» » Как вычислить объем параллелепипеда. Формулы для нахождения объема параллелепипеда

Как вычислить объем параллелепипеда. Формулы для нахождения объема параллелепипеда

Познавательные УУД:

    Выражают структуру задачи разными средствами.

    Выбирают, сопоставляют и обосновывают способы решения задачи.

Регулятивные УУД:

    Сличают способ и результат своих действий с заданным эталоном,

    Обнаруживают отклонения и отличия от эталона.

Коммуникативные УУД:

    С достаточной полнотой и точностью выражают свои мысли в соответствии с задачами и условиями коммуникации

Предметный результат:

    Определяют вид пространственных фигур. Вычисляют объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и прямоугольного параллелепипеда.

ХОД УРОКА:

    Организационный момент (проверка готовности классного помещения и обучающихся к уроку) (слайд 1-2) . (1 мин)

    Мотивация урока (слайд 3) (1 мин)

Встали тихо, замолчали,

Всё, что нужно, вы достали.

Приготовились к уроку,

В нём иначе нету проку.

Здравствуйте, садитесь,

Больше не вертитесь.

Мы урок начнем сейчас,

Интересен он для вас.

Слушай всё внимательно,

Поймешь всё обязательно.

    Формулирование темы урока: (3 мин)

Я рада вас видеть. Мы начинаем наш урок. Я хочу, чтобы этот урок принес вам новые открытия, и надеюсь, что вы с успехом будете применять имеющиеся у вас знания в решении практических задач. Я предлагаю вам отгадать задуманное мною слово, которое будет ключевым словом нашего урока.

    Актуализация опорных знаний: (слайд 4)

Чтобы слово вам назвать придется немного посчитать и расставить величины по возрастанию:

250+433 – 600=

(83)

(80)

Найдите расстояние используя данные:

(12)

(10)

Найдите площадь фигуры:

(24)

Молодцы. Тема нашего сегодняшнего урока «Объем. Объем прямоугольного параллелепипеда».

Откройте тетради запишите сегодняшнее число, тему урока, слова классная работа.

    Домашнее задание: (слайд 6) (1 мин)

843, №844, №848 (б)

Откройте учебник с. 125-126, подготовьтесь отвечать на мои вопросы: (слайд 7-8) (3 мин)

Как вы понимаете слово «Объем»?

Какие единицы измерения объема вы знаете? (мм 3 , дм 3 , см 3 , м 3 , км 3 )

Как еще называют кубический дециметр? (литр)

Как вычислить объем прямоугольного параллелепипеда? (Чтобы найти объем прямоугольного параллелепипеда надо длину умножить на ширину и на высоту ).

Какой вид имеет формула для вычисления объема прямоугольного параллелепипеда? (где V объем , a,b,c - измерения).

Как вы думаете, что означает произведение a и b, в данной формуле? (площадь основания) ()

Что вы можете сказать об объеме куба? ()

Молодцы, с вопросами вы успешно справились.

    Выполнение упражнений: (слайд 9-11) (8 мин)

822

Объем комнаты равен 60 м 2 . Высота комнаты 3 м, ширина 4 м. Найдите длину комнаты и площади пола, потолка и стен.

О чем говорится в задаче?

Какую форму имеет комната?

V =60 м 2 , с =3 м, b =4 м. Чтобы найти длину комнаты надо:

Длина комнаты;

Чтобы найти площадь пола, надо длину умножить на ширину: . Площадь потолка будет равна площади пола, т.к они противоположны, т.е. площадь потолка равна.

Чтобы найти площадь стен, надо длину умножить на высоту, и ширину умножить на высоту: , затем вспомним что стены противоположны, т.е 2 стены по 15 м 2 , и 2 стены по 12 м 2 . Тогда площадь стен:

825 (а, б)

а) выразите в кубических сантиметрах:

б) выразите в кубических дециметрах:

Задача. Вычислить объем куба со стороной 15 см. Ответ выразите в дециметрах кубических.

    Историческая справка: (1 мин 30 сек)

Слова учителя.

Вопрос измерения объема твердых тел давно интересовал человечество. Используя тот факт, что жидкости в обычных условиях сжимать нельзя, можно измерять объемы твердых тел, помещая их в жидкость.

Архимед был первым, кто открыл этот способ взвешивания.

(Слайд 12 – видеоролик.)

Развивая эти идеи, Архимед нашел закон плавания тел: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость. Поэтому, если вес вытесненной жидкости больше веса самого тела, то оно всплывает.

и немного разомнемся:

    Физкультминутка (слайд 13) (1 мин)

    Самостоятельная работа по вариантам, с последующей взаи мопроверкой). (10 мин.) (слайд 14 )

I-й вариант.

а ) S=vt;

б ) V=abc;

в ) P=2 (a+b);

г) V= 4a

2. Чему равен объем куба, если его ребро равно 5 см? (125 см 3 )

3. Какова длина сторона квадрата, если его площадь равна 100 см 2 ? (10 см)

II-й вариант

1. Укажите формулу, по которой находят объем прямоугольного параллелепипеда

а ) S=vt;

б ) V=ab;

в ) P=2 (a+b);

г) V = S осн с.

2. Чему равен объем прямоугольного параллелепипеда, если его измерения 5 см, 12 см и 4 см? (240 см 3 )

3. Чему равна площадь квадрата со стороной 6 см? (36 см 2 )

Для проверки учащиеся обмениваются тетрадями с соседом для проверки и выставления оценки, сверяясь с экраном

    Рефлексия: (3 мин)

Каждый обучающийся заносит оценки в свой зачетный лист:

Фамилия, имя ____________________________________

Объем параллелепипеда

Величина объема дает нам представление о том, какую часть пространства занимает интересующий нас объект, а чтобы найти объем прямоугольного параллелепипеда нужно умножить его площадь основания на высоту.

В повседневной жизни, чаще всего для измерения объема жидкости, как правило, используют такую измерительную единицу, как литр = 1дм3.

Кроме этой единицы измерения для определения объема применяют:


Параллелепипед относится к простейшим трехмерным фигурам и поэтому найти его объем не представляет никаких сложностей.



Объем параллелепипеда равен произведению его длины, ширины и высоты. Т.е. для нахождения объема прямоугольного параллелепипеда, достаточно умножить все его три измерения.

Чтобы найти объем куба, нужно взять его длину и возвести в третью степень.

Определение параллелепипеда

А теперь давайте вспомним, что же такое параллелепипед и чем он отличается от куба.

Параллелепипедом называют такую объемную фигуру, в основании которой лежит многоугольник. Поверхность прямоугольного параллелепипеда состоит из шести прямоугольников, которые являются гранями данного параллелепипеда. Поэтому логично, что параллелепипед имеет шесть граней, которые состоят из параллелограммов. Все грани этого многоугольника, которые расположены друг против друга, имеют одинаковые размеры.

Все ребра параллелепипеда и есть сторонами граней. А вот точки соприкосновения граней являются вершинами данной фигуры.



Задание:

1. Посмотрите внимательно на рисунок и скажите, что она вам напоминает?
2. Подумайте и дайте ответ, где в повседневной жизни вы можете столкнуться с такой фигурой?
3. Сколько ребер имеет параллелепипед?

Разновидности параллелепипедов

Параллелепипеды делятся на несколько разновидностей, таких как:

Прямоугольный;
Наклонный;
Куб.

К прямоугольным параллелепипедам относятся те фигуры, у которых грани состоят из прямоугольников.

Если же боковые грани не являются перпендикулярными его основанию, то перед вами наклонный параллелепипед.

Такая фигура, как куб, также является параллелепипедом. Его все без исключения грани имеют форму квадратов.

Свойства параллелепипеда

Изучаемая фигура имеет ряд свойств, о которых мы сейчас с вами узнаем:

Во-первых, противоположные грани этой фигуры равны и параллельны друг другу;

Во-вторых, он симметричен лишь относительно средины любой без исключения своей диагонали;

В-третьих, если взять и провести диагонали между всеми противоположными вершинами параллелограмма, то у них окажется всего одна точка пересечения.

В-четвертых, квадрат длинны его диагонали, равен сумме квадратов 3-х его измерений.

Историческая справка

За период разных исторических эпох в разных странах использовали различные системы измерения массы, длины и других величин. Но так как это затрудняло торговые отношения между странами, а также тормозило развитие наук, то появилась необходимость иметь единую международную систему мер, которая была бы удобна для всех стран.

Метрическая система мер СИ, которая устраивала большинство стран, была разработана во Франции. Благодаря Менделееву метрическая система мер была внедрена и в России.

Но многие профессии по сей день используют свои специфические метрики, иногда это дань традициям, иногда вопрос удобства. Так, например, моряки все еще предпочитают измерять скорость в узлах, а расстояние в милях – для них это традиция. А вот ювелиры всего мира отдают предпочтение такой единице измерения, как карат – и в их случае это и традиция и удобство.

Вопросы:

1. А кто знает, сколько метров в одной миле? А что такое один узел?
2. Почему единица измерения алмазов называется «карат»? Почему ювелирам исторически удобно измерять массу в таких единицах?
3. А кто помнит, в каких единицах измеряется нефть?

Школа - это необъятная чаша знаний, которая включает в себя множество дисциплин, которые могут заинтересовать любого ребенка. Математика - царица точных наук. Строгая и дисциплинированная, она не терпит неточностей. Даже повзрослев, в обычной жизни мы можем столкнуться с разными математическими проблемами: вычисление квадратных метров для укладки плитки в ванной, кубических метров для определения объема бака и т. д., чего уж говорить о школьниках, которые только-только начинают свой математический путь.

Очень часто, начав изучать математику, точнее, геометрию, ученики путают плоские фигуры с объемными. Куб называют квадратом, шар - кругом, параллелепипед обычным прямоугольником. И здесь есть свои тонкости.

Сложно помочь ребенку в выполнении домашнего задания, не зная точно, объем или площадь какой фигуры - плоской или же объемной, нужно найти. Невозможно найти объем плоских фигур, таких как квадрат, круг, прямоугольник. В их случае можно найти лишь площадь. Прежде чем переходить к выполнению задачи, следует подготовить нужные атрибуты:

  1. Линейка, для того чтобы измерить необходимые нам данные.
  2. Калькулятор, для того чтобы в дальнейшем подсчитать расчеты.

Для начала рассмотрим само понятие объемного прямоугольника. Это параллелепипед. В его основании находится параллелограмм. Так как таковых у него шесть, следовательно все параллелограммы являются гранями параллелепипеда.

Что касается его граней, они могут отличаться, то есть, если прямые боковые грани представляют собой прямоугольники, тогда это прямой параллелепипед, ну, а если все шесть граней являются прямоугольниками, то перед нами прямоугольный параллелепипед.

  1. После прочтения задачи, нужно определить что именно следует найти; длину фигуры, объем или же площадь.
  2. Какая именно часть фигуры рассматривается в задаче - ребро, вершина, грань, сторона, а может быть, вся фигура целиком?

Определив все поставленные задачи, можно переходить непосредственно к вычислениям. Для этого нам понадобятся специальные формулы. Итак, для того чтобы найти объем прямоугольного параллелепипеда перемножается между собой длина, ширина и высота (то есть толщина фигуры). Формула вычисления объема прямоугольного параллелепипеда следующая:

V=a*b*h ,

V является объемом параллелепипеда, где a - его длина b - ширина и h - высота соответственно.

Важно! Перед началом перевести все измерения в одну единицу исчисления. Ответ должен получится непременно в кубических единицах.

Пример первый

Определим объем бака для спирта, при следующих размерах:

  • длина три метра;
  • ширина два метра пятьдесят сантиметров;
  • высота триста сантиметров.

Для начала обязательно согласовываем единицы измерения и перемножаем их:

Перемножив данные, мы получим ответ в кубических метрах, то есть 3*2.5*3= 22.5 метра в кубе.

Пример второй

Шкаф имеет высоту четыре метра, ширину семьдесят сантиметров и глубину 80 сантиметров.

Зная формулу вычисления можно произвести умножение. Но не стоит торопиться, как и было сказано вначале, следует согласовать между собой единицы, то есть при желании вычислять в сантиметрах перевести все исчисления в сантиметры, ежели в метрах, то в метры. Сделаем оба варианта.

Итак, начнем с сантиметров. Переводим метры в сантиметры:

V = 400 * 70 * 80;

V = 2240000 сантиметров в кубе.

Теперь метры:

V = 4* 0.7 * 0.8;

V = 2.24 метра в кубе.

Исходя из вышеперечисленных манипуляции, очевидно, что работа с кубическими метрами более легка и понятна.

Пример третий

Дана комната, объем которой должен быть вычислен. Длина этой комнаты равна пяти метрам, ширина - трем, а высота потолка 2,5. Опять используем известную нам формулу:

V = a * b * h;

где, а длина комната и равна 5, b- ширина и равна 3 и h высота, которая равна 2.5

Так как все единицы даны в метрах, можно сразу приступать к вычислениям. Перемножая между собой a, b и h:

V = 5 * 3 * 2.5;

V = 37.5 метра в кубе.

Итак, в качестве заключения, можно сказать, что зная основные математические правила для вычисления объема или же площади фигур, а также правильно определив фигуры (плоские или же объемные), умея переводить сантиметры в метры и наоборот - можно облегчить изучение геометрии вашему ребенку, что не может не сделать этот процесс более интересным и привлекательным, ведь все накопленные знания в школе, могут быть успешно использованы в самой обычной бытовой жизни в будущем.

Не получили ответ на свой вопрос? Предложите авторам тему.

С научной точки зрения прямоугольный параллелепипед это объемная фигура, состоящая из 6 граней — прямоугольников. А если по-простому, то кирпич, прямоугольный бассейн или садовый бак, кирпич, спичечный коробок — все это прямоугольные параллелепипеды.

Как видим, эта фигура встречается в жизни довольно часто. И не менее часто возникает потребность найти объем такой фигуры. К примеру, чтобы знать какого размера делать бассейн, чтоб он вместил определенное количество воды или каким делать бак на дачном участке. Именно для этого мы сделали наш калькулятор, который позволит найти объем прямоугольного параллелепипеда мгновенно, в режиме онлайн. Все, что от вас требуется — знать длину, ширину и высоту объекта, ввести их в поля калькулятора и получить результат.

Прямоугольный параллелепипед

Как найти объем прямоугольного параллелепипеда.

Вообще, очень просто. Если мы знаем длину, ширину и высоту, то достаточно их перемножить. Полученное число и есть искомый объем. Важно — объем измеряется в кубических метрах, сантиметрах, дециметрах и т. д. В итоге, если обозначить длину как a, ширину как b, высоту как c, а объем общепринятым способом — V, то формула для расчета объема прямоугольного параллелепипеда будет выглядеть таким образом:

V = a x b x c

Как видим, она очень проста для запоминания.

Рассмотрим на примере.

Какой объем воды содержит бассейн, если его длина 10 метров, ширина 3 метра, а глубина 1,5 метра?

Умножив, получим 10 x 3 x 1,5 = 45 м 3 или, другими словами, 45 кубических метров.

Всем доброго дня! Зовут меня Иван, и я папа школьника, который не слишком силен в математике. Недавно сыну задали задание – найти объем параллелепипеда и немного покорпев над ним и так и не сумев решить задачку, он обратился ко мне. Школьных знаний в моей памяти осталось немного, а потому пришлось браться за учебники, перечитывать их и потом объяснять изученный материал сыну. Наверняка мой опыт окажется полезным и для других родителей и потому я и написал эту статью, в которой подробно рассказана информация по решению задач на объем этой геометрической фигуры.

Немного теории

Прежде чем я расскажу, как собственно найти объем и площадь параллелепипеда, и по какой формуле, давайте вместе вспомним, что же это за такое. У этой геометрической фигуры имеется три равнозначных трактовки:

  1. Параллелепипедом считается многогранник с 6-ью гранями, особенность которых заключается в том, что любая – это параллелограмм.
  2. Под термин попадает и шестигранник с 3-мя парами граней, которые будут параллельны друг дружке.
  3. Параллелепипедом называется и призма, в основе которой будет параллелограмм.

Чаще всего исчислить объем требуется у параллелепипедов нескольких разных видов. Для каждого случая есть своя формула и свое решение и ниже я подробно объясню, как решать типовые задачи по исчислению объемов разных видов этой геометрической фигуры.

Переходим к практике

Как решить задачу на нахождение объема прямоугольного параллелепипеда? Особенностью этого типа фигуры является то, что каждая ее грань – это прямоугольник. Если хотите понять, как выглядит прямоугольный параллелепипед – посмотрите на самую обычную коробку из-под обуви.


Чтобы решить задачку, сначала ищем значения двух сторон основания фигуры. Стороны имеют перпендикулярное расположение друг к другу и находятся по формуле: П-АхБ, где А – это длина, а Б – это ширина. Далее выясняем еще один ключевой параметр, а именно находим высоту. И затем переходим к вычислению объема, в котором рабочей будет такая формула: V=ПхН, то есть для получения объема нужно площадь основания умножить на высоту. Как найти высоту – тут стоит заглянуть в учебник по геометрии и выписать формулу по нахождению ребра фигуры.

Чтобы найти объем прямого параллелепипеда прямого, разберемся с тем, как выглядит эта конкретная фигура. Ее боковые грани – прямоугольники, перпендикулярные основанию, а потому объем будет вычисляться идентично задаче выше, но только следует учесть, что высотой будет выступать не ребро фигуры, а отрезок, соединяющий грани противоположные друг другу и перпендикулярный основе. Основание здесь параллелограмм и потому формула будет чуть сложней: П=АхБхsin(а). А, Б – это длина и ширина основания, а «а» - это угол, который они будут образовывать, пересекаясь.

Объём параллелепипеда

Разберемся с объемом наклонного типа фигуры. Грани этого типа фигуры не перпендикулярны ее основанию, а потому расчеты следует начать с нахождения высоты. Высоту умножаем на площадь основания и получаем объем, то есть формула у нас выглядит следующим образом: V=ПхН.

Остается узнать, как исчислить объем фигуры, грани которой квадратные. Такую фигуру чаще называют кубом, но в тоже время она является параллелепипедом, каждая грань которого – квадрат. А потому все ее ребра будут равны между собой. Формула вычисления объема будет максимально простой: нужно измерить ребра и результат исчислений возвести в 3-ю степень.

Вот так находится объем такой интересной геометрической фигуры как параллелепипед. Надеюсь, написанная мною короткая шпаргалка станет хорошим подспорьем для школьников и родителей в решении задач по геометрии и ни одну контрольную ваш ученик не напишет на плохую отметку!