» » Часть аминокислот вовлекается в цикл кребса. Что такое цикл Кребса? Этапы цикла Кребса

Часть аминокислот вовлекается в цикл кребса. Что такое цикл Кребса? Этапы цикла Кребса

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ – цикл лимонной кислоты или цикл Кребса – широко представленный в организмах животных, растений и микробов путь окислительных превращений ди- и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде и синтезе белков, жиров и углеводов. Открыт Х.Кребсом и У.Джонсоном (1937). Этот цикл является основой метаболизма и выполняет две важных функции – снабжения организма энергией и интеграции всех главных метаболических потоков, как катаболических (биорасщепление), так и анаболических (биосинтез).

Цикл Кребса состоит из 8 стадий (в двух стадиях на схеме выделены промежуточные продукты), в ходе которых происходит:

1) полное окисление ацетильного остатка до двух молекул СО2,

2) образуются три молекулы восстановленного никотинамидадениндинуклеотида (НАДН) и одна восстановленного флавинадениндинуклеотида (ФАДН2), что является главным источником энергии, производимой в цикле и

3) образуется одна молекула гуанозинтрифосфата (ГТФ) в результате так называемого субстратного окисления.

В целом, путь энергетически выгоден (DG0" = –14,8 ккал.)

Цикл Кребса, локализованный в митохондриях, начинается с лимонной кислоты (цитрат) и заканчивается образованием щавелевоуксусной кислоты (оксалоацетата – ОА). К субстратам цикла относятся трикарбоновые кислоты – лимонная, цис-аконитовая, изолимонная, щавелевоянтарная (оксалосукцинат) и дикарбоновые кислоты – 2-кетоглутаровая (КГ), янтарная, фумаровая, яблочная (малат) и щавелевоуксусная. К субстратам цикла Кребса следует отнести и уксусную кислоту, которая в активной форме (т.е. в виде ацетилкофермента А, ацетил-SКоА) участвует в конденсации с щавелевоуксусной кислотой, приводящей к образованию лимонной кислоты. Окисляется именно ацетильный остаток, вошедший в структуру лимонной кислоты, подвергается окислению; атомы углерода окисляются до CO2, атомы водорода частично акцептируются коферментами дегидрогеназ, частично в протонированной форме переходят в раствор, то есть в окружающую среду.

Как исходное соединение для образования ацетил-КоА обычно указывается пировиноградная кислота (пируват), образующаяся при гликолизе и занимающая одно из центральных мест в перекрещивающихся путях обмена веществ. Под влиянием фермента сложной структуры – пируватдегидрогеназы (КФ1.2.4.1 – ПДГаза) пирувата окисляется с образованием CO2 (первое декарбоксилирование), ацетил-КоА и восстановливается НАД (см. схему). Однако окисление пирувата – далеко не единственный путь образования ацетил-КоА, который также является характерным продуктом окисления жирных кислот (фермент тиолаза или синтетаза жирных кислот) и других реакций разложения углеводов и аминокислот. Все ферменты, участвующие в реакциях цикла Кребса, локализованы в митохондриях, причем большинство из них растворимы, а сукцинатдегидрогеназа (КФ1.3.99.1) прочно связана с мембранными структурами.

Образование лимонной кислоты, с синтеза которой и начинается собственно цикл, при помощи цитратсинтазы (КФ4.1.3.7 – конденсирующий фермент на схеме), является реакцией эндергонической (с поглощением энергии), и ее реализация возможна благодаря использованию богатой энергией связи ацетильного остатка с KoA [СН3СО~SKoA]. Это главная стадия регуляции всего цикла. Далее следует изомеризация лимонной кислоты в изолимонную через промежуточную стадию образования цис-аконитовой кислоты (фермент аконитаза КФ4.2.1.3, обладает абсолютной стереоспецифичностью – чувствительностью к местоположению водорода). Продуктом дальнейшего превращения изолимонной кислоты под влиянием соответствующей дегидрогеназы (изоцитратдегидрогеназа КФ1.1.1.41) является, по-видимому, щавелевоянтарная кислота, декарбоксилирование которой (вторая молекула CO2) приводит к КГ. Эта стадия также строго регулируется. По ряду характеристик (высокая молекулярная масса, сложная многокомпонентная структура, ступенчатые реакции, частично те же коферменты и т.д.) КГдегидрогеназа (КФ1.2.4.2) напоминает ПДГазу. Продуктами реакции являются CO2 (третье декарбоксилирование), Н+ и сукцинил-КоА. На этой стадии включается сукцинил-КоА-синтетаза, иначе называемая сукцинаттиокиназой (КФ6.2.1.4), катализирующая обратимую реакцию образования свободного сукцината: Сукцинил-КоА + Рнеорг + ГДФ = Сукцинат + KoA + ГТФ. При этой реакции осуществляется так называемое субстратное фосфорилирование, т.е. образование богатого энергией гуанозинтрифосфата (ГТФ) за счет гуанозиндифосфата (ГДФ) и минерального фосфата (Рнеорг) с использованием энергии сукцинил-КоА. После образования сукцината вступает в действие сукцинатдегидрогеназа (КФ1.3.99.1) – флавопротеид, приводящий к фумаровой кислоте. ФАД соединен с белковой частью фермента и является метаболически активной формой рибофлавина (витамин В2). Этот фермент также характеризуется абсолютной стереоспецифичностью элиминирования водорода. Фумараза (КФ4.2.1.2) обеспечивает равновесие между фумаровой кислотой и яблочной (также стереоспецифична), а дегидрогеназа яблочной кислоты (малатдегидрогеназа КФ1.1.1.37, нуждающаяся в коферменте НАД+, также стереоспецифична) приводит к завершению цикла Кребса, то есть к образованию щавелевоуксусной кислоты. После этого повторяется реакция конденсации щавелевоуксусной кислотой с ацетил-КоА, приводящая к образованию лимонной кислоты, и цикл возобновляется.

Сукцинатдегидрогеназа входит в состав более сложного сукцинатдегидрогеназного комплекса (комплекса II) дыхательной цепи, поставляя восстановительные эквиваленты, (НАД-Н2), образующиеся прив реакции, в дыхательную цепь.

На примере ПДГазы можно познакомиться с принципом каскадной регуляции активности метаболизма за счет фосфорилирования-дефосфорилирования соответствующего фермента специальными киназой и фосфатазой ПДГазы. Обе они присоединены к ПДГазе.

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ

Предполагается, что катализ индивидуальных ферментативных реакций осуществляется в составе надмолекулярного «сверхкомплекса», так называемого «метаболона». Преимущества такой организации ферментов состоят в том, что нет диффузии кофакторов (коферментов и ионов металлов)и субстратов, а это способствует более эффективной работе цикла.

Энергетическая эффективность рассмотренных процессов невелика, однако образующиеся при окислении пирувата и последующих реакциях цикла Кребса 3 моля НАДН и 1 моль ФАДН2 являются важными продуктами окислительных превращений. Дальнейшее их окисление осуществляется ферментами дыхательной цепи также в митохондриях и сопряжено с фосфорилированием, т.е. образованием АТФ за счет этерификации (образования фосфороорганических эфиров)минерального фосфата. Гликолиз, ферментное действие ПДГазы и цикл Кребса – всего в сумме 19 реакций – определяют полное окисление одной молекулы глюкозы до 6 молекул CO2 с образованием 38 молекул АТФ – этой разменной «энергетической валюты» клетки. Процесс окисления НАДН и ФАДН2 ферментами дыхательной цепи энергетически весьма эффективен, происходит с использованием кислорода воздуха, приводит к образованию воды и служит основным источником энергетических ресурсов клетки (более 90%). Однако в его непосредственной реализации ферменты цикла Кребса не участвуют. В каждой клетке человека есть от 100 до 1000 митохондрий, обеспечивающих жизнедеятельность энергией.

В основе интегрирующей функции цикла Кребса в метаболизме лежит то, что углеводы, жиры и аминокислоты из белков могут превращаться в конечном счете в интермедиаты (промежуточные соединения) этого цикла или синтезироваться из них. Выведение интермедиатов из цикла при анаболизме должно сочетаться с продолжением катаболической активности цикла для постоянного образования АТФ, необходимого для биосинтезов. Таким образом, цикл должен одновременно выполнять две функции. При этом концентрация интермедиатов (особенно ОА) может понижаться, что способно привести к опасному понижению производства энергии. Для предотвращения служат «предохранительные клапаны», называемые анаплеротическими реакциями (от греч. «наполнять»). Важнейшей является реакция синтеза ОА из пирувата, осуществляемая пируваткарбоксилазой (КФ6.4.1.1), также локализованной в митохондриях. В результате накапливается большое количество ОА, что обеспечивает синтез цитрата и др. интермедиатов, что позволяет циклу Кребса нормально функционировать и, вместе с тем, обеспечивать выведение интермедиатов в цитоплазму для последующих биосинтезов. Таким образом, на уровне цикла Кребса происходит эффективно скоординированная интеграция процессов анаболизма и катаболизма под действием многочисленных и тонких регуляторных механизмов, в том числе гормональных.

В анаэробных условиях вместо цикла Кребса функционируют его окислительная ветвь до КГ (реакции 1, 2, 3) и восстановительная – от ОА до сукцината (реакции 8®7®6). При этом много энергии не запасается и цикл поставляет только интермедиаты для клеточных синтезов.

При переходе организма от покоя к активности возникает потребность в мобилизации энергии и обменных процессов. Это, в частности, достигается у животных шунтированием наиболее медленных реакций (1–3) и преимущественным окислением сукцината. При этом КГ – исходный субстрат укороченного цикла Кребса – образуется в реакции быстрого переаминирования (переноса аминной группы)

Глутамат + ОА = КГ + аспартат

Другая модификация цикла Кребса (так называемый 4-аминобутиратный шунт) – это превращение КГ в сукцинат через глутамат, 4-аминобутират и янтарный семиальдегид (3-формилпропионовую кислоту). Эта модификация важна в ткани мозга, где около 10% глюкозы расщепляется по этому пути.

Тесное сопряжение цикла Кребса с дыхательной цепью, особенно в митохондриях животных, а также ингибирование большинства ферментов цикла под действием АТФ, предопределяют снижение активности цикла при высоком фосфорильном потенциале клетки, т.е. при высоком соотношении концентраций АТФ/АДФ. У большинства растений, бактерий и многих грибов тесное сопряжение преодолевается развитием несопряженных альтернативных путей окисления, позволяющих поддерживать одновременно дыхательную активность и активность цикла на высоком уровне даже при высоком фосфорильном потенциале.

Игорь Рапанович

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ

предыдущая

← 1 2 3 следующая

Литература

Страйер Л. Биохимия. Пер. с англ. М., Мир, 1985

Бохински Р. Современные воззрения в биохимии. Пер с англ., М., Мир, 1987

Кнорре Д.Г., Мызина С.Д. Биологическая химия. М., Высшая школа, 2003

Кольман Я., Рем К.-Г. Наглядная биохимия. М., Мир, 2004

Цикл Кребса называют еще циклом лимонной кислоты, или клеточным дыханием. Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Гансом Кребсом, за эту свою работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953). В расшифровке отдельных реакций этого процесса приняли участие многие ученые: А. Сент-Дьердьи, А. Ленинджер, С. Е. Северин и другие.

Цикл Кребса конечный путь окисления ацетильных групп, в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль "клеточного топлива" - углеводов, жирных кислот и аминокислот.

За один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление одной молекулы. На уровне цикла Кребса объединяются пути распада углеводов, липидов и белков. Метаболиты цикла Кребса используются для синтеза других веществ (щавелевоуксусная кислота → глюкоза, аспарагиновая кислота). Данный цикл происходит в матриксе митохондрий.

Цикл Кребса – главная система, поставляющая водород для дыхательной цепи митохондрий.

Все пути катаболизма сводятся к образованию трехуглеродного соединения –пировиноградной кислоты, которая затем путем окислительного декарбоксилирования в присутствии кофермента –тиаминпирофосфата подвергается декарбоксилированию с образованием ацетил-КоА. АцетилкоферментА «сгорает» в цикле Кребса до двух молекул СО 2 .

1. Первой реакцией цикла Кребса является образование цитрата - лимонной кислоты

2.Во второй реакции через стадию дегидратации и образования цис-аконитовой кислоты происходит образование изолимонной кислоты.

Обратите внимание, что присоединение молекулы воды к цис-аконитовой кислоте идет против правила Марковникова.

3. В третьей реакции, которая, по-видимому, лимитирует скорость цикла Кребса, изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы:

4. В четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты до сукцинил-КоА. Механизм этой реакции сходен с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА.



5. Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГДФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ1 за счет высокоэргической тиоэфирной связи сукцинил-КоА:

6. В шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком ковалентно связан кофермент ФАД + :

7. В седьмой реакции образовавшаяся фумаровая кислота гидратируется под влиянием фермента фумаратгидратазы. Продуктом данной реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, - в ходе данной реакции образуется L-яблочная кислота (малат):

8. В восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из четырех пар атомов водорода три пары переносятся через НАД + на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуются три молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул АТФ. Одна пара атомов попадает в систему транспорта электронов через ФАД, - в результате образуются 2 молекулы АТФ. В ходе реакций цикла Кребса синтезируется также 1 молекула ГТФ, что равносильно 1 молекуле АТФ. Итак, при окислении ацетил-КоА в цикле Кребса образуется 12 молекул АТФ.

Схематичное изображение цикла Кребса:

В ЦТК два ключевых фермента:

1) цитратсинтаза (1-я реакция)

2) изоцитратдегидрогеназа (3-я реакция)

Оба фермента аллостерически ингибируются избытком АТФ и НАДН 2 . Изоцитратдегидрогеназа сильно активируется АДФ. Если АДФ нет, то этот фермент неактивен. В условиях энергетического покоя концентрация АТФ увеличивается, и скорость реакций ЦТК мала - синтез АТФ уменьшается. Изоцитратдегидрогеназа ингибируется АТФ намного сильнее, чем цитратсинтаза, поэтому в условиях энергетического покоя повышается концентрация цитрата, и он выходит в цитоплазму по градиенту концентраций путем облегченной диффузии. В цитоплазме цитрат превращается в Ацетил-КоА, который участвует в синтезе жирных кислот. Промежуточные продукты метаболизма цикла Кребса идут на синтез других веществ. Из α-кетоглутарата и щавелевоуксусной кислоты (оксалоацетата) синтезируются аминокислоты, из щавелевоуксусной кислоты – углеводы, из сукцинил-КоА → синтез гема гемоглобина. Образовавшиеся восстановленные коферменты НАДН 2 и ФАДН 2 в дыхательной цепи окисляются с образованием воды, АТФ и побочного продукта – перекиси водорода.

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ – цикл лимонной кислоты или цикл Кребса – широко представленный в организмах животных, растений и микробов путь окислительных превращений ди- и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде и синтезе белков, жиров и углеводов. Открыт Х.Кребсом и У.Джонсоном (1937). Этот цикл является основой метаболизма и выполняет две важных функции – снабжения организма энергией и интеграции всех главных метаболических потоков, как катаболических (биорасщепление), так и анаболических (биосинтез).

Цикл Кребса состоит из 8 стадий (в двух стадиях на схеме выделены промежуточные продукты), в ходе которых происходит:

1) полное окисление ацетильного остатка до двух молекул СО 2 ,

2) образуются три молекулы восстановленного никотинамидадениндинуклеотида (НАДН) и одна восстановленного флавинадениндинуклеотида (ФАДН 2), что является главным источником энергии, производимой в цикле и

3) образуется одна молекула гуанозинтрифосфата (ГТФ) в результате так называемого субстратного окисления.

В целом, путь энргетически выгоден (DG 0 " = –14,8 ккал.)

Цикл Кребса, локализованный в митохондриях, начинается с лимонной кислоты (цитрат) и заканчивается образованием щавелевоуксусной кислоты (оксалоацетата – ОА). К субстратам цикла относятся трикарбоновые кислоты – лимонная, цис-аконитовая, изолимонная, щавелевоянтарная (оксалосукцинат) и дикарбоновые кислоты – 2-кетоглутаровая (КГ), янтарная, фумаровая, яблочная (малат) и щавелевоуксусная. К субстратам цикла Кребса следует отнести и уксусную кислоту, которая в активной форме (т.е. в виде ацетилкофермента А, ацетил-SКоА) участвует в конденсации с щавелевоуксусной кислотой, приводящей к образованию лимонной кислоты. Окисляется именно ацетильный остаток, вошедший в структуру лимонной кислоты, подвергается окислению; атомы углерода окисляются до CO 2 , атомы водорода частично акцептируются коферментами дегидрогеназ, частично в протонированной форме переходят в раствор, то есть в окружающую среду.

Как исходное соединение для образования ацетил-КоА обычно указывается пировиноградная кислота (пируват), образующаяся при гликолизе и занимающая одно из центральных мест в перекрещивающихся путях обмена веществ. Под влиянием фермента сложной структуры – пируватдегидрогеназы (КФ1.2.4.1 – ПДГаза) пирувата окисляется с образованием CO 2 (первое декарбоксилирование), ацетил-КоА и восстановливается НАД (см . схему). Однако окисление пирувата – далеко не единственный путь образования ацетил-КоА, который также является характерным продуктом окисления жирных кислот (фермент тиолаза или синтетаза жирных кислот) и других реакций разложения углеводов и аминокислот. Все ферменты, участвующие в реакциях цикла Кребса, локализованы в митохондриях, причем большинство из них растворимы, а сукцинатдегидрогеназа (КФ1.3.99.1) прочно связана с мембранными структурами.

Образование лимонной кислоты, с синтеза которой и начинается собственно цикл, при помощи цитратсинтазы (КФ4.1.3.7 – конденсирующий фермент на схеме), является реакцией эндергонической (с поглощением энергии), и ее реализация возможна благодаря использованию богатой энергией связи ацетильного остатка с KoA [СН 3 СО~SKoA]. Это главная стадия регуляции всего цикла. Далее следует изомеризация лимонной кислоты в изолимонную через промежуточную стадию образования цис-аконитовой кислоты (фермент аконитаза КФ4.2.1.3, обладает абсолютной стереоспецифичностью – чувствительностью к местоположению водорода). Продуктом дальнейшего превращения изолимонной кислоты под влиянием соответствующей дегидрогеназы (изоцитратдегидрогеназа КФ1.1.1.41) является, по-видимому, щавелевоянтарная кислота, декарбоксилирование которой (вторая молекула CO 2) приводит к КГ. Эта стадия также строго регулируется. По ряду характеристик (высокая молекулярная масса, сложная многокомпонентная структура, ступенчатые реакции, частично те же коферменты и т.д.) КГдегидрогеназа (КФ1.2.4.2) напоминает ПДГазу. Продуктами реакции являются CO 2 (третье декарбоксилирование), Н + и сукцинил-КоА. На этой стадии включается сукцинил-КоА-синтетаза, иначе называемая сукцинаттиокиназой (КФ6.2.1.4), катализирующая обратимую реакцию образования свободного сукцината: Сукцинил-КоА + Р неорг + ГДФ = Сукцинат + KoA + ГТФ. При этой реакции осуществляется так называемое субстратное фосфорилирование, т.е. образование богатого энергией гуанозинтрифосфата (ГТФ) за счет гуанозиндифосфата (ГДФ) и минерального фосфата (Р неорг) с использованием энергии сукцинил-КоА. После образования сукцината вступает в действие сукцинатдегидрогеназа (КФ1.3.99.1) – флавопротеид, приводящий к фумаровой кислоте. ФАД соединен с белковой частью фермента и является метаболически активной формой рибофлавина (витамин В 2). Этот фермент также характеризуется абсолютной стереоспецифичностью элиминирования водорода. Фумараза (КФ4.2.1.2) обеспечивает равновесие между фумаровой кислотой и яблочной (также стереоспецифична), а дегидрогеназа яблочной кислоты (малатдегидрогеназа КФ1.1.1.37, нуждающаяся в коферменте НАД + , также стереоспецифична) приводит к завершению цикла Кребса, то есть к образованию щавелевоуксусной кислоты. После этого повторяется реакция конденсации щавелевоуксусной кислотой с ацетил-КоА, приводящая к образованию лимонной кислоты, и цикл возобновляется.

Сукцинатдегидрогеназа входит в состав более сложного сукцинатдегидрогеназного комплекса (комплекса II) дыхательной цепи, поставляя восстановительные эквиваленты, (НАД-Н 2), образующиеся прив реакции, в дыхательную цепь.

На примере ПДГазы можно познакомиться с принципом каскадной регуляции активности метаболизма за счет фосфорилирования-дефосфорилирования соответствующего фермента специальными киназой и фосфатазой ПДГазы. Обе они присоединены к ПДГазе.

Предполагается, что катализ индивидуальных ферментативных реакций осуществляется в составе надмолекулярного «сверхкомплекса», так называемого «метаболона». Преимущества такой организации ферментов состоят в том, что нет диффузии кофакторов (коферментов и ионов металлов) и субстратов, а это способствует более эффективной работе цикла.

Энергетическая эффективность рассмотренных процессов невелика, однако образующиеся при окислении пирувата и последующих реакциях цикла Кребса 3 моля НАДН и 1 моль ФАДН 2 являются важными продуктами окислительных превращений. Дальнейшее их окисление осуществляется ферментами дыхательной цепи также в митохондриях и сопряжено с фосфорилированием, т.е. образованием АТФ за счет этерификации (образования фосфороорганических эфиров)минерального фосфата. Гликолиз , ферментное действие ПДГазы и цикл Кребса – всего в сумме 19 реакций – определяют полное окисление одной молекулы глюкозы до 6 молекул CO 2 с образованием 38 молекул АТФ – этой разменной «энергетической валюты» клетки. Процесс окисления НАДН и ФАДН 2 ферментами дыхательной цепи энергетически весьма эффективен, происходит с использованием кислорода воздуха, приводит к образованию воды и служит основным источником энергетических ресурсов клетки (более 90%). Однако в его непосредственной реализации ферменты цикла Кребса не участвуют. В каждой клетке человека есть от 100 до 1000 митохондрий, обеспечивающих жизнедеятельность энергией.

В основе интегрирующей функции цикла Кребса в метаболизме лежит то, что углеводы, жиры и аминокислоты из белков могут превращаться в конечном счете в интермедиаты (промежуточные соединения) этого цикла или синтезироваться из них. Выведение интермедиатов из цикла при анаболизме должно сочетаться с продолжением катаболической активности цикла для постоянного образования АТФ, необходимого для биосинтезов. Таким образом, цикл должен одновременно выполнять две функции. При этом концентрация интермедиатов (особенно ОА) может понижаться, что способно привести к опасному понижению производства энергии. Для предотвращения служат «предохранительные клапаны», называемые анаплеротическими реакциями (от греч. «наполнять»). Важнейшей является реакция синтеза ОА из пирувата, осуществляемая пируваткарбоксилазой (КФ6.4.1.1), также локализованной в митохондриях. В результате накапливается большое количество ОА, что обеспечивает синтез цитрата и др. интермедиатов, что позволяет циклу Кребса нормально функционировать и, вместе с тем, обеспечивать выведение интермедиатов в цитоплазму для последующих биосинтезов. Таким образом, на уровне цикла Кребса происходит эффективно скоординированная интеграция процессов анаболизма и катаболизма под действием многочисленных и тонких регуляторных механизмов, в том числе гормональных.

В анаэробных условиях вместо цикла Кребса функционируют его окислительная ветвь до КГ (реакции 1, 2, 3) и восстановительная – от ОА до сукцината (реакции 8®7®6). При этом много энергии не запасается и цикл поставляет только интермедиаты для клеточных синтезов.

При переходе организма от покоя к активности возникает потребность в мобилизации энергии и обменных процессов. Это, в частности, достигается у животных шунтированием наиболее медленных реакций (1–3) и преимущественным окислением сукцината. При этом КГ – исходный субстрат укороченного цикла Кребса – образуется в реакции быстрого переаминирования (переноса аминной группы)

Глутамат + ОА = КГ + аспартат

Другая модификация цикла Кребса (так называемый 4-аминобутиратный шунт) – это превращение КГ в сукцинат через глутамат, 4-аминобутират и янтарный семиальдегид (3-формилпропионовую кислоту). Эта модификация важна в ткани мозга, где около 10% глюкозы расщепляется по этому пути.

Тесное сопряжение цикла Кребса с дыхательной цепью, особенно в митохондриях животных, а также ингибирование большинства ферментов цикла под действием АТФ, предопределяют снижение активности цикла при высоком фосфорильном потенциале клетки, т.е. при высоком соотношении концентраций АТФ/АДФ. У большинства растений, бактерий и многих грибов тесное сопряжение преодолевается развитием несопряженных альтернативных путей окисления, позволяющих поддерживать одновременно дыхательную активность и активность цикла на высоком уровне даже при высоком фосфорильном потенциале.

Игорь Рапанович

Цикл трикарбоновых кислот (ЦТК, цикл Кребса, цикл лимонной кислоты) является наиболее важным поставщиком в дыхательную цепь восстановленных форм коферментов и простетических групп, образующихся при утилизации ацетил-КоА (1), кетокислот, продуктов окисления моносахаридов, высших жирных кислот (ВЖК) и аминокислот (см. рис. 28).

Все ферменты процесса локализованы в матриксе митохондрий, за исключением сукцинатдегидрогеназы (6*, рис.28). Скорость течения ЦТК зависит в первую очередь, от скорости образования в матриксе митохондрий ацетил-КоА (рис.28, (1)), поступления его предшественников (пиру­вата, ВЖК) и ряда других факторов, которые необходимо рассмотреть применительно к каждой из восьми реакций цикла Кребса:

1) Конденсация ацетил-КоА (1) с оксалоацетатом (щавелевоуксусной кислотой (ЩУК), 2) осуществляет фермент цитратсинтаза (1*). Активность цитратсинтазы ингибируется накоплением в матриксе АТФ, НАДН, сукцинил-КоА и ацилов ВЖК;

2) Изомеризация цитрата (3) в изоцитрат (5) осуществляет фермент аконитаза (Fe 2+ -содержащий белок, 2*) в два этапа:

1 этап - дегидратация цитрата с образованием цис-аконитовой кислоты (4);

2 этап – гидратация цис-аконитовой кислоты по двойной связи с образованием изоцитрата (5).

Фермент ингибируется производными мышьяковой кислоты.

Рис 28. Цикл Кребса. В схеме процесса все ферменты помечены цифрой со звездочкой, метаболиты помечены цифрой в круглых скобках (см. названия по тексту).

3) При действии НАД + - зависимой изоцитратдегидрогеназы (3*) происходит окисли­тельное декарбоксилирование изоцитрата (5) с образованием продуктов:
ά-кетоглутарата (7), СО 2 и НАДН (донор электронов в дыхательную цепь). Реакция протекает в два этапа: 1) дегидрирование с образованием щавелево-янтарной кислоты (6); 2) декарбоксилирование данного вещества до ά-кетоглутаровой кислоты. Изоцитрат­дегидрогеназа лимитирует скорость всего цикла Кребса. Фермент активируется АДФ, ионами Mg 2+ и Mn 2+ ; ингибируется накоплением в матриксе АТФ, НАДН;

4) Окислительное декарбоксилирование ά-кетоглутарата осуществляет ά-кетоглутаратдегидрогеназный комплекс (4*). Это полиферментная система по составу (три фермента) и витаминной обеспеченности: витамины В 1 (кофермент ТДФ), В 2 (простетическая группа ФАД), В 5 (кофермент КоАSH), В 3 (кофермент НАД +), амид липоевой кислоты). В результате работы комплекса образуется СО 2 , сукцинил-КоА (макроэргическое вещество, 8); НАДН (донор электронов в дыхательную цепь);

5) Сукцинил-КоА-тиокиназа (синтаза, 5*), используя энергию разрыва макроэргической связи в сукцинил-КоА, фосфорилирует ГДФ с образованием ГТФ, при этом параллельно происходит образование янтарной кислоты (по аниону - сукцинат, 9). Данная реакция носит название субстратного фосфорилирования. Образованный ГТФ может далее при действии нуклеозиддифосфаткиназы превращаться в АТФ по уравнению:

ГТФ + АДФ → АТФ + ГДФ

6) Сукцинатдегидрогеназа (единственный фермент ЦТК, локализованный на внутренней мембране митохондрий, 6*), благодаря простетической группе ФАД окисляет янтарную кислоту (9) до транс-фумаровой кислоты (10). Сукцинатдегидрогеназа во внутренней мембране митохондрий образует комплекс с железосеросодержащими белками, который носит название комплекса II дыхательной цепи. Малоновая кислота является конкурентным ингибитором фермента;

7) Фермент фумараза (7*) гидратирует по двойной связи только транс-форму фумаровой кислоты с образованием L-яблочной кислоты (по аниону- L-малат, 11). Реакция обратима, фумараза стереоспецифична только к L-малату.

8) На последней стадии цикла НАД + – зависимая малатдегидрогеназа (8*) катали­зирует окисление L-малата в щавелевоуксусную кислоту (ЩУК) с образо­ванием НАДН (донор электронов в дыхательную цепь). Реакция обратима, однако быстрое использование ЩУК в цитратсинтазной реакции сдвигает равновесие вправо.

Таким образом, за восемь реакций цикла Кребса, через образование трех трикарбоновых кислот (лимонной, цис-аконитовой, изолимонной), в ходе четырех дегидрогеназных реакций, две из которых сопровождались декарбоксилированием (3*, 4*), происходит образование 2 молей СО 2 , 3 НАДН, 1 ФАДН 2 и 1 ГТФ равноценного 1 АТФ. Данные вещества называют конечными продуктами цикла Кребса в расчете на один цикл. ЩУК постоянно регенерирует и вновь включается в цитратсинтазную реакцию, поэтому данное вещество конечным продуктом цикла можно не называть.

Основными регуляторными реакциями ЦТК являются цитратсинтазная и изоцитратдегидрогеназная. В регуляции ЦТК имеет место принцип обратной метаболической связи. Интенсивность окисления в нём субстратов увеличивается в условиях повышения концентрации АДФ и НАД + . В условиях увеличения концентрации АТФ и НАДН скорость окисления субстратов в цикле Кребса снижается. Подобная регуляция позволяет адекватно менять интенсивность функционирования ЦТК в условиях, требующих срочного изменения уровня энергообеспечения клетки.

Интенсивность течения ЦТК можно определять по значению дыхательного контроля, который выражается отношением концентраций [АТФ]/[АДФ]. При значениях [АТФ]/[АДФ]<1 увеличивается скорость включения в дыхательную цепь восстановленных форм коферментов НАДН, при этом скорость ЦТК увеличивается.

Цикл Кребса является амфиболическим процессом , так как, хотя это и катаболический процесс, некоторые его метаболиты могут быть использованы клеткой в синтетических целях. Сукцинил-КоА используется клеткой в качестве исходного субстрата для первой реакции синтеза гема. Оксалоацетат и его предшественники по циклу могут быть использованы в синтезе глюкозы (процесс глюконеогенеза). Кетокислоты – оксалоацетат и альфа-кетоглутарат, благодаря реакциям трансаминирования, могут быть использованы для образования заменимых аминокислот: аспарагиновой, глутаминовой кислот соответственно.