» » Получение аммиака в промышленности. Получение аммиака Каким способом получают аммиак в лаборатории

Получение аммиака в промышленности. Получение аммиака Каким способом получают аммиак в лаборатории

Азот с водородом образует несколько соединений, важнейшим из которых является аммиак NH 3 . Связь между атомами водорода и азота, в молекуле аммиака, ковалентная, а степени окисления распределяются следующим образом: (N -3 H + 3) 0 .

По своим физическим свойствам аммиак – это бесцветный газ с резким запахом. Он легче воздуха и лучше, чем другие газы, растворяется в воде. Так, в одном объеме воды может раствориться 1,2 тысячи объемов аммиака.

При охлаждении, сопровождающемся увеличением давления, аммиак легко превращается в бесцветную жидкость. Обратная реакция перехода жидкого аммиака в пар, является эндотермической, причем тепла поглощается очень много. Температура кипения аммиака - 34 о С.

Получение аммиака в промышленности

На производстве аммиак добывают, синтезируя его из азота и водорода:

N 2 + 3H 2 ⇄ 2NH 3 + Q,

где (+Q) означает, что реакция проходит с выделением тепла, т.е. является экзотермической.

Из-за того, что данная реакция сопровождается выделением тепла, для ее прохождения требуется:

  • незначительное нагревание (400 – 500 о С);
  • высокое давление (200 – 1000 ат);
  • наличие катализаторов (Pt или Fe в металлическом виде, с добавлением Al 2 O 3 и K 2 O).

Все это помогает сместить химическое равновесие данной реакции, в сторону образования ее продуктов.

Вторым промышленным способом добычи аммиака является коксование каменного угля, поскольку в его составе имеется 2% азота. Здесь аммиак образуется, как побочный продукт сухой перегонки.

Лабораторные способы получения аммиака

В условиях лаборатории аммиак можно получить двумя способами:

  1. слабым нагреванием смеси хлорида аммония с гашеной известью:
    2NH 4 Cl + Ca(OH) 2 → CaCl 2 + 2NH 3 + 2H 2 O;
  2. нагреванием сухого хлорида аммония с концентрированным раствором едкой щелочи:
    NH 4 Cl + KOH → NH 3 + KCl + H 2 O.

Азотное производство играет важнейшую роль в современной химической промышленности. Стоит заметить, что соединения азота применяются как при получении органических, так и неорганических веществ. Особую статью в азотной промышленности составляет производство аммиака. Именно при «участии» этого ценнейшего компонента производятся удобрения, азотная кислота, взрывчатые вещества, хладоагенты и многое другое. При всей своей полезности аммиак является довольно сильным ядом, несмотря на то что применяется в медицине в виде нашатыря.

Сам аммиак как вещество впервые был обнаружен в конце XVIII века. Описал его как отдельное вещество англичанин Джозеф Пристли. Спустя 11 лет французом Клодом Луи Бертолле был изучен химический состав этого вещества. Необходимость получения аммиака в промышленных количествах стала остро возникать в конце XIX века, когда стали истощаться месторождения чилийской селитры, из которой в основном получали азотные соединения. Именно «щелочной воздух» стал самым перспективным компонентом для производства различных химических соединений, которые оказали огромное влияние на разные стороны жизни человека: от военного дела, до сельского хозяйства.

Но эта проблема была решена только в начале XX столетия, когда появился способ производства аммиака путем прямого синтеза из азота и водорода. Таким образом, од возникновения проблемы до ее решения прошел довольно длительный период, в ходе которого было сделано несколько открытий, позволивших «сказку сделать былью».

Особенности и этапы производственного процесса

Процесс производства аммиака характеризуется большой энергоемкостью, что является главным его недостатком. Именно поэтому постоянно ведутся научные разработки, которые призваны решить проблемы экономии энергии. В частности разрабатываются способы утилизации выделенной энергии, а также совмещение, например, производства аммиака и карбамида. Все это способствует удешевлению деятельности предприятий и повышению их полезной отдачи.

В основу производства аммиака положены принцип циркуляции, согласно которому процесс идет непрерывно, причем остатки исходных компонентов отделяются от конечного продукта и используются вновь, непрерывности: процесс синтеза происходит без остановки, принцип теплообмена, а также принцип цикличности. Как видно, все эти принципы между собой тесно взаимосвязаны.

Сама технологическая схема производства аммиака зависит, прежде всего, от сырья, из которого получается конечный продукт. Дело в том, что, в отличие от азота, который содержится в воздухе в больших количествах, водород в чистом виде в природе практически не присутствует, а выделять его из воды - довольно трудоемкий и энергозатратный процесс.

Поэтому в качестве сырья для производства аммиака в основном используются углеводороды, содержащиеся в природном газе. В настоящее время именно природный газ является одной из основ аммиачной промышленности. Прежде чем попасть в колонну синтеза, газ проходит несколько стадий обработки. Начинается процесс с того что производится очистка исходного сырья от серы при помощи десульфуратора.

Далее идет так называемый процесс риформинга, который заключается в том, что в его ходе углеводороды сначала превращаются в метан, потом происходит довольно сложный процесс превращения метана в смесь водяного пара, угарного газа, углекислого газа и водорода. При этом также происходит очистка смеси от углекислого газа, после чего водород попадает в колонну синтеза под большим давлением вместе с азотом. Таким образом, прежде чем начать непосредственно производство аммиака, технология предполагает предварительную обработку сырья.

Все процессы риформинга, как и непосредственно сам синтез конечного продукта, происходят при высоком давлении и большой температуре. Именно это приводит к большой их энергозатратности. При этом указанные параметры на всех стадиях производства изменяются.

Сама колонна обычно изготавливается из стали. В ней размещен катализатор, состав которого может быть разным. После прохождения цикла синтеза смесь попадает в холодильник, где от нее оделяется аммиак в жидком виде, а оставшиеся после реакции компоненты снова идут в производство. Такая особенность технологического процесса вызвана тем, что реакция синтеза аммиака является обратимой и в ходе технологического процесса часть конечного продукта распадается на исходные компоненты.

Таким образом, производство аммиака в промышленности, несмотря на кажущуюся простоту реакции, которая лежит в основе процесса, на самом деле является довольно сложной технологической задачей.

Создание интегрированных производств и разработка новых технологий имеют особое значение

Как уже было сказано выше, технология постоянно совершенствуется и главным направлением мероприятий по ее улучшению является снижение энергоемкости самого процесса. А там, где это сделать по разным причинам сложно, применяются способы утилизации тепла, которое также способно принести пользу. Кроме того некоторые заводы по производству аммиака используют побочные продукты для других химических производств. Так может совмещаться, например, производство метанола и аммиака. Этот способ заключается в том, что из образующегося в ходе риформинга из угарного газа и воды синтезируется метанол.

Также было уже сказано про совмещенное производство аммиака и карбамида. Данное совмещение возможно, например, путем реакции полученного при риформинге углекислого газа с полученным аммиаком. Данный способ, конечно же, требует установки дополнительного оборудования. Тем не менее, он позволяет повысить полезную отдачу конкретного предприятия.

Еще одна особенность производства аммиака в промышленности состоит в том, что его цикличность также способствует и безотходности. Причем в ход идут как полученная энергия, так и побочные продукты. Даже сера, полученная при очистке исходного сырья, находит применение в других химических производствах. Помимо перечисленных мер происходит также постоянный поиск оптимального сочетания давления и температуры, при котором происходит процесс. Ведь от сочетания этих параметров зависит конечный выход основного продукта.

Учитывая все вышесказанное, можно с полной ответственностью сделать вывод,что современный завод по производству аммиака представляет из себя довольно сложный комплекс сооружений. Но в основе такого комплекса всегда состоит установка, разработанная в 1909 году немецким ученым Фрицем Габером, который помимо этого изобретения прославился тем, что стал «отцом химического оружия». По иронии судьбы этот ученый получил Нобелевскую премию Мира. Тем не менее, очевидно, что ценность его вклада в развитие современной химической промышленности сомнению не подлежит.

Таким образом, на примере промышленного производства аммиака можно увидеть, как годами можно совершенствовать, казалось бы, неизменный процесс. Также можно проследить, как одно изобретение может на многие года заложить развитие целой отрасли производства (причем, немаловажной) современного производства.

В настоящее время заводы по производству аммиака расположены по всему миру. Более того: постоянно строятся новые предприятия. Данный факт еще раз подчеркивает важность этого вида химического производства. Ведь во многих регионах земного шара наличие, например, азотных удобрений, стало жизненной необходимостью. Можно привести и много других примеров, но факт остается фактом. Кроме того, огромная часть продукции газодобывающей промышленности востребована именно в производстве аммиака, что позволяет ей устойчиво развиваться. На этих немногочисленных примерах достаточно хорошо видно, что роль производства аммиака переоценить довольно трудно. Поэтому можно сделать вывод, что азотная промышленность будет существовать еще долго, а продукция ее будет всегда пользоваться устойчивым спросом.

Таким образом, говоря о производстве аммиака, следует понимать, что речь идет об очень серьезном производстве, которое оказывает огромное влияние на функционирование различных сфер, как хозяйственной деятельности, так и просто жизни людей. И вполне возможно, что важность данной отрасли в будущем будет расти.

Производство аммиака использует в качестве сырья уголь, кокс, коксовый и природный газ. При этом основным сырьем все-таки служит природный газ.

Немного истории

Еще в 20 веке известным ученым-химиком Габером был разработан физико-химический синтез аммиака. Последователи Габера также внесли свою лепту в данное производство. Так, Митташ смог разработать эффективный катализатор, Бошем создано специальное оборудование.

Митташем испытано огромное количество смесей в качестве катализаторов (порядка 20 тысяч), пока он не остановился на шведском магнетите, имеющем такой же состав, как и катализаторы, активно применяемые и сегодня. Современные катализаторы представляют собой сталь, промотированную незначительным количеством окиси алюминия и калия.

Еще в советское время в исследовательских институтах и лабораториях при заводах была проведена громадная работа в сфере исследований кинетики и термодинамики синтеза аммиака. Существенный вклад в совершенствование самой технологии производства аммиака внесен инженерами азотно-туковых заводов и рабочими-новаторами производства. В результате проведения данных работ существенно был интенсифицирован весь технологический процесс, созданы совершенно новые конструкции специализированных аппаратов, началось строительство производства аммиака.

Советская система производства аммиака характеризовалась достаточной экономичностью и высокой производительностью.

Первым практическим применением, подтверждающим успех предложенной теории, была разработка такого важнейшего процесса химической технологии, как синтез аммиака.

Одним из видов достаточно эффективных путей усовершенствования технологии производства аммиака является утилизация газов продувочного вида. Современные установки выделяют аммиак из таких газов вымораживанием.

Продувочные газы после получения аммиака могут быть использованы как низкокалорийное топливо. Иногда их просто выбрасывают в атмосферу. Газы на сжигание должны направляться в трубчатую печь (отделение конверсии метана). Это позволяет сэкономить расход сырья (природный газ).

Существует и другой способ утилизации указанных газов. Это разделение их методиками глубокого охлаждения. Данный способ позволит снизить общую себестоимость готовой продукции (аммиака). Также аргон, получаемый в данном технологическом процессе, гораздо дешевле, чем его аналог, но извлекаемый в установке разделения воздуха.

В продувочных газах имеется повышенное содержание инертов, которые способствуют менее интенсивному протеканию реакции.

Схема производства аммиака

Для подробного изучения технологии изготовления аммиака необходимо рассмотреть процесс выделения аммиака из таких простых веществ, как водород и азот. Возвращаясь к химии школьного уровня, можно отметить, что данная реакция характеризуется обратимостью и снижением объема.

Так как эта реакция экзотермическая, то снижение температуры будет способствовать смещению равновесия в пользу выделения аммиака. Однако в этом случае происходит значительное снижение скорости самой химической реакции. Именно поэтому синтез осуществляется в присутствии катализатора и с выдерживанием температуры порядка 550 градусов.

Основные способы производства аммиака

Из практики известны следующие способы производства:

  • при низком давлении (около 15 МПа);
  • при среднем давлении (порядка 30 МПа) – самый распространенный способ;
  • при высоком давлении (около 100 МПа).

Негативно на синтез аммиака влияют такие примеси, как сероводород, вода и оксид углерода. Чтобы они не снижали активность катализатора, азотводородная смесь должна быть тщательно очищена. Однако и в этих условиях лишь часть смеси превратится в будущем в аммиак.

Таким образом, рассмотрим подробнее процесс производства аммиака.

Технология производства

Схема производства аммиака предусматривает промывку природного газа с использованием жидкого азота. При этом необходимо провести конверсию газа под высокой температурой, давлением до 30 атмосфер и температурой порядка 1350 градусов. Только в этом случае конвертированный сухой газ будет иметь низкие расходные коэффициенты по кислороду и природному газу.

До недавнего времени производство аммиака, технология которого содержала как последовательные, так и параллельные связи между используемыми аппаратами, строилось на дублировании функций основного оборудования. Результатом такой организации производственного процесса было существенное растягивание технологических коммуникаций.

Существует современное производство аммиака, технология которого уже предусматривает использование установки мощностью от 1360 т в сутки. Данное оборудование включает не менее десяти аппаратов конверсии, синтеза и очистки. Последовательно-параллельные технологии формируют самостоятельные подразделения (цехи), которые отвечают за выполнение отдельных этапов переработки сырьевого материала. Таким образом организованное производство аммиака позволяет существенно улучшить условия труда на специализированных заводах, провести автоматизацию, что приведет к стабилизации всего технологического процесса. Указанные усовершенствования также приведут к значительному упрощению общей технологии производства синтетического аммиака.

Новшества в технологии изготовления аммиака

Современное производство аммиака в промышленности использует в качестве сырья более дешевый вид природного газа. Это существенно сокращает себестоимость готового продукта. Кроме того, благодаря такой организации, могут быть улучшены условия труда на соответствующих заводах, а также существенно упрощается химическое производство аммиака.

Особенности производственного процесса

Для последующего усовершенствования процесса производства необходимо освободить механизмы очистки газов от вредных и ненужных примесей. Для этого используется метод тонкой очистки (адсорбция и предкатализ).

Это в том случае, когда производство аммиака не предусматривает промывку газа с использованием жидкого азота, но при этом есть в наличии низкотемпературная конверсия оксида углерода. Для проведения конверсии природного газа на высокой температуре можно использовать обогащенный кислородом воздух. При этом необходимо следить, чтобы в конвертированном газе концентрация метана не превышала 0,5 %. Это связано с высокой температурой (около 1400 градусов), повышающейся при химической реакции. Поэтому в результате данного вида производства в исходной смеси прослеживается высокая концентрация инертного газа и его расход на 4,6 % больше, чем такой же расход при конверсии кислородом в концентрации 95 %. При этом расходование кислорода на 17 % ниже.

Производство газа технологического назначения

Данное производство является начальным этапом в синтезе аммиака и проводится под давлением около 30 ат. Для этого природный газ сжимается с использованием компрессора до 40 ат, далее он подогревается до 400 градусов в змеевике, который расположен в трубчатой печи, и подается в отсек сероочистки.

При наличии серы в количестве 1 мг в м в очищенном природном газе его нужно смешать с водяным паром в соответствующем соотношении (4:1).

Реакция взаимодействия водорода с окисью углерода (т.н. метанирование) происходит с выделением огромного количества тепла и значительным уменьшением объема.

Производство с медноаммиачной очисткой

Осуществляется, если производство аммиака не предусматривает промывку жидким азотом. В данном процессе используется медноаммиачная очистка. В этом случае используется такое производство аммиака, технологическая схема которого применяет обогащенный кислородом воздух. При этом специалисты должны следить за тем, чтобы в конвертированном газе концентрация метана не превышала 0,5 %, такой показатель напрямую связан с повышением температуры до 1400 градусов в процессе реакции.

Основные направления развития производства аммиака

Во-первых, в ближайшем будущем необходимо кооперирование органической и азотной промышленности, в основе которого должно находиться использование такого сырья, как природный газ или газ нефтепереработки.

Во-вторых, должно происходить постепенное укрупнение всего производства и отдельных его компонентов.

В-третьих, на современном этапе развития химической промышленности нужно проводить исследования по разработке активных каталитических систем для достижения максимального снижения давления в производственном процессе.

В-четвертых, должно войти в практику использование специальных колонн для осуществления синтеза с применением катализатора с «кипящим слоем».

В-пятых, с целью повышения эффективности производства нужно совершенствовать работу систем использования тепла.

Вывод

Аммиак имеет большое значение для химической промышленности и сельского хозяйства. Он служит сырьем в производстве азотной кислоты, ее солей, а также солей аммония и различных азотных удобрений.

Аммиак - легкий бесцветный газ, имеющий неприятный резкий запах. Он очень важен для химической промышленности, так как в его составе имеется атом азота и три атома водорода. Аммиак применяется в основном для получения азотосодержащих удобрений, сульфата аммония и мочевины, для получения взрывчатых веществ, полимеров и других продуктов, так же аммиак применяется и в медицине.

Получение аммиака в промышленности не простой, трудоемкий и дорогостоящий процесс, основанный на синтезе его из водорода и азота при помощи катализатора, высокой температуры и под давлением. Активированное оксидами калия и алюминия губчатое железо используется как катализатор. Промышленные установки по синтезу аммиака основаны на циркуляции газов. Это выглядит следующим образом: прореагировавшая смесь газов, в которой содержится аммиак, охлаждается и происходит конденсация и отделение аммиака, а азот с водородом, которые не вступали в реакцию перемешиваются с новой порцией газов и вновь подаются на катализатор.

Рассмотрим данный процесс производственного синтеза аммиака, который происходит в несколько стадий, более подробно. На первой стадии производится удаление серы из природного газа при помощи технического устройства десульфуратора. На втором этапе осуществляется процесс конверсии метана при температуре 800 градусов по Цельсию на никелевом катализаторе: Образовавшийся после данной реакции водород пригоден для синтеза аммиака и в реактор подается воздух, содержащий азот. На этой стадии так же происходит частичное сгорание углерода после его взаимодействия с кислородом, который так же содержится в воздухе: 2 H2O + O2->H2О (пар).

Результатом данной стадии производства является получение смеси водяного пара и оксидов углерода (вторичного) и азота. Третья стадия идет в два процесса. Так называемый процесс “сдвига” идет в двух реакторах “сдвига”. В первом применяется катализатор Fe3O4 и реакция идет при высоких температурах, порядка 400 градусов по Цельсию . Во втором реакторе используется более производительный медный катализатор, и процесс проводится при более низкой температуре. Четвертый этап включает в себя очистку газовой смеси от оксида углерода (IV).

Данную очистку проводят с помощью промывания газовой смеси щелочным раствором, который поглощает оксид. Реакция 2 H2O + O2H2О (пар) обратимая и после третьего этапа в газовой смеси остаётся ещё приблизительно 0,5% оксида углерода. Этого количества достаточно, чтобы испортить железный катализатор. На четвертом этапе оксид углерода (II) ликвидируют конверсией водорода в метан на никелевом катализаторе при температурах 400 градусов по Цельсию: СО + 3Н2 ->СН4 +Н2О

Газовая смесь , которая ориентировочно содержит? 74.5% водорода и 25,5% азота, подвергают сжатию. Сжатие приводит к стремительному повышению температуры смеси. После сжатия смесь охлаждают до 350 градусов по Цельсию. Этот процесс описывается с реакцией: N2 + 3Н2 — 2NН3 ^ + 45,9 кДж. (процесс Гербера)

Связанные статьи:


Строительный гипс, состоящий из плотных пород гипса, производят при помощи трех основных операций. Сначала гипсовый камень дробят, затем происходит помол полученного сырья, и...

Химическими отходами называются отходы химической промышленности, которые содержат вредные вещества, представляющие угрозу для человека своим токсическим воздействия на организм. Химическая промышленность – это отрасль промышленности, занимающаяся...

Аммиак (нитрид водорода , формула NH 3) при нормальных условиях - это бесцветный газ с резким характерным запахом. Он относится к числу важнейших продуктов химической промышленности. Его ежегодное мировое производство достигает 150 млн. тонн. В основном он используется для изготовлении азотных удобрений (нитрат и сульфат аммония, мочевина), взрывчатых веществ и полимеров, азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя.


В холодильной технике используется в качестве холодильного агента (R717).

В медицине 10% раствор аммиака, чаще называемый нашатырным спиртом, используется при обморочных состояниях (для возбуждения дыхания), для стимуляции рвоты, а также наружно - при невралгии, миозитах, укусах насекомых, для обработки рук хирурга. При неправильном использовании может вызвать ожоги пищевода и желудка (в случае приёма неразведённого раствора), рефлекторную остановку дыхания (при вдыхании в высокой концентрации).

Технология производства аммиака + видео как получают

В рамках этого направления сегодня многие компании стали заниматься разработкой и проектированием следующих технологий:

  • Перевод избыточного количества аммиака на изготовление метанола.
  • Разработка производства на основе современных технологий для подмены активных агрегатов.
  • Создание интегрированного производства и модернизация.

На производство одной тонны аммиака в России расходуется в среднем 1200 нм³ природного газа, в Европе - 900 нм³. Белорусский «Гродно Азот» расходует 1200 нм³, после модернизации ожидается снижение расхода до 876 нм³. Украинские производители потребляют от 750 нм³ до 1170 нм³. По технологии UHDE заявляется потребление 6,7 - 7,4 Гкал энергоресурсов на тонну.

Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:

N 2 + 3H 2 ⇄ 2NH 3 + + 91,84 кДж

Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода). Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях - тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции. Проведение реакции при очень высоких давлениях требует создания специального, выдерживающего высокое давление оборудования, а значит, и больших капиталовложений. Кроме того, равновесие реакции даже при 700°C устанавливается слишком медленно для практического её использования. Выход аммиака (в объёмных процентах) в процессе Габера при различных температурах и давлении имеет следующие значения:

Применение катализатора (пористое железо с примесями Al2O3 и K2O) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.

Учитывая все вышеприведённые факторы, процесс получения проводят при следующих условиях:

  • температура 500 °C;
  • давление 350 атмосфер;
  • катализатор.

Выход аммиака при таких условиях составляет около 30%. В промышленных условиях использован принцип циркуляции - аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления. Для его получения в лаборатории используют действие сильных щелочей на соли аммония:

NH 4 Cl + NaOH → NH 3 + NaCl + H 2 O

Обычно лабораторным способом аммиак получают слабым нагреванием смеси хлорида аммония с гашеной известью.

2NH 4 Cl + Ca(OH) 2 → CaCl 2 + 2NH 3 + 2H 2 O

Для осушения аммиака его пропускают через смесь извести с едким натром. Очень сухой можно получить, растворяя в нём металлический натрий и впоследствии перегоняя. Это лучше делать в системе, изготовленной из металла под вакуумом. Система должна выдерживать высокое давление (при комнатной температуре давление насыщенных паров около 10 атмосфер). На промышленном производстве обычно для сушки используют абсорбционные колонны.

Видео как делают:

Производство аммиака не должно обходить стороной технический прогресс. В основном это касается энергосбережения. В ходе разработки современных технологий большое значение отводится программному обеспечению, необходимому для моделирования химических и технологических процессов.