» » Рибосомы. Хлоропласты

Рибосомы. Хлоропласты

1. Заполните таблицу 15 «Сравнительная характеристика митохондрий и хлоропластов». При наличии признака поставьте в соответствующую ячейку знак + . Сделайте вывод о причинах сходства и причинах различий митохондрий и хлоропластов.

2. Анализ «слепых» препаратов.

Практическая часть

Таблица 15.

Сравнительная характеристика митохондрий и хлоропластов

ПРЕПАРАТ № 6 Хондриососмы в клетках печени амфибии

Митохондрии в клетках печени амфибии. Фиксация Са-формолом; окраска по Альтману.

При малом увеличении видны располагающиеся рядами крупные многоугольной округлой формы печеночные клетки с тонкими клеточными границами. Между печеночными клетками заметны широкие кровеносные капилляры, в которых находятся клетки крови.

При большом увеличении на желтоватом фоне цитоплазмы гепатоцитов видны равномерно расположенные митохондрии розово-красного цвета, имеющие форму округлых зерен или палочек. Часть митохондрий зернистой формы представляет собой поперечные разрезы палочковидных митохондрий.

Рис. 51. Митохондрии в клетках печени амфибии. 1 – цитоплазма; 2 – гепатоциты; 3 – митохондрии; 4 – короткие цепочки митохондрий.

1. системе полостей с пузырьками на концах

2. множеству расположенных в ней гран

3. системе разветвленных канальцев

4. многочисленнымкристам на внутренней мембране

КАКУЮ ФУНКЦИЮ ВЫПОЛНЯЕТ В КЛЕТКЕ КЛЕТОЧНЫЙ ЦЕНТР

1. принимает участие в клеточном делении

2. является хранилищем наследственной информации

3. отвечает за биосинтез белка

4. является центром матричного синтеза рибосомной РНК

КАКИЕ ОБЩИЕ СВОЙСТВА ХАРАКТЕРНЫ ДЛЯ МИТОХОНДРИЙ И ХЛОРОПЛАСТОВ?

1. не делятся в течение жизни клетки

2. имеют собственный генетический материал

3. являются одномембранными

4. участвуют в фотосинтезе

5. являются специальными органоидами

ФУНКЦИЯ РИБОСОМ

1. участвуют в реакциях окисления

2. участвуют в синтезе белков

3. участвуют в синтезе липидов

4. участвуют в делении клетки

ОСОБЕННОСТИ СТРОЕНИЯ РИБОСОМ

1. отграничены от цитоплазмы одной мембраной

2. состоят из двух частиц – большой и малой

3. размещаются в цитоплазме и на каналах ЭПС

4. размещаются в аппарате Гольджи


10.ВЫБЕРИТЕ НЕМЕМБРАННЫЕ СТРУКТУРЫ

1. центросома

2. ЭПС, аппарат Гольджи, лизосомы

3. рибосомы, микротрубочки, центриоли

4. микрофиламенты, микротрубочки, жировые капли

5. митохондрии, вакуоли, центриоли

ДЛЯ МИТОХОНДРИЙ ХАРАКТЕРНО

1. являются специальными органоидами

2. образуются в клетке от аппарата Гольджи

3. наружная и внутренняя мембраны митохондрий образуют кристы

4. основная функция – синтез АТФ

5. имеют собственную ДНК линейной формы

ФУНКЦИЯ ЛИЗОСОМ

1. расщепление полимеров до мономеров

2. окисление органических веществ

3. формирование цитоскелета

4. синтез белков

5. участвуют в делении клетки

В ОБРАЗОВАНИИ ЦИТОСКЕЛЕТА ПРИНИМАЮТ УЧАСТИЕ

1. микротрубочки и микрофиламенты

2. микротрубочки и миофибриллы

3. микрофиламенты, ЭПС, микроворсинки

4. микроворсинки, миофибриллы

КАКОЙ ОРГАНОИД СОДЕРЖИТ ГРАНЫ

1. митохондрия

2. хлоропласт

3. клеточный центр

5. аппарат Гольджи

ФУНКЦИИ ЭПС В РАСТИТЕЛЬНОЙ КЛЕТКЕ

1. внутриклеточное пищеварение

2. образует первичные лизосомы

3. участвует в фотосинтезе

4. обеспечивает синтез некоторых липидов и углеводов

5. участвует в синтезе АТФ

РАЗДЕЛ 2.

СТРОЕНИЕ И ФУНКЦИИ МЕМБРАН

ХИМИЧЕСКИЙ СОСТАВ ПЛАЗМАЛЕММЫ ВКЛЮЧАЕТ

1. липиды и белки

2. белки, жиры, углеводы

3. липиды, белки, нуклеиновые кислоты

4. белки, углеводы, нуклеиновые кислоты

5. липиды, белки, олигосахариды

НАЗОВИТЕ ХИМИЧЕСКИЕ СОЕДИНЕНИЯ, МОЛЕКУЛЫ КОТОРЫХ ОБЕСПЕЧИВАЮТ ТАКОЕ СВОЙСТВО МЕМБРАНЫ, КАК ТЕКУЧЕСТЬ.

1. олигосахариды

3. фосфолипиды

5. целлюлоза

УКАЖИТЕ ВИД ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ КЛЕТКИ, КОТОРЫЙ ТРЕБУЕТ ЭНЕРГИИ АТФ

1. фагоцитоз

2. диффузия через канал

3. облегченная диффузия

4. простая диффузия

ЭРИТРОЦИТЫ ЧЕЛОВЕКА ПОМЕСТИЛИ В РАСТВОР ХЛОРИДА НАТРИЯ. ЧЕРЕЗ 30 МИНУТ ОНИ НЕ ИЗМЕНИЛИ СВОЕЙ ФОРМЫ И ОБЪЕМА. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

1. изотоническим

2. гипертоническим

3. гипотоническим

4. коллоидным

5.КОНЦЕНТРАЦИЯ РАСТВОРА ХЛОРИДА НАТРИЯ РАВНА 0,3%. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

1. изотоническим

2. гипертоническим

3. гипотоническим

4. физиологическим

ЭРИТРОЦИТЫ ЧЕЛОВЕКА ПОМЕСТИЛИ В РАСТВОР NACL. ЧЕРЕЗ НЕСКОЛЬКО МИНУТ ОНИ УВЕЛИЧИЛИСЬ В ОБЪЕМЕ, А ЗАТЕМ ЛОПНУЛИ. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

1. изотоническим

2. гипертоническим

3. гипотоническим

4. физиологическим

7.КОНЦЕНТРАЦИЯ РАСТВОРА ХЛОРИДА НАТРИЯ РАВНА 9%. КАКИМ ЯВЛЯЕТСЯ ЭТОТ РАСТВОР ПО ОТНОШЕНИЮ К КЛЕТКАМ ЧЕЛОВЕКА?

1. изотоническим

2. гипертоническим

3. гипотоническим

4. физиологическим

РАЗРУШЕНИЕ КЛЕТКИ В ГИПОТОНИЧЕСКОМ РАСТВОРЕ НАЗЫВАЕТСЯ

1. плазмолиз

2. гемолиз

3. цитолиз

4. деплазмолиз

СМОРЩИВАНИЕ КЛЕТКИ В ГИПЕРТОНИЧЕСКОМ РАСТВОРЕ НАЗЫВАЕТСЯ

1. плазмолиз

2. гемолиз

3. цитолиз

4. деплазмолиз

10.ФАГОЦИТОЗ ПРЕДСТАВЛЯЕТ СОБОЙ:

1. активный перенос жидкости с растворенными в ней веществами

2. захват плазматической мембраной твердых частиц и их втягивание в клетку

3. избирательный транспорт в клетку растворимых органических веществ

4. пассивное поступление в клетку воды и некоторых ионов

РАЗДЕЛ 3.

СТРОЕНИЕ И ФУНКЦИИ ЯДРА.

НАСЛЕДСТВЕННЫЙ АППАРАТ КЛЕТКИ.


ХРАНЕНИЕ И ПЕРЕДАЧУ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ ОБЕСПЕЧИВАЕТ

1. ядерная оболочка

2. ядрышко

3. хроматин

4. кариоплазма

5. клеточный центр

СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ЕДИНИЦЕЙ ХРОМОСОМЫ ЯВЛЯЕТСЯ

1. гетерохроматин

2. нуклеотид

3. нуклеосома

4. гистоновые белки

СОВОКУПНОСТЬ МОРФОЛОГИЧЕСКИХ ПРИЗНАКОВ ХРОМОСОМ ВИДА НАЗЫВАЕТСЯ

1. генотип

2. фенотип

3. кариотип

4. кариограмма

ЯДРЫШКО ВЫПОЛНЯЕТ ФУНКЦИЮ

1. хранение наследственной информации

2. синтез рРНК

3. синтез белка

4. синтез АТФ

5. деление ядра

ФУНКЦИИ ЯДРА ВКЛЮЧАЮТ

1. синтез молекул ДНК и РНК

2. окисление органических веществ с освобождением энергии

3. поглощение веществ из окружающей среды

4. образование органических веществ из неорганических

5. образование запасных питательных веществ

ВЫБЕРИТЕ УТВЕРЖДЕНИЕ, ОТНОСЯЩИЕСЯ К ГЕТЕРОХРОМАТИНУ

3. спирализованный, хорошо окрашивается, не транскрибируется

4. деспирализованный, транскрибируется, плохо окрашивается

ВЫБЕРИТЕ УТВЕРЖДЕНИЕ, ОТНОСЯЩИЕСЯ К ЭУРОХРОМАТИНУ

1. спирализованный, активный, хорошо окрашивается

2. неактивный, не транскрибируется, деспирализованный

3. спирализованный, хорошо окрашивается, не транскрибируется

4. деспирализованный, транскрибируется, плохо окрашивается

ХИМИЧЕСКИЙ СОСТАВ ХРОМАТИНА

1. 95% ДНК и 5% белков

2. 60% гистоновые и негистоновые белки и 40% - ДНК

3. белки 60%, РНК 40%

4. ДНК 40%, белки 40%, РНК 20%

В СИНТЕЗЕ РИБОСОМНЫХ РНК ПРИНИМАЕТ УЧАСТИЕ

1. ядерные поры

2. первичные перетяжки хромосом

3. ядрышко

4. перинуклеарное пространство

ВТОРИЧНАЯ ПЕРЕТЯЖКА ХРОМОСОМ УЧАСТВУЕТ В

1. прикреплении нитей веретена деления

2. образовании ядрышка

3. образовании ядерной оболочки

4. синтезе белка

БЕЛКИ- ГИСТОНЫ ВЫПОЛНЯЮТ ФУНКЦИЮ

1. Хранение генетической информации

2. участвуют в упаковке молекул ДНК

3. участвуют в репликации ДНК

4. участвуют в транскрипции

5. участвуют в реализации генетической информации

ВЫБЕРИТЕ ПРАВИЛЬНЫЕ УТВЕРЖДЕНИЯ, КАСАЮЩИЕСЯ ХРОМОСОМ

1. основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК

2. хромосомы хорошо видны в интерфазе

3. в процессе жизнедеятельности клеток число хромосом изменяется

4. в синтетическом периоде интерфазы происходит удвоение числа хромосом

НОРМАЛЬНЫЙ КАРИОТП ЖЕНЩИНЫ ВКЛЮЧАЕТ

2. 44 аутосомы, Х и У- хромосомы

3. 22 пары аутосом и две Х- хромосомы

4. 23 пары аутосом

НОРМАЛЬНЫЙ КАРИОТИП МУЖЧИНЫ ВКЛЮЧАЕТ

1. 44пары аутосом и две Х- хромосомы

2. 22 пары аутосом, Х и У- хромосому

3. 22 пары аутосом и две Х- хромосомы

4. 23 пары аутосом

РАЗДЕЛ 4.

ЖИЗНЕННЫЙ ЦИКЛ КЛЕТКИ. ДЕЛЕНИЕ КЛЕТКИ.

ЗНАЧЕНИЕ МИТОЗА СОСТОИТ В УВЕЛИЧЕНИИ ЧИСЛА

1. хромосом в дочерних клетках по сравнению с материн­ской

2. клеток с набором хромосом, равным материнской клетке

3. молекул ДНК в дочерних клетках по сравнению с мате­ринской

4. клеток с уменьшенным вдвое набором хромосом

РАСТВОРЕНИЕ ЯДЕРНОЙ ОБОЛОЧКИ И ЯДРЫШЕК В ПРОЦЕССЕ МИТОЗА ПРОИСХОДИТ В

1. интерфазе

2. профазе

3. метафазе

4. анафазе

5. телофазе

КАКИЕ ПРОЦЕССЫ ПРОТЕКАЮТ ВО ВРЕМЯ МЕЙОЗА?

1. транскрипция

2. денатурация

3. конъюгация и кроссинговер

4. увеличение числа хромосом

5. трансляция

ВЕРЕТЕНО ДЕЛЕНИЯ ОБРАЗУЮТ

1. актиновые волокна (микрофиламенты)

2. миозиновые волокна

3. микротрубочки

4. миофибриллы

5. коллагеновые волокна

РЕДУПЛИКАЦИЯ ДНК ПРОИСХОДИТ В

1. интерфазе

2. профазе

3. метафазе

4. анафазе

5. телофазе

ХРОМОСОМЫ РАСПОЛОЖЕНЫ НА ЭКВАТОРЕ КЛЕТКИ В

1. интерфазе

2. профазе

3. метафазе

4. анафазе

5. телофазе

РАСХОЖДЕНИЕ ХРОМАТИД К ПОЛЮСАМ КЛЕТКИ ПРОИСХОДИТ В

1. интерфазе

2. профазе

3. метафазе

4. анафазе

5. телофазе

РАСХОЖДЕНИЕ ГОМОЛОГИЧНЫХ ХРОМОСОМ ПРОИСХОДИТ В

1. анафазе мейоза 1

2. метафазе мейоза 1

3. метафазе мейоза 2

4. анафазе мейоза 2

9.В КАКОМ ОТВЕТЕ ПРАВИЛЬНО УКАЗАНА ПОСЛЕДО­ВАТЕЛЬНОСТЬ ФАЗ МИТОЗА?

1. метафаза, профаза, телофаза, анафаза

2. профаза, анафаза, телофаза, метафаза

3. телофаза, метафаза, анафаза, профаза

4. профаза, метафаза, анафаза, телофаза

Важную роль в жизнедеятельности каждой клетки играют особые структуры - митохондрии. Строение митохондрий позволяет работать органелле в полуавтономном режиме.

Общая характеристика

Митохондрии были обнаружены в 1850 году. Однако понять строение и функциональное назначение митохондрий стало возможно только в 1948 году.

За счёт своих довольно крупных размеров органеллы хорошо различимы в световом микроскопе. Максимальная длина - 10 мкм, диаметр не превышает 1 мкм.

Митохондрии присутствуют во всех эукариотических клетках. Это двумембранные органоиды обычно бобовидной формы. Также встречаются митохондрии сферической, нитевидной, спиралевидной формы.

Количество митохондрий может значительно варьировать. Например, в клетках печени их насчитывается около тысячи, а в ооцитах - 300 тысяч. Растительные клетки содержат меньше митохондрий, чем животные.

ТОП-4 статьи которые читают вместе с этой

Рис. 1. Нахождение митохондрий в клетке.

Митохондрии пластичны. Они меняют форму и перемещаются в активные центры клетки. Обычно митохондрий больше в тех клетках и частях цитоплазмы, где выше потребность в АТФ.

Строение

Каждая митохондрия отделена от цитоплазмы двумя мембранами. Наружная мембрана гладкая. Строение внутренней мембраны более сложное. Она образует многочисленные складки - кристы, которые увеличивают функциональную поверхность. Между двумя мембранами находится пространство в 10-20 нм, заполненное ферментами. Внутри органеллы располагается матрикс - гелеобразное вещество.

Рис. 2. Внутреннее строение митохондрий.

В таблице “Строение и функции митохондрии” подробно описаны компоненты органеллы.

Состав

Описание

Функции

Внешняя мембрана

Состоит из липидов. Содержит большое количество белка порина, который образует гидрофильные канальцы. Вся наружная мембрана пронизана порами, через которые в митохондрию попадают молекулы веществ. Также содержит ферменты, участвующие в синтезе липидов

Защищает органеллу, способствует транспорту веществ

Располагаются перпендикулярно оси митохондрии. Могут иметь вид пластинок или трубочек. Количество крист варьирует в зависимости от типа клеток. В клетках сердца их в три раза больше, чем в клетках печени. Содержат фосфолипиды и белки трёх типов:

Катализирующие - участвуют в окислительных процессах;

Ферментативные - участвуют в образовании АТФ;

Транспортные - переносят молекулы из матрикса наружу и обратно

Осуществляет вторую стадию дыхания с помощью дыхательной цепи. Происходит окисление водорода, образование 36 молекул АТФ и воды

Состоит из смеси ферментов, жирных кислот, белков, РНК, митохондриальных рибосом. Здесь находится собственная ДНК митохондрий

Осуществляет первую стадию дыхания - цикл Кребса, в результате которого образуется 2 молекулы АТФ

Главная функция митохондрии - генерация энергии клетки в виде молекул АТФ за счёт реакции окислительного фосфорилирования - клеточного дыхания.

Помимо митохондрий в клетках растений присутствуют дополнительные полуавтономные органеллы - пластиды.
В зависимости от функционального назначения различают три вида пластид:

  • хромопласты - накапливают и хранят пигменты (каротины) разных оттенков, придающих окраску цветков растений;
  • лейкопласты - запасают питательные вещества, например, крахмал, в виде зерён и гранул;
  • хлоропласты - наиболее важные органеллы, содержащие зелёный пигмент (хлорофилл), придающий окраску растениям, и осуществляющие фотосинтез.

Рис. 3. Пластиды.

Что мы узнали?

Рассмотрели особенности строения митохондрий - двумембранных органелл, осуществляющих клеточное дыхание. Наружная мембрана состоит из белков и липидов и производит транспорт веществ. Внутренняя мембрана образует складки - кристы, на которых происходит окисление водорода. Кристы окружает матрикс - гелеобразное вещество, в котором протекает часть реакций клеточного дыхания. В матриксе находятся митохондриальные ДНК и РНК.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 105.

1. Распределите органоиды на три группы: одномембранные, двумембранные и немембранные.

Рибосомы, лизосомы, пластиды, комплекс Гольджи, вакуоли, клеточный центр, митохондрии, эндоплазматическая сеть.

Одномембранные: лизосомы, комплекс Гольджи, вакуоли, эндоплазматическая сеть.

Двумембранные: пластиды, митохондрии.

Немембранные: рибосомы, клеточный центр.

2. Как устроены митохондрии? Какую функцию они выполняют?

Митохондрии могут иметь вид округлых телец, палочек, нитей. Это двумембранные органоиды. Наружная мембрана гладкая, она отделяет содержимое митохондрии от гиалоплазмы и отличается высокой проницаемостью для различных веществ. Внутренняя мембрана менее проницаема, она образует кристы – многочисленные складки, направленные внутрь митохондрий. За счёт крист площадь поверхности внутренней мембраны существенно увеличивается. Внутренняя мембрана митохондрий содержит ферменты, участвующие в процессе клеточного дыхания и обеспечивающие синтез АТФ. Между наружной и внутренней мембранами имеется межмембранное пространство.

Внутреннее пространство митохондрий заполнено гелеобразным матриксом. В нём содержатся различные белки, в том числе ферменты, аминокислоты, кольцевые молекулы ДНК, все типы РНК и другие вещества, а также рибосомы.

Функция митохондрий – синтез АТФ за счёт энергии, высвобождающейся в процессе клеточного дыхания при окислении органических соединений. Начальные этапы окисления веществ в митохондриях происходят в матриксе, а последующие – на внутренней мембране. Таким образом, митохондрии являются «энергетическими станциями» клетки.

3. Какие типы пластид вам известны? Чем они различаются? Почему осенью листья меняют окраску с зелёной на жёлтую, красную, оранжевую?

Основные типы пластид – хлоропласты, лейкопласты и хромопласты.

Хлоропласты имеют зелёную окраску т.к. содержат основные фотосинтетические пигменты – хлорофиллы. Также в хлоропластах содержатся оранжевые, жёлтые или красные каротиноиды. Обычно хлоропласты имеют форму двояковыпуклой линзы. Хорошо развита внутренняя мембранная система, тилакоиды собраны в стопки – граны. Главная функция хлоропластов – осуществление фотосинтеза.

Лейкопласты – бесцветные пластиды. Они не имеют гран и не содержат пигментов. В лейкопластах откладываются запасные питательные вещества – крахмал, белки, жиры.

Хромопласты имеют оранжевый, жёлтый или красный цвет, что связано с содержанием в них каротиноидов. Форма хромопластов разнообразная – дисковидная, серповидная, ромбическая, пирамидальная и т.п. В этих пластидах отсутствует внутренняя мембранная система. Хромопласты обусловливают яркую окраску зрелых плодов (например, томатов, рябины, шиповника) и некоторых других органов растений (например, корнеплодов моркови).

При старении листьев растений в хлоропластах происходит разрушение хлорофилла, внутренней мембранной системы, и они превращаются в хромопласты. Поэтому осенью листья меняют окраску с зелёной на жёлтую, красную, оранжевую.

4. Охарактеризуйте строение и функции хлоропластов.

Хлоропласты – зелёные пластиды, их цвет обусловлен наличием основных фотосинтетических пигментов – хлорофиллов. Хлоропласты содержат также вспомогательные пигменты – оранжевые, жёлтые или красные каротиноиды.

Чаще всего хлоропласты имеют форму двояковыпуклой линзы. Это двумембранные органоиды, между наружной и внутренней мембранами есть межмембранное пространство. Наружная мембрана ровная, а внутренняя образует впячивания, которые превращаются в замкнутые дисковидные образования – тилакоиды. Стопки лежащих друг над другом тилакоидов называются гранами.

В мембранах тилакоидов расположены фотосинтетические пигменты, а также ферменты, которые участвуют в преобразовании энергии света. Внутренняя среда хлоропласта – строма. В ней содержатся кольцевые молекулы ДНК, все типы РНК, рибосомы, запасные вещества (липиды, зёрна крахмала) и различные белки, в том числе ферменты, участвующие в фиксации углекислого газа.

Основная функция хлоропластов – осуществление фотосинтеза. Кроме того, в них происходит синтез АТФ, некоторых липидов и белков.

5. Клетки летательных мышц насекомых содержат по нескольку тысяч митохондрий. С чем это связано?

Главная функция митохондрий – синтез АТФ, т.е. митохондрии являются "энергетическими станциями" клетки. Для работы летательных мышц необходимо большое количество энергии, поэтому каждая клетка содержит несколько тысяч митохондрий.

6. Сравните хлоропласты и митохондрии. Выявите черты их сходства и различия.

Сходство:

● Двумембранные органоиды. Наружная мембрана ровная, а внутренняя образует многочисленные впячивания, служащие для увеличения площади поверхности. Между мембранами имеется межмембранное пространство.

● Имеют собственные кольцевые молекулы ДНК, все типы РНК и рибосомы.

● Способны к росту и размножению путём деления.

● В них осуществляется синтез АТФ.

Различия:

● Впячивания внутренней мембраны митохондрий (кристы) имеют вид складок или гребней, а впячивания внутренней мембраны хлоропластов образуют замкнутые дисковидные структуры (тилакоиды), собранные в стопки (граны).

● Митохондрии содержат ферменты, участвующие в процессе клеточного дыхания. Внутренняя мембрана хлоропластов содержит фотосинтетические пигменты и ферменты, участвующие в преобразовании энергии света.

● Основная функция митохондрий – синтез АТФ. Основная функция хлоропластов – осуществление фотосинтеза.

И (или) другие существенные признаки.

7. Докажите на конкретных примерах справедливость утверждения: «Клетка представляет собой целостную систему, все компоненты которой находятся в тесной взаимосвязи друг с другом».

Структурные компоненты клетки (ядро, поверхностный аппарат, гиалоплазма, цитоскелет, органоиды) относительно обособлены друг от друга, и каждый из них выполняет специфические функции. Тем не менее, все клеточные компоненты тесно взаимосвязаны, и клетка представляет собой единое целое.

Наследственная информация клетки хранится в ядре, а реализуется на рибосомах в виде конкретных белков. Структурные компоненты рибосом (субъединицы) формируются в ядре. Некоторые рибосомы находятся в свободном состоянии в гиалоплазме, другие же прикрепляются к мембранам ЭПС и ядра. Вещества, синтезированные на мембранах ЭПС, поступают для хранения и модификации в комплекс Гольджи. От цистерн комплекса Гольджи отшнуровываются экзоцитозные пузырьки и лизосомы. Из пузыревидных расширений ЭПС и пузырьков комплекса Гольджи формируются вакуоли. Цитоплазматическая мембрана участвует в отборе веществ, необходимых клетке. Некоторые из них могут быть использованы только после предварительного расщепления с помощью лизосом. Часть полученных веществ служит источником энергии для клетки, подвергаясь расщеплению в гиалоплазме, а затем – в митохондриях. Другие вещества используются в качестве материала для синтеза более сложных соединений. Эти процессы протекают в различных частях клетки – в гиалоплазме, ЭПС, комплексе Гольджи, на рибосомах, а энергию, необходимую для всех процессов биосинтеза, поставляют митохондрии (в виде АТФ). Внутриклеточный транспорт частиц и органоидов обеспечивают микротрубочки, сборку которых инициирует клеточный центр. Гиалоплазма объединяет все внутриклеточные структуры, обеспечивая их различные взаимодействия.

И (или) другие примеры, иллюстрирующие взаимосвязь структурных компонентов клетки.

8. В чём заключается относительная автономность митохондрий и хлоропластов в клетке? Чем она обусловлена?

Относительная автономность митохондрий и хлоропластов обусловлена наличием собственного генетического аппарата (молекул ДНК) и системы биосинтеза белка (рибосом и всех типов РНК). Поэтому митохондрии и хлоропласты самостоятельно синтезируют ряд белков (в том числе ферментов), необходимых для их функционирования. В отличие от других органоидов, митохондрии и хлоропласты способны к размножению путём деления. Однако эти органоиды не являются полностью автономными, т.к. в целом их состояние и функционирование контролируется ядром клетки.

9. В чём проявляется взаимосвязь и взаимозависимость митохондрий и рибосом?

С одной стороны, на рибосомах происходит синтез белков из аминокислот, а энергию, необходимую для осуществления этого процесса, поставляют митохондрии в виде АТФ. Кроме того, митохондрии имеют собственные рибосомы, их рРНК кодируется митохондриальной ДНК и сборка субъединиц осуществляется непосредственно в матриксе митохондрий. С другой стороны, все белки, входящие в состав митохондрий и необходимые для функционирования этих органоидов, синтезируются на рибосомах.