – меридиональный, он тянется перпендикулярно Средиземноморско-Трансазиатскому поясу. Именно на линии этого пояса расположено огромное количество действующих вулканов, большая часть извержений которых происходит под толщей воды самого Тихого океана.

Если рисовать сейсмические пояса Земли на контурной карте – получится интересный и загадочный рисунок. Пояса, словно окаймляют древние платформы Земли, а иногда и внедряются в них. Они сопряжены с гигантскими разломами земной коры и древними, и более молодыми.

Средиземноморско-Трансазиатский сейсмический пояс

Широтный сейсмический пояс Земли проходит через Средиземное море и все прилегающие к нему горные европейские массивы, расположенные на юге континента. Он тянется через горы Малой Азии и Северной Африки, достигает горных хребтов Кавказа и Ирана, пролегает через всю Среднюю Азию и Гиндукуш прямо к Коэль- Луню и Гималаям.

В этом поясе, наиболее активными сейсмическими зонами считаются горы Карпаты, расположенные на территории Румынии, весь Иран и Белуджистан. От Белуджистана зона землетрясений тянется до Бирмы.

Рис.2. Средиземноморско -Трансазиатский сейсмический пояс

В этом поясе есть активные сейсмические зоны, которые расположены не только на суше, но и в водах двух океанов: Атлантического и Индийского. Частично этот пояс захватывает и Северный Ледовитый океан. Сейсмическая зона всей Атлантики проходит через Гренландское море и Испанию.

Наиболее активная сейсмическая зона широтного пояса приходится на дно Индийского океана, проходит через Аравийский полуостров и тянется до самого юга и юго-запада Антарктиды.

Тихоокеанский пояс

Но, как бы ни был опасен широтный сейсмический пояс, все же большая часть всех землетрясений (около 80%), которые происходят на нашей планете, приходится на Тихоокеанский пояс сейсмической активности. Этот пояс проходит по дну Тихого океана, по всем горным цепям, опоясывающим этот самый большой океан Земли, захватывает острова, расположенные в нем, включая Индонезию.

Рис.3. Тихоокеанский сейсмический пояс.

Самая огромная часть этого пояса – Восточная. Она берет начало на Камчатке, тянется через Алеутские острова и западные прибрежные зоны Северной и Южной Америк прямиком к Южно-Антильской петле.

Восточная ветвь непредсказуема и малоизучена. Она полна резких и извилистых поворотов.

Северная часть пояса наиболее сейсмически активна, что постоянно ощущают на себе жители Калифорнии, а также Центральной и Южной Америки.

Западная часть меридионального пояса берет свое начало на Камчатке, тянется к Японии и дальше.

Второстепенные сейсмические пояса

Не секрет, что во время землетрясений, волны от колебаний земной коры могут достигать отдаленных районов, которые принято считать безопасными в отношении сейсмической активности. В некоторых местах отголоски землетрясений не ощущаются вовсе, а в некоторых достигают нескольких баллов по шкале Рихтера.

Рис.4. Карта сейсмической активности Земли.

В основном эти зоны, чувствительные к колебаниям земной коры, находятся под толщей воды Мирового океана. Второстепенные сейсмические пояса планеты расположены в водах Атлантики, Тихого океана, Индийского океана и в Арктике. Большая часть второстепенных поясов приходится на восточную часть планеты, так, эти пояса тянуться от Филиппин, постепенно спускаясь к Антарктиде. Отзвуки толчков еще можно ощутить в Тихом океане, а вот в Атлантике почти всегда сейсмически спокойная зона.

Что мы узнали?

Итак, на Земле землетрясения не происходят в случайных местах. Сейсмическую активность земной коры возможно предсказать, так как основная часть землетрясений происходит в особых зонах, которые называются Сейсмическими поясами земли. Их на нашей планете всего два: Широтный Средиземноморско -Трансазиатский сейсмический пояс, который тянется параллельно Экватору и меридиональный Тихоокеанский сейсмический пояс, расположенный перпендикулярно широтному.

Тест для проверки

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 597.

Складчатый пояс, пересекающий Северо-Западную Африку и Евразию в широтном направлении от Атлантического океана до Южно-Китайского моря, отделяя южную группу древних платформ, до середины Юрского периода составлявшую суперконтинент Гондвану, от северной группы, составлявшей ранее континент Лавразия и Сибирскую платформу. На востоке Средиземноморский складчатый пояс сочленяется с западной ветвью Тихоокеанского геосинклинального пояса.

Средиземноморский пояс охватывает южные районы Европы и Средиземноморье, Магриб (Северо-Западную Африку), Малую Азию, Кавказ, Персидские горные системы, Памир, Гималаи, Тибет, Индокитай и Индонезийские острова. В средней и центральной части Азии он почти объединён с Урало-Монгольской геосинклинальной системой, а на западе близок к Северо-Атлантической системе.

  • Мезозоиды —
    • Индосинийская (Тибето-Малайская);
    • Западно-Туркменская (Небитдагская);
  • Альпиды —
    • Кавказская;
    • Крымская;
    • Балканская;
    • Центрально-Европейская;
    • Апеннинская;
    • Северо-Магрибская;
    • Ирано-Оманская;
    • Копетдаго-Эльбурсская;
    • Белуджистанская;
    • Афгано-Таджикская;
    • Памирская;
    • Гималайская;
    • Иравадийская;
    • Западно-Малайская

Примечания

Ссылки

ТЕМА 3ОБЩИЕ ЧЕРТЫ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ ОБЛАСТЕЙ АЛЬПИЙСКОЙ СКЛАДЧАТОСТИ(ГЕОЛОГИЯ БОЛЬШОГО КАВКАЗА, СКЛАДЧАТОЙ ОБЛАСТИ ВОСТОЧНЫХ КАРПАТ И ГОРНОГО КРЫМА)

Задание 4Схема структур альпийской складчатой области Большого Кавказа

Цель: составить схему структур складчатой области Большого Кавказа

План выполнения работы:

1 Легенда к схеме структур Большого Кавказа

2 Граница Большого Кавказа

3 Основные структурные элементы Большого Кавказа

Материалы:

  • литература:Короновский Н.В.

Краткий курс региональной геологии СССР. – Изд. Московского университета, 1984. – 334 с., Лазько Е.М. Региональная геология СССР. Том 1, Европейская часть и Кавказ. – М.:Недра, 1975.

– 333 с., конспект лекций по геологии Восточно-Европейской платформы.

Основные понятия по заданию

На севере граница между мегантиклинорием Большого Кавказа и Скифской плитой проводится по кровле меловых отложений. К югу от антиклинория находится Южный склон Большого Кавказа, представляющий собой альпийский геосинклинальный прогиб, сложенный отложениями нижней - верхней юры.

На схеме отображают следующие структурные элементы Большого Кавказа: Главный антиклинорий, Передовой хребет, Северо-Кавказская монокиналь, Южный склон Большого Кавказа, Рионский и Куринский прогибы, Дзирульский масив, Азербайджанская складчатая зона.

При выделении выше указанных структурных элементов Большого Кавказа необходимо учитывать следующие особенности.

В пределах Главного антиклинория на поверхность выходят породы докембрия, пронизанные мезозойскими и альпийскими, главным образом, гранитоидными интрузиями.

В структурах Передового хребта обнажаются отложения среднего, верхнего кембрия и силура, среднего, верхнего девона и нижнего карбона(палеозоя), прорванныеинтрузиями кислого, среднего и ультраосновного состава и молассоидная толща среднего, верхнего карбона и перми.

Северо-Кавказская монокиналь располагается севернее структур Главного антиклинория и Передового хребта.Ее чехол представлен отложениями юры и мела.

Южный склон Большого Кавказа находится к югу от антиклинория.

Он выполнен породами средней юры и мела.

Рионский и Куринский прогибы находятся между складчатыми сооруженнями Большого и Малого Кавказа.

Они оконтуриваются по кайнозойским отложениям.

Дзирульский масив разделяет Рионский и Куринский прогибы. Здесь на поверхность выходят рифейские и палеозойские породы с герцинскими и киммерийскими гранитами.

Азербайджанская складчатая зона находится в восточной части мегантиклинория и оконтуривается по отложениям плиоцена-антрпогена.

Ход работы

Задание 5Схема структур альпийских складчатых областей Восточных Карпат и Горного Крыма

Цель: составить схему структур Восточных Карпат и Горного Крыма

План выполнения работы:

1 Легенда к схеме структур складчатой системы Восточных Карпат

2 Граница складчатой системы Восточных Карпат

3 Основные структурные элементы Восточных Карпат

4 Граница складчатой системы Горного Крыма

Материалы:

  • Тектоническая карта Европы и смежных областей М 1:22500000, Геологическая карта СССР М 1:4000000, контурная карта Европы М 1:17000000 – 20000000;
  • тетрадь для практических занятий, простой мягкий карандаш, набор цветных карандашей, ластик, линейка;
  • литература:Короновский Н.В.

Краткий курс региональной геологии СССР. – Изд. Московского университета, 1984. – 334 с., Лазько Е.М. Региональная геология СССР. Том 1, Европейская часть и Кавказ. – М.:Недра, 1975. – 333 с., конспект лекций по геологии Восточно-Европейской платформы.

Основные понятия по заданию

Мегантиклинорий Восточных Карпат обладает хорошо выраженной продольной структурно-фациальной зональностью и надвиганием внутренних зон на внешние и последних на Предкарпатский краевой прогиб.

На схеме отображают следующие структурные элементы Восточных Карпат.Предкарпатский краевой прогиб, Скибовая зона, Мармарошский кристаллический масив, Зона Утесов,Закарпатский краевой прогиб.Кроме того, на схеме должна быть оконтурена складчатая область Горного Крыма.

При выделении выше указанных структурных элементов Восточных Карпат необходимо учитывать следующие особенности.

Предкарпатский краевой прогиб располагается на границе складчатого сооруження Восточных Карпат и Восточно-Европейской платформы.

Он выполнен миоценовыми отложеннями.

Скибовая зона является наиболее внешнейчастью Карпат.Она оконтуривается помеловым и палеогеновым отложениям.

Мармарошский кристаллический массив занимает внутреннее положение на крайнем юго-востоке.

В пределах Мармарошского массива обнажаются древнейшие протерозой-мезозойские породы. Отложения прорываются среднепалеозойскими гранитоидами. В покровном строении Мармарошского массива участвуют также верхнекаменноугольные, пермские, триасовые и юрские отложения, перекрытые отложениями верхнего мела и кайнозоя.

Мармарошский массив к северо-западу суживается и далее располагается Зона Утесов, которая выражена узкой, местами двойной полосой выходов триасовых, юрских и меловых отложений беспорядочно рассеянных среди меловых и палеогеновых пород.

С тыльной, внутренней, стороны горное сооруженне Карпат ограничено Закарпатским краевым прогибом. Он выполнен неогеновыми молассами.

При выделении складчатой области Горного Крыма необходимо учитывать, что границы ее простираются от г.

Севастополя на западе дог. Феодосии на востоке. Северная граница отделяет Горный Крым от структур Скифской плиты и проводится по кровле меловых отложений.

Ход работы , методика ее выполнения и оформления аналогична таковым в задании 1 и 2.

ТЕМА 4ОСНОВНЫЕ ЧЕРТЫ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ БЕЛАРУСИ

Задание 6Описать основные структуры территории Беларуси по картографическим материалам

Цель: Описать основные структуры территории Беларуси, выраженные вфундамента, используя картографические материалы

План описания структур:

1 Название структуры I порядка и выделенных в их составе структур IIпорядка.

2 Границы структуры I порядка.

3 Глубины залегания фундамента - минимальные и максимальные глубины в границах структуры Iпорядка, глубины залегания в пределах структур II порядка,характерные особенности залегания поверхности фундамента.

4 Время и обусловленность формирования структуры.

6 Характеристика основных разрывных нарушений, ограничивающих структурыI порядкаи разделяющих структуры IIпорядка (ранг, время формирования, расположение, протяженность, ширина зоны влияния, вертикальная амплитуда, очертания в плане, активность на современном этапе).

7 Структурные комплексы и этажи (название, распространение и породами каких формаций сложены).

Материалы:

  • тектонические карты БелоруссииМ 1:500000 и М 1: 1000000;
  • тетрадь для практических занятий
  • литература: Геология Беларуси: монография // Под ред.

А.С. Махнача – Минск, 2001. – 814 с., Разломы земной коры Беларуси: монография // Под ред Р.Е. Айзберга. Минск: Красико-Принт, 2007. - 372 с., СТБ Условные обозначения к картам геологического содержания (рабочий проект). – Минск: Минприроды, 2011.

– 53 с., конспект лекций по геологии Беларуси.

Индоло-кубанский прогиб

Cтраница 1

Индоло-Кубанский прогиб является предгорным.  

Миоцен-плиоценовые отложения Индоло-Кубанского прогиба включают в основном песчанистые пласты чакракско-караган-ского, сарматского, мэотического и понтического возраста, с которыми связано газонефтяное Анастасиевско-Троицкое месторождение. Промышленная нефтегазоносность месторождения выявлена в киммерийских, понтических, мэотических и сарматских отложениях.

Минерализация вод сарматских пород в Западном Предкавказье увеличивается с востока на запад, достигая максимума (60 г / л) в центральной части прогиба. При этом состав вод изменяется от сульфатно-натриевого до гидрокарбонатно-натриевого и хлоридно-кальциевого.  

В центральной части Индоло-Кубанского прогиба ниже поверхности среза — 4 5 км будут вскрыты скважинами палеоген нижненеогеновые отложения.

Восточно-Северское месторождение расположено на южном борту Индоло-Кубанского прогиба. Месторождение построено очень сложно и представляет собой антиклинальную складку в эоценовых и олиго-ценовых отложениях палеогена, погребенную под моноклинально залегающими отложениями неогена. Простирание структуры близко к широтному, складка асимметрична: северное крыло более крутое, чем южное.  

Анастасиевско-Троицкое газоконденсат нонефтяное месторождение расположено в Индоло-Кубанском прогибе.

Месторождение многопластовое, открыто в 1952 г. С киммерийским и понтическим горизонтами связаны залежи газа, с мэотическим — нефти.  

На фоне высокоминерализованных хлоридно-кальциевых вод мэоти-ческих отложений в центральной части Индоло-Кубанского прогиба наблюдается гидрохимический минимум в пределах Анастасиевско-Троицкой складки, связанный с внедрением слабоминерализованных вод из диапирового ядра.

Приведенные напоры вод снижаются с востока на запад от 400 до 160 м и обусловлены инфильтрационным режимом. В наиболее погруженной части Индоло-Кубанского прогиба в районе Анастасиевско-Троицкого месторождения в миоценовых отложениях существует элизионный режим и установлены обширные зоны АВПД.

АЛЬПИ́ЙСКО-ГИМАЛА́ЙСКИЙ ПОДВИ́ЖНЫЙ ПО́ЯС

Южная часть бассейна, прилегающая к Керченскому и Таманскому полуостровам, располагается в пределах Индоло-Кубанского прогиба испытывает интенсивное погружение. Мощность морских голоценовых осадков достигает здесь первых десятков метров.

Среди них преобладают глинистые и глинисто-алевритовые илы с различной по количеству примесью раковин моллюсков.  

Месторождение Широкая Балка — Веселая, открытое в 1937 г., расположено в пределах южного борта Индоло-Кубанского прогиба.

Здесь в отложениях среднего Майкопа выявлена полоса песчано-алеври-товых пород, в южной части которой заливообразные выступы образуют ряд литологических ловушек, заполненных нефтью. Одна из них называется Широкая Балка, другая — Веселая.

Они объединены общей полосой нефтеносности.  

Пояс Предка вка зек их передовых прогибов: I ] — Терско-Каспийский и Кусаро-Дивн — чинский прогибы; Ь — Индоло-Кубанский прогиб. III, Закавказский межгорный прогиб: III ] — Дзирульско-Окрнбская зона поднятий; Ш2 — предгорные прогибы Западной Грузии; Ш3 — Колхидский прогиб; Ш4 — Ку-ринская впадина; Ills — Апшероно-Кобыстанский прогиб.

Мегантиклинорий Малого Кавказа: IVi — Аджаро-Триалетская складчатая зона; IVa — Сомхето-Карабахский антиклинорий; IV3 — Севанский синклинорий; IV4 — Зангезур-Ордубадская зона; IVS — Армяно-Ахалкалакский вулканический щит; IVa — Араксинская впадина; IV.  

Новодмитриевское месторождение, открытое в 1951 г., расположено в пределах Калужского пояса погребенных антиклинальных складок, осложняющих южный борт Индоло-Кубанского прогиба, представляет собой антиклинальную складку почти широтного простирания (с отклонением на юго-восток), осложненную большим количеством дизъюнктивных нарушений.

Кроме рассмотренных Усть-Лабинского и Некрасовского месторождений в южной части Ейско-Березанской зоны поднятий, приуроченной к Усть-Ла — бинскому выступу фундамента, отделяющего Восточно-Кубанскую впадину от Индоло-Кубанского прогиба, расположены Двубратское, Ладожское месторождения.

В пределах Степного Крыма помимо Сивашской впадины другими основными тектоническими элементами являются: Новоселовско-Симферопольское поднятие палеозойского фундамента, которое на западе погружается в Альминскую впадину, а на востоке переходит в Индоло-Кубанский прогиб.  

Страницы:      1    2

Средиземномо́рский (Альпийско-Гималайский) скла́дчатый (геосинклина́льный) по́яс - складчатый пояс, пересекающий Северо-Западную Африку и Евразию в широтном направлении от Атлантического океана до Южно-Китайского моря, отделяя южную группу древних платформ, до середины Юрского периода составлявшую суперконтинент Гондвану, от северной группы, составлявшей ранее континент Лавразия и Сибирскую платформу.

На востоке Средиземноморский складчатый пояс сочленяется с западной ветвью Тихоокеанского геосинклинального пояса.

Средиземноморский пояс охватывает южные районы Европы и Средиземноморье, Магриб (Северо-Западную Африку), Малую Азию, Кавказ, Персидские горные системы, Памир, Гималаи, Тибет, Индокитай и Индонезийские острова.

Альпийско-Гималайский сейсмический пояс

В средней и центральной части Азии он почти объединён с Урало-Монгольской геосинклинальной системой, а на западе близок к Северо-Атлантической системе.

Пояс формировался в течение длительного времени, охватывающего период от докембрия до наших дней.

Средиземноморский геосинклинальный пояс включает 2 складчатые области (мезозоиды и альпиды), которые делятся на системы:

См.

Примечания

  1. Цейслер В.М., Караулов В.Б., Успенская Е.А., Чернова Е.С. Основы региональной геологии СССР. - М: Недра, 1984. - 358 с.

Ссылки

Складчатые пояса на карте мира

Сейсмические пояса Земли представляют собой линии, по которым проходят границы между литосферными плитами. Если плиты движутся навстречу друг другу, то на стыках образуются горы (такие участки еще называют зонами горообразования). Если же литосферные плиты расходятся, то в этих местах появляются разломы. Естественно, такие процессы как схождение-расхождение литосферных плит не остаются без последствий – около 95% всех землетрясений и извержений вулканов происходит в этих областях. Именно поэтому они носят название сейсмических (с греческого seismos - сотрясать).

Принято выделять два основных сейсмических пояса: широтный Средиземноморско-Трансазиатский и перпендикулярный ему меридиональный Тихоокеанский. В данных двух областях происходит подавляющее большинство всех землетрясений. Если посмотреть на карту сейсмической опасности, то становится отчетливо видно, что зоны, выделенные красным и бордовым, находятся именно в месте расположения этих двух поясов. Они простираются на тысячи километров, огибая земной шар, пролегают на суше и под водой.

Практически 80% всех землетрясений и извержений вулканов приходятся на Тихоокеанский сейсмический пояс, иначе называемый Тихоокеанским огненным кольцом. Данная сейсмическая зона действительно, будто кольцом, обхватывает почти весь Тихий океан. Различают две ветви этого пояса – Восточную и Западную.

Восточная ветвь начинается от берегов Камчатки и идет по Алеутским островам, проходит через все западное побережье Северной и Южной Америк и заканчивается в районе Южно-Антильской петли. В этой области больше всего мощных землетрясений происходит на Калифорнийском полуострове, чем обусловлена архитектура таких городов, как Лос-Анджелес и Сан-Франциско – там преобладают дома высотой в один-два этажа с редкими многоэтажными строениями, в основном в центральных частях городов.

Западная ветвь Тихоокеанского огненного кольца тянется от Камчатки через Курильские острова, Японию и Филиппины, охватывает Индонезию и, огибая дугой Австралию, через Новую Зеландию доходит до самой Антарктиды. В этом районе происходит множество мощных подводных землетрясений, часто приводящих к катастрофическим цунами. Сильнее всего от землетрясений и цунами в этом регионе страдают такие островные государства, как Япония, Индонезия, Шри-Ланка и тд.

Средиземноморско-Трансазиатский пояс, как следует из его названия, простирается через все Средиземное море, включая в себя южно-европейские, северно-африканские и ближневосточные регионы. Далее он тянется практически через всю Азию, по хребтам Кавказа и Ирана до самых Гималаев, к Мьянме и Таиланду, где, по оценкам некоторых ученых, соединяется с сейсмической Тихоокеанской зоной.

По данным сейсмологов, на этот пояс приходится около 15% мировых землетрясений, при этом наиболее активными зонами Средиземноморско-Трансазиатского пояса принято считать Румынские Карпаты, Иран и восток Пакистана.

Второстепенные сейсмические пояса

Выделяют также и второстепенные зоны сейсмический активности. Второстепенными они считаются потому, что на их долю приходится лишь 5% всех землетрясений нашей планеты. Сейсмический пояс Атлантического океана начинается у берегов Гренландии, тянется вдоль всей Атлантики и находит свой конец возле островов Тристан-да-Кунья. Здесь не бывает сильных землетрясений, и благодаря отдаленности этой зоны от континентов подземные толчки в этом поясе не приносят разрушений.

Западная часть Индийского океана так же характеризуется своей собственной сейсмической зоной, и хотя она достаточно велика по длине (доходит своим южным концом до самой Антарктиды), землетрясения здесь не слишком сильны, а их очаги располагаются неглубоко под землей. Так же сейсмическая зона существует и в Арктике, но из-за практически полной безлюдности этих мест, а так же благодаря малой мощности подземных толчков, землетрясения в этом регионе не имеют особенного влияния на жизнь людей.

Самые мощные землетрясения 20-21 веков

Так как на Тихоокеанское огненное кольцо приходится до 80% всех землетрясений, то основные по своей мощности и разрушительности катаклизмы произошли именно в этом регионе. В первую очередь, стоит упомянуть Японию, которая не раз становилась жертвой сильнейших землетрясений. Самым разрушительным, хоть и не самым сильным по магнитуде своих колебаний, стало землетрясение 1923 года, которое носит название Великое землетрясение Канто. По разным оценкам, во время и от последствий данного бедствия погибло 174 тысячи человек, еще 545 тысяч так и не были найдены, общее число пострадавших оценивается в 4 миллиона человек. Самым сильным японским землетрясением (с магнитудой от 9,0 до 9,1) стало знаменитое бедствие 2011 года, когда мощное цунами, вызванное подводными толчками у берегов Японии, вызвало разрушения в приморских городах, а пожар на нефтехимическом комплексе в городе Сендай и авария на АЭС Фокусима-1 нанесли огромный ущерб как экономике самой страны, так и экологии всего мира.

Наиболее сильным из всех документально зарегистрированных землетрясений считается Великое Чилийское землетрясение с магнитудой до 9,5, которое произошло в 1960 году (если посмотреть на карте, то становится видно, что оно произошло так же в области Тихоокеанского сейсмического пояса). Бедствием, унесшим самое большое количество жизней в 21 веке, признано землетрясение в Индийском океане 2004 года, когда мощное цунами, являвшееся его последствием, унесло почти 300 тысяч жизней человек из почти 20 стран мира. На карте зона землетрясения относится к западной оконечности Тихоокеанского кольца.

В Средиземноморско-Трансазиатском сейсмическом поясе так же произошло множество крупных и разрушительных землетрясений. К одному из таких относится землетрясение 1976 года в Таншане, когда только по официальным данным КНР погибло 242 419 человек, однако по некоторым данным число жертв превышает 655 тысяч, что делает это землетрясение одним из самых смертельных в истории человечества.

Год назад — 25 апреля 2015 — в Непале произошло резонансное землетрясение магнитудой 7.8.

В апреле 2016 основные сейсмособытия происходили в Тихоокеанском Огненном кольце на Филиппинах, у Камчатки, в Японии , у Вануату — 13 апреля 2016 , у Гватемалы, в Японии, 15 апреля 2016 , в Эквадоре 16 апреля 2016.

Но, — 13 апреля 2016 — произошло и землетрясение магнитудой 6.9 в Мьянме . Это зона Альпийско — Гималайского сейсмического пояса. Прогноз.

На Земле с апреля по июль 2016 наступает период сейсмической турбулентности. В сейсмически активных регионах происходят по два резонансных землетрясения в сутки, огромное количество афтершоков, последующих толчков. Увеличивается количество резонансных землетрясений на коротком отрезке времени.

Как было сказано в прогнозе землетрясений на апрель 2016:

В марте 2016 под действием космических резонанс- факторов накопилась большая сейсмическая энергия в геосфере Земли. В апреле — мае — июне 2016 накопленная сейсмическая энергия будет высвобождаться в виде резонансных землетрясений и извержений вулканов.

Спусковой крючок Гималайской тектоники 2015. Альпийско — Гималайский сейсмический пояс.

Период сейсмического спокойствия в юго-восточной Азии подходит к концу, и катастрофическое землетрясение, произошедшее в Непале 25 апреля 2015, может стать спусковым крючком для еще более разрушительных подземных толчков в Гималаях, утверждают геологи на страницах издания Science News.

Специалисты полагают, что непальское землетрясение магнитудой 7,9 давно «назрело». Участок разлома, на который пришелся эпицентр толчков, был сейсмически стабильным с 1344 года. Источник подземных толчков находился на глубине 15 км, где Индийская плита пододвигается под Южный Тибет со скоростью около 20 мм в год. Сдавливание плит приводит к повышению давления, в итоге, породы земной коры не выдерживают и дают трещину.

Альпийско — Гималайский сейсмический пояс.

Тектонические плиты, расположенные под территорией Непала, уже несколько столетий приближались к точке разлома. Толчки были слишком слабыми, чтобы снять все накопившееся давление, они лишь «выпустили пар». Теперь следует ожидать мощных землетрясений, однако точные сроки ученым неизвестны .

Источник

Активность на Альпийско — Гималайском сейсмическом поясе в конце апреля 2016.

Эта сейсмическая активность в регионе определяет высокую вероятность резонансного землетрясения магнитудой более 7.0 — в конце апреля, начале мая 2016.

Резонансные даты сейсмической активности в конце апреля 2016.

С марта 2016 действует сейсмический резонанс — фактор формирующейся квадратуры Юпитер- Сатурн.

Космологическое соответствие — резонансные землетрясения магнитудой более 7.0, резонансные цунами, резонансное извержение активных вулканов.

Период действия точной и широкой квадратуры Юпитер — Сатурн — март — июль 2016.

Разворот Марса в обратное движение вблизи Сатурна — 17 апреля 2016 — сейсмический резонанс — фактор.

Марс в развороте в обратное движение с 15 по 20 апреля 2016 на Оси катастроф Альдебаран- Антарес — сейсмический резонанс — фактор.

Разворот Плутона в обратное движение — 18 апреля 2016 — сейсмический резонанс — фактор.

Соединение Луна, Юпитер в квадратуре к соединению Марс,Сатурн — 18 апреля 2016 — сейсмический резонанс — фактор.

Тау- квадрат Луна — Плутон — Венера, Уран — 20 апреля 2016 — сейсмический резонанс — фактор.

Соединение Марс, Луна, Сатурн в квадратуре к Юпитеру, в квадратуре к Нептуну — 25 апреля 2016 — сейсмический резонанс — фактор.

Разворот Меркурия в обратное движение — 28 апреля 2016 — сейсмический резонанс — фактор.

Ингрессия, переход Венеры в знак Тельца — 30 апреля 2016 — сейсмический резонанс — фактор.

Разворот Юпитера в прямое движение в квадратуре к Сатурну — 9 мая 2016 — сейсмический резонанс — фактор + — 14 суток .

Исследования связей сейсмоактивности, вулканической деятельности, напряженного проявления Стихий с Космическими факторами, гравитационными полями планет, активностью Солнца, торсионными полями и лучами Ближнего и Дальнего Космоса — Неподвижных звезд, Туманностей — Галактик — ведутся в методе "Космология — Астрология как система безопасности". Программное обеспечение — астропроцессор ZET GEO.

Андрей Андреев- косморитмолог.

Прогноз землетрясений, сейсмической активности на 2016 год. Регионы сейсмический активности 2016.

Прогноз землетрясений на апрель 2016.


Решётка кристалла Земли.