» » Презентация на тему "история развития вычислительной техники". Презентация по информатике на тему история развития вычислительной техники" Историческое развитие вычислительной техники презентация

Презентация на тему "история развития вычислительной техники". Презентация по информатике на тему история развития вычислительной техники" Историческое развитие вычислительной техники презентация

Cлайд 1

Cлайд 2

Вычисления в доэлектронную эпоху ЭВМ первого поколения ЭВМ второго поколения ЭВМ третьего поколения Персональные компьютеры Современные супер-ЭВМ

Cлайд 3

Потребность счета предметов у человека возникла еще в доисторические времена. Древнейший метод счета предметов заключался в сопоставлении предметов некоторой группы (например, животных) с предметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах). Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т. д.).

Cлайд 4

Каждый школьник хорошо знаком со счетными палочками, которые использовались в качестве счетного эталона в первом классе. В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большинства народов - десяти) стали применять новый знак, например зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.

Cлайд 5

Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками

Cлайд 6

По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях. Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков - счеты.

Cлайд 7

Развитие науки и техники требовало проведения все более сложных математических расчетов, и в XIX веке были изобретены механические счетные машины - арифмометры. Арифмометры могли не только складывать, вычитать, умножать и делить числа, но и запоминать промежуточные результаты, печатать результаты вычислений и т. д.

Cлайд 8

В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.

Cлайд 9

Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.

Cлайд 10

Вычисления производились Аналитической машиной в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона). Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА.

Cлайд 11

Программы записывались на перфокарты путем пробития в определенном порядке отверстий в плотных бумажных карточках. Затем перфокарты помещались в Аналитическую машину, которая считывала расположение отверстий и выполняла вычислительные операции в соответствии с заданной программой.

Cлайд 12

В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы. ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.

Cлайд 13

В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина)

Cлайд 14

ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0. Программы вводились в ЭВМ с помощью перфокарт или перфолент, причем наличие отверстия на перфокарте соответствовало знаку 1, а его отсутствие – знаку 0. Результаты вычислений выводились с помощью печатающих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшифровывать результаты вычислений могли только квалифицированные программисты, понимавшие язык первых ЭВМ.

Cлайд 15

В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе - транзисторах, которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.

Cлайд 16

В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.

Cлайд 17

В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хранения программ и данных, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений. Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).

Cлайд 18

Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.

1 из 37

Презентация - История развития вычислительной техники

3,703
просмотра

Текст этой презентации

История развития вычислительной техники

Введение
На современном этапе развития нашего общества невозможно представить себе жизнь и деятельность без использования современной вычислительной и компьютерной техники, высоких компьютерных технологий. Вычислительная техника в двадцатом веке сделала грандиозный рывок в своем развитии от громоздких и, порой, примитивных ламповых гигантов, потребляющих для своей работы такое же гигантское количество энергии до современных компактных ПК и NOTEBOOK. Компьютеры давно уже стали надежными и удобными помощниками на производстве, в торговле и бизнесе, компьютер, прочно обосновались в дизайнерских бюро, телестудиях, студиях звукозаписи, давно перестал быть только вычислительной техникой.

Этапы развития вычислительной техники
Ручной ……… с 50-го тысячелетия до н.э. Механический ……..с середины XVII века Электромеханический ……. с 90-х годов XIX века Электронный …… с 40-х годов XX века

Ручной этап

Счеты
Счеты - первый истинный предшественник счетных машин и компьютеров. Вычисления на них проводились с помощью перемещения счетных костей и камешков (калькулей) в углублениях досок из бронзы, камня, слоновой кости. Первым счетным устройством, известным еще задолго до нашей эры, был абак. Известно несколько разновидностей абака: греческий, египетский и римский абак, китайский суан-пан и японский соробан.

Счеты
Абак
Китайский суан-пан
Русские счеты

Счетное устройство Непера
В начале 17 века шотландский математик Джон Непер изобрел математический набор, состоящий из брусков с нанесенными на них цифрами от 0 до 9 и кратными им числами. Для умножения какого-либо числа два бруска располагали рядом так, чтобы цифры на торцах составляли это число. На боковых сторонах брусков после несложных вычислений можно увидеть ответ.
Джон Непер

Логарифмическая линейка
Логарифмическая линейка была изобретена английским математиком Э. Гантером вскоре после открытия логарифмов и описана им в 1623 году. Логарифмическая линейка - инструмент для несложных вычислений, с помощью которого операции над числами (умножение, деление, возведение в степень, извлечение корня) заменяются операциями над логарифмами этих чисел. Логарифмическая линейка - простой и удобный счетный инструмент для инженерных расчетов. В конце 20 века логарифмические линейки были вытеснены инженерными электронными калькуляторами.

Механический этап

Механические счетные устройства
Проект одной из первых механических суммирующих машин был разработан немецким ученым Вильгельмом Шиккардом. Эта шестиразрядная машина была построена предположительно в 1623 году. Однако это изобретение оставалось неизвестным до середины двадцатого столетия, поэтому никакого влияния на развитие вычислительной техники не оказало.
Вильгельм Шиккард

Суммирующая машина Паскаля
В 1642 году Блез Паскаль сконструировал устройство, механически выполняющее сложение чисел, в 1645 году было налажено серийное производство этих машин. С ее помощью можно было складывать числа, вращая колесики с делениями от 0 до 9, связанные друг с другом. Были отдельные колесики для единиц, десятков, сотен. Машина не могла выполнять никаких других арифметических действий, кроме сложения. Вычитать, умножать или делить на ней можно было лишь путем многократного сложения (вычитания). Изобретенный Паскалем принцип связанных колес стал основой для вычислительных устройств следующих трех столетий.
Блез Паскаль

Калькулятор Лейбница
В 1673 году Лейбниц изготовил механический калькулятор, в частности, чтобы облегчить труд своего друга астронома Христиана Гюйгенса. В машине Лейбница использовался принцип связанных колец суммирующей машины Паскаля, но Лейбниц ввел в нее подвижный элемент, позволивший ускорить повторение операции сложения, необходимое при перемножении чисел. Вместо колесиков и приводов в машине Лейбница находились цилиндры с нанесенными на них цифрами. Каждый цилиндр имел девять рядов выступов или зубцов.
Готфрид Вильгельм фон Лейбниц

Арифмометры
Арифмометр (от греч. - число) - настольная вычислительная машина ручным приводом для выполнения арифметических действий сложения, вычитания, умножения и деления. Арифмометр снабжен механизмом для установки и переноса чисел в счетчик, счетчиком оборотов, счетчиком результата, устройством для гашения результата, ручным или электрическим приводом. Арифмометр эффективен при выполнении операций умножения и деления. В течение многих десятков лет он был самой распространенной вычислительной машиной. С развитием вычислительной техники арифмометры были вытеснены электронными микрокалькуляторами.

Арифмометры
Первый арифмометр
Арифмометр «Феликс» (русская конструкция)
Арифмометр Resulta

Разностная машина Бэббиджа
Разностная машина Бэббиджа - вычислительная машина британского математика Чарльза Бэббиджа, предназначенная для автоматизации вычислений путем аппроксимации функций многочленами и вычисления конечных разностей.

Электромеханический этап

Табулятор Холлерита
В 1888 году Холлерит сконструировал электромеханическую машину, которая могла считывать и сортировать статистические записи, закодированные на перфокартах. Эта машина, названная табулятором, состояла из реле, счетчиков, сортировочного ящика. В 1890 году изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Успех вычислительных машин с перфокартами был феноменален. То, чем за десять лет до этого 500 сотрудников занимались в течение семи лет, Холлерит сделал с 43 помощниками на 43 вычислительных машинах за 4 недели.

Электронный этап

Поколения компьютерной техники
Поколение 1 2 3 4 5
Годы применения
Элементная база
Кол-во в мире
Объем оперативной памяти
Быстродействие (опер. в сек.)
Носители информации

Первое поколение ЭВМ 1946 - 1953 гг.
Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2-3 тысяч операций в секунду, емкость оперативной памяти-2 КВ.
Электронные лампа

Первое поколение ЭВМ 1948 - 1953 гг.
МЭСМ-1
БЭСМ-2
Сетунь

Перфокарта


Элементной базой машин этого поколения были полупроводниковые приборы. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.
Полупроводник

БЭСМ-6
Минск
Второе поколение ЭВМ1953 - 1959 гг.

Перфолента


Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Третье поколение ЭВМ 1959 - 1970 гг.
Единая система ЭВМ (ЕС ЭВМ)
IBM-360

Магнитная лента

Четвертое поколение ЭВМ 1970 - 1974 гг.
Элементная база ЭВМ - большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости.

ЕС ЭВМ
Процессор
Пульт управления
Накопитель
Дисковод

Дискеты
8 дюймов
5,25 дюймов

Пятое поколение ЭВМ 1974 - …гг.
В 1974 году несколько фирм объявила о создании на основе микропроцессора Intel-8008 компьютера, т.е. устройства выполняющего те же функции, что и большая ЭВМ. В начале 1975 года появился первый коммерчески распространенный компьютер, построенный на основе микропроцессора Intel - 8080.
Apple 1 - один из первых персональных компьютеров (1976)
Альтаир 8800

Первые комплектные компьютеры
Apple 2
Apple 3

Портативные персональные компьютеры
Портативные персональные компьютеры (переносные компьютеры) - компьютеры, имеющие небольшие габаритные размеры и вес, совмещающие в себе как внутренние элементы системного блока, так и устройства ввода-вывода.
Первым портативным персональным компьютером называют Osborne-1 (1981). Его процессор ZiLOG Z80A, 64 Кбайт оперативной памяти, клавиатура, модем, два дисковода 5,25-дюйма помещались в складном чемоданчике. Все это весило свыше 10 кг.

IBM PC
В 1980 году руководство IBM приняло решение о создании персонального компьютера. При его конструировании был применен принцип открытой архитектуры: составные части были универсальными, что позволяло модернизировать компьютер по частям. Появление IBM PC в 1981 году породило лавинообразный спрос на персональные компьютеры, которые стали теперь орудием труда людей самых разных профессий. Наряду с этим возник гигантский спрос на программное обеспечение и компьютерную периферию. На этой волне возникли сотни новых фирм, занявших свои ниши компьютерного рынка.

Современные носители информации
Дискета 3,5 дюйма
Жесткий диск
CD- и DVD-диски
Flash-диск

Код для вставки видеоплеера презентации на свой сайт:

Счет на пальцах Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета.



Счет с помощью предметов Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти. Чтобы сделать процесс счета более удобным, первобытный человек начал использовать вместо пальцев другие приспособления. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др.


Абак и счеты Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов. Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления.




Введенные в 1614 г. Дж. Непером логарифмы оказали революционизирующее влияние на все последующее развитие счета, чему в значительной степени способствовало появление целого ряда логарифмических таблиц, вычисленных как самим Непером, так и рядом других известных в то время вычислителей. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой. Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной с.с., предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений. Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Палочки Непера и логарифмическая линейка




В 1623 г. немецкий ученый Вильгельм Шиккард предложил свое решение на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления г. Первым реально осуществленным и ставшим известным механическим цифровым вычислительным устройством стала "Паскаля", созданная французским ученым Блезом Паскалем. Это было шести- или восьмиразрядное устройство на зубчатых колесах, способное суммировать и вычитать десятичные числа. Машина Шиккарда и Паскаля


1673 г. Через 30 лет после "Паскалины" появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление. Конец XVIII века. Жозеф Жаккард создает ткацкий станок с программным управлением при помощи перфокарт. Гаспар де Прони разрабатывает новую технологию вычислений в три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение вычислений путем арифметических операций над числами в соответствии с оставленной программой.


Гениальную идею Беббиджа осуществил Говард Айкен, американский ученый, создавший в 1944 г. первую в США релейно-механическую вычислительную машину. Ее основные блоки - арифметики и памяти были исполнены на зубчатых колесах гг. Чарльз Беббидж разрабатывает проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением. Были созданы отдельные узлы машины. Всю машину из-за ее громоздкости создать не удалось. Аналитическая машина Бэббиджа


В конце XIX в. Были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. В 1897 г. Холлерит организовал фирму, которая в дальнейшем стала называться IBM. Машина Германа Холлерита Наиболее крупные проекты в это же время были выполнены в Германии (К. Цузе) и США (Д. Атанасов, Г. Айкен и Д. Стиблиц). Данные проекты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.


Гг. В Англии при участии Алана Тьюринга была создана вычислительная машина " Colossus ". В ней было уже 2000 электронных ламп. Машина предназначалась для расшифровки радиограмм германского Вермахта г. Под руководством американца Говарда Айкена, по заказу и при поддержке фирмы IBM создан Mark-1 - первый программно- управляемый компьютер. Он был построен на электромеханических реле, а программа обработки данных вводилась с перфоленты. Colossus и Mark-1


ЭВМ первого поколения 1946 – 1958 г.г. Основной элемент – электронная лампа. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Ввод чисел в машины производился с помощью перфокарт, а программное управление осуществлялось, например в ENIAC, с помощью штекеров и наборных полей. Когда все лампы работали, инженерный персонал мог настроить ENIAC на какую-нибудь задачу, вручную изменив подключение проводов.


Машины первого поколения Машины этого поколения: «БЭСМ», «ENIAC», «МЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал», «Урал-2», «Минск-1», «Минск-12», «М-20». Эти машины занимали большую площадь и использовали много электроэнергии. Их быстродействие не превышало 23 тыс. операций в секунду, оперативная память не превышала 2 Кб.


ЭВМ второго поколения 1959 – 1967 г.г. Основной элемент – полупроводниковые транзисторы. Первый транзистор способен был заменить ~ 40 электронных ламп и работает с большой скоростью. В качестве носителей информации использовались магнитные ленты и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода.


Машины второго поколения В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Быстродействующая Электронная Счетная Машина 6). Также в то же время были созданы эвм Минск-2,Урал-14. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. Машины предназначались для решения различных трудоемких научно- технических задач, а также для управления технологическими процессами в производстве.


ЭВМ третьего поколения 1968– 1974 г.г. Основной элемент – интегральная схема. В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Одна ИС способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный Эниак. А компьютер с использованием ИС достигает производительности в операций в секунд. В конце 60-х годов появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной В 1964 г., фирма IBM объявила о создании шести моделей семейства IBM 360 (System360), ставших первыми компьютерами третьего поколения.


Машины третьего поколения. Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина. Примеры машин третьего поколения – семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.


ЭВМ четвертого поколения 1975 – по настоящее время Основной элемент – большая интегральная схема. С начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится массовой и общедоступной. С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Емкость оперативной памяти порядка 1 – 64 Мбайт. «Эльбрус» «Макинтош»


Персональные компьютеры Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя. Большие компьютеры и суперкомпьютеры продолжают развиваться. Но теперь они уже не доминируют, как было раньше.


Перспективы развития компьютерной техники. Примерно в годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры. Компьютер будущего облегчит и упростит жизнь человека ещё в десятки раз. По словам учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся, так как уже сегодня ведутся разработки новейших технологий, которые ранее никогда не применялись.


Принципы фон Неймана 1.Арифметико-логическое устройство (выполняет все арифметические и логические операции); 2.Устройство управления (которое организует процесс выполнения программ); 3.Запоминающее устройство (память для хранения информации); 4.Устройства ввода и вывода (позволяет вводить и выводить информацию).


1.Устройство для ввода информации с помощью нажатия на кнопки. 2.Устройство, с помощью которого можно подключиться к сети Интернет. 3.Устройство, выводящее информацию из компьютера на бумагу. 4.Устройство для ввода информации. 5.Устройство вывода информации на экран. 6.Устройство, копирующее любую информацию в компьютер с бумаги. КРОССВОРД


Источники информации. 1.Н.Д. Угринович Информатика и ИКТ: учебник для 11 классов. – М.: БИНОМ. Лаборатория знаний, Виртуальный музей вычислительной техники Виртуальный музей информатики Википедия - виртуальная энциклопедия

Слайд 1

И с т о р и я развития вычислительной техники

Слайд 2

ПРЕДМЕТЫ СЧЕТА ДРЕВНИХ ЛЮДЕЙ

До изобретения простых счет люди учились считать на пальцах рук

Использовали и посторонние предметы:узелки,камни, палочки, делали зарубки на дереве и костях

Слайд 3

С древних времен люди пытались создать средства для облегчения счета

ПРООБРАЗ НАШИХ СЕМИКОСТОЧКОВЫХ СЧЕТОВ

Слайд 4

НАШИ КОНТОРСКИЕ СЧЕТЫ – ЭТО РАЗНОВИДНОСТЬ ЗНАМЕНИТОГО АБАКА

конторские счеты абак

Слайд 5

Простейший абак - это доска с прорезанными в ней желобами. Как найти сумму двух чисел 134+223=357

1. Уложим в нижний желобок 4 камешка

2 В следующий 3 камешка

3. В третий желоб 1 камешек

4. Затем добавляем аналогично цифры второго слагаемого

5. Таким образом получился результат

Абак использовался в V -IV веке до нашей эры Их изготавливали из бронзы, камня слоновой кости, цветногостекла. Перевод с греческого слова абак означает ПЫЛЬ, т.к. изначально камешки раскладывали на ровную доску, покрытую пылью, чтобы камешки не скатывались Абаки использовались в Древней Греции и Риме, а чуть позже и в Западной Европе

Слайд 6

Счеты имели разные народы и поэтому имели свои особенности в расположении косточек. Так в Японии А так в Китае

суан-пань

Слайд 7

Дж.Непер изобрел логарифмы

Эдмунд Гунтер изобрел логарифмическую линейку с неподвижными шкалами

Логарифмическая линейка

Слайд 8

В 1623 г. В. Шикард изобрел машину, способную суммировать, вычитать, делить и перемножать числа. Это была первая механическая машина.

Первые механические приспособления для счета

Знаменитый физик, математик Блез Паскаль в 1642 году изобрел механическое устройство арифмометр

Слайд 9

В 1671 году Готфрид Вильгельм Лейбниц создал свою счетную машину, известную как “счетное колесо“ Лейбница. Он писал о машинах будущего, что они будут пригодны для работы с символами и формулами. Тогда эта идея казалась абсурдной.

Г. ЛЕЙБНИЦ

Слайд 10

В 1830 году был представлен проект аналитической машины Бэббиджа, которая явилась первым автоматическим программируемым вычислительным устройством.

ЧАРЛЬЗ БЕББИДЖ

Слайд 11

Ж. ЖАККАРД – ПЕРВЫЙ ИЗОБРЕТАТЕЛЬ ПЕРФОКАРТ

Станок для подготовки перфокарт

Общий вид перфокарт

Слайд 12

Графиня Ада Августа Лавлейс – была программистом первой аналитической машины.

ПЕРВАЯ ПРОГРАММИСТКА

Ее именем назван, разработанный в 1979 году, алгоритмический язык ADA

Слайд 13

В начале 19 века для расчетов применялись механические арифмометры

Слайд 14

1925 г. - на Сущевском им. Ф. Э. Дзержинского механическом заводе в Москве налажено производство арифмометров под маркой "Оригинал-Однер", в дальнейшем (с 1931 г.) они стали известны как арифмометры “Феликс”

Арифмометр имеет в верхней части (коробка) девять прорезов, в которых передвигаются рычажки. Сбоку прорезов нанесены цифры; передвигая вдоль каждого прореза рычажок, можно “поставить на рычагах” любое девятизначное число. Внизу под рычагами находятся два ряда окошечек (подвижная каретка): одни, более крупные, числом 13 справа. другие, меньшие, слева, числом 8. Ряд окошечек справа образует результирующий счетчик, а ряд слева - счетчик оборотов. Номер окошечка на счетчике указывает место единиц какого-либо разряда числа, стоящего на этом счетчике.Справа и слева каретки видны барашки (ласточки), служащие для сбрасывания цифр, появляющихся на этих счетчиках. Повертывая барашки до тех пор, пока они не щелкнут, мы убираем все цифры на счетчиках, оставляя нули.На коробке машины справа от прорезов имеются две стрелки, на концах которых стоят плюс (+) и минус (-). С правой стороны машины имеется ручка, которую можно повертывать в направлении плюс (по часовой стрелке) и в направлении минус (против часовой стрелки).Пусть на результирующем счетчике и на счетчике оборотов стоят нули. Поставим на рычагах какое-нибудь число, например 231 705 896, и повернем ручку в направлении плюс. После одного оборота на результирующем счетчике появится тоже число 231705 896 .Сложение и вычитание. Чтобы сложить несколько чисел, надо поставить эти числа одно за другим на рычагах и после каждой установки 1 раз повернуть ручку в направлении плюс. На результирующем счетчике появится сумма всех чисел.При вращении ручки в обратную сторону на результирующем счетчике появится разность между числом, стоявшим в нем до начала поворота, и числом, поставленным на рычагах. Умножение. Каретка арифмометра может передвигаться вдоль машины вправо и влево, и под прорезом для единиц можно поставить различные окошечки результирующего счетчика.

Слайд 15

В 1935 г. в СССР был выпущен клавишный полуавтоматический арифмометр КСМ-1 (клавишная счетная машина). Эта машина имела два привода: электрический (со скоростью 300 оборотов в минуту) и ручной (на случай отсутствия питания).

Клавиатура машины состоит из 8 вертикальных рядов по 10 клавишей в каждом, т. е. можно набрать 8-значные числа. Для удобства набора группы разрядов клавиатуры окрашены в разные цвета. Имеются клавиши гашения. Если цифра набрана ошибочно, то для ее замены достаточно нажать на нужную цифру в том же ряду и тогда неверно набранная цифра погасится автоматически. В подвижной каретке находится 16-разрядный счетчик результатов и 8-разрядный счетчик оборотов, имеющие устройства для передачи десятков из одного разряда в другой. Для гашения этих счетчиков служит ручка. Имеются подвижные запятые (для удобства считывания). Звонок сигнализирует о переполнении счетчика результатов. В послевоенные годы были выпущены полуавтоматы КСМ-2 (с незначительными отличиями по конструкции от КСМ-1, но с более удобным расположением рабочих деталей)

Слайд 16

В 40-ых г.г 19 столетия произошел коренной переворот в развитии вычислительной техники. С 1943 по1946 год в США была построена первая полностью электронная цифровая машина.

ПЕРЕВОРОТ

Слайд 17

Во времена Др. Рима был изобретен первый счетный инструмент - Абак В XVI в. в России были изобретены счеты. 1642г. – Блез Паскаль изобрел Колесо «Паскаля», механически выполняющее сложение и вычитание чисел. 1694г. – Готфрид Лейбниц сконструировал арифмометр, производящий четыре действия. 1888г. – Герман Холлерит сконструировал первую счетную машину.


Доэлектронная эпоха

Потребность счета предметов у человека возникла в доисторические времена. Потребности счета заставили людей использовать счетные эталоны. Первое вычислительное устройство - абак. По мере усложнения хозяйственной деятельности и социальных отношений и по прошествии веков стали использовать – счеты.


Блез Паскаль (1623 – 1662 гг.)

Французский религиозный философ, писатель, математик и физик Блез Паскаль в 1642 г. сконструировал первый механический вычислитель, позволяющий складывать и вычитать числа.


Г. Лейбниц

В 1673 г. немецкий ученый Г. Лейбниц разработал счетное устройство, в котором использовал механизм, известный под названием «колеса Лейбница». Его счетная машина выполняла не только сложение и вычитание, но и умножение и деление.


Карл Томас

В XIX веке Карл Томас изобрел первые счетные машины – арифмометры. Функции: сложение, вычисление, умножение, деление, запоминание промежуточные результатов, печать результатов и многое другое.


Аналитическая машина Бэббиджа (середина XIX в.)

Аналитическая машина состоит из 4000 стальных деталей и весит 3 тонны. Вычисления производились в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Байрона). Графиню Лавлейс считают первым программистом и в ее честь назван язык программирования АДА.



Первая ЭВМ в мире

В 1945 г. американские инженер-электронщик Дж. П. Эккерт и физик Дж.У. Моучли в Пенсильванском университете сконструировали, по заказу военного ведомства США, первую электронно-вычислительную машину - “ Эниак ” (Electronic Numerical Integrator and Computer)


Первые советские ЭВМ

Первая советская электронная вычислительная машина (получившая в дальнейшим название МЭСМ – малая электронная счетная машина) была создана в 1949 г. в Киеве, а через три года, в 1952 г., в Москве вошла в строй машина БЭСМ (быстродействующая электронная счетная машина). Обе машины были созданы под руководством выдающегося советского ученого Сергея Алексеевича Лебедева (1902-1974), основоположника советской электронной вычислительной техники.


МЭСМ выполняла арифметические действия над 5-6-значными числами со скоростью 50 операций в секунду, имела память на электронных лампах объемом в 100 ячеек, занимала 50 кв. м., потребляла 25 кВ/ч.


БЭСМ - выполняла программы со скоростью примерно 10 000 команд в секунду. Память БЭСМ состояла из 1024 ячеек (по 39 разрядов). Эта память была построена на магнитных сердечниках. Внешняя память ЭВМ была размещена на двух магнитных барабанах и одной магнитной ленте и вмещала 100 000 39-битных слов.


ЭВМ первого поколения (1945 – 1957 гг.)

Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.


ЭВМ второго поколения (1958 – 1964 гг.)

В 60-е годы XX века были созданы ЭВМ второго поколения, в которых на смену электронным лампам пришли транзисторы. Такие ЭВМ производились малыми сериями и использовались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.


В СССР в 1967 году выпустилась наиболее мощная в Европе машина ЭВМ второго поколения

БЭСМ-6 (Быстродействующая Электронная Счетная Машина 6), которая могла выполнять 1 миллион операций в секунду.


ЭВМ третьего поколения

С 70-х годов прошлого века в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы . ЭВМ на базе интегральных схем стали более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и стали доступны для большинства научных институтов и высших учебных заведений.


Персональные компьютеры

Развитие высоких технологий привело к созданию больших интегральных схем – БИС, включающих десятки тысяч транзисторов. Это позволило приступать к выпуску компактных персональных компьютеров, доступных для массового использования.


Первый персональный компьютер

В 1977 году был создан первый персональный компьютер Apple II , а в 1982 году фирма IBM приступила к изготовлению персональных компьютеров IBM PC.


Персональные компьютеры

За тридцать лет развития персональные компьютеры превратились в мощные высокопроизводительные устройства по обработке самых различных видов информации, которые качественно расширили сферу применения вычислительных машин. Персональные компьютеры выпускают в стационарном (настольном) и в портативном исполнении.

Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.


Поколения ЭВМ

Характерис-тика

Годы использования

40 - 50-е гг. ХХ в.

Основной элемент

поколение

поколение

60-е гг. ХХ в.

Электронная лампа

Быстродейст-вие, операций в секунду

Десятки тысяч

Персональ-ные компьютеры

70-е гг. ХХ в.

Количество ЭВМ в мире, шт.

Транзистор

поколение

Сотни тысяч

Интегральная схема

80-е гг. ХХ в. – настоящее время

Большая интегральная схема

Миллионы

Миллиарды

Сотни тысяч