» » Гравитационное и магнитное поля земли. Гравитационное, магнитное и электрическое поля земли

Гравитационное и магнитное поля земли. Гравитационное, магнитное и электрическое поля земли

Согласно современным представлениям, образовалась примерно 4,5 млрд лет назад, и с этого момента нашу планету окружает магнитное поле. Все, что находится на Земле, в том числе люди, животные и растения, подвергаются его воздействию.

Магнитное поле простирается до высоты около 100 000 км (рис. 1). Оно отклоняет или захватывает частицы солнечного ветра, губительные для всех живых организмов. Эти заряженные частицы образуют радиационный пояс Земли, а вся область околоземного пространства, в которой они находятся, называют магнитосферой (рис. 2). С освещенной Солнцем стороны Земли магнитосфера ограничена сферической поверхностью с радиусом примерно 10-15 радиусов Земли, а с противоположной стороны она вытянута подобно кометному хвосту на расстояние вплоть до нескольких тысяч радиусов Земли, образуя геомагнитный хвост. Магнитосфера отделена от межпланетного поля переходной областью.

Магнитные полюса Земли

Ось земного магнита наклонена по отношению к оси вращения Земли на 12°. Она располагается примерно на 400 км в стороне от центра Земли. Точки, в которых эта ось пересекает поверхность планеты, - магнитные полюса. Магнитные полюсаЗемли не совпадают с истинными географическими полюсами. В настоящее время координаты магнитных полюсов следующие: северный — 77° с.ш. и 102° з.д.; южный — (65° ю.ш. и 139° в.д.).

Рис. 1. Строение магнитного поля Земли

Рис. 2. Строение магнитосферы

Силовые линии, идущие от одного магнитного полюса к другому, называются магнитными меридианами . Между магнитным и географическим меридианом образуется угол, называемый магнитным склонением . Каждое место на Земле имеет свой угол склонения. В районе Москвы угол склонения равен 7° к востоку, а в Якутске — около 17° к западу. Это значит, что северный конец стрелки компаса в Москве отклоняется на Т вправо от географического меридиана, проходящего через Москву, а в Якутске — на 17° влево от соответствующего меридиана.

Свободно подвешенная магнитная стрелка располагается горизонтально только на линии магнитного экватора, который не совпадает с географическим. Если двигаться к северу от магнитного экватора, то северный конец стрелки будет постепенно опускаться. Угол, образованный магнитной стрелкой и горизонтальной плоскостью, называют магнитным наклонением . На Северном и Южном магнитных полюсах магнитное наклонение наибольшее. Оно равно 90°. На Северном магнитном полюсе свободно подвешенная магнитная стрелка установится вертикально северным концом вниз, а на Южном магнитном полюсе ее южный конец опустится вниз. Таким образом, магнитная стрелка показывает направление силовых линий магнитного ноля над земной поверхностью.

С течением времени положение магнитных полюсов относительно по земной поверхности меняется.

Магнитный полюс был открыт исследователем Джеймсом К. Россом в 1831 г. в сотнях километров от его нынешнего местонахождения. В среднем за один год он перемещается на 15 км. В последние годы скорость перемещения магнитных полюсов резко возросла. Например, Северный магнитный полюс сейчас перемещается со скоростью около 40 км в год.

Смена магнитных полюсов Земли называется инверсией магнитного поля .

На протяжении геологической истории нашей планеты земное магнитное поле изменяло свою полярность более 100 раз.

Магнитное поле характеризуется напряженностью. В некоторых местах Земли магнитные силовые линии отклоняются от нормального поля, образуя аномалии. Например, в районе Курской магнитной аномалии (КМА) напряженность поля в четыре раза выше нормы.

Существуют суточные изменения магнитного поля Земли. Причина этих изменений магнитного поля Земли — электриче- с кие токи, текущие в атмосфере на большой высоте. Вызваны они солнечным излучением. Пол действием солнечного ветра магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров. Основной же причиной возникновения солнечного ветра, как мы уже знаем, являются грандиозные выбросы вещества из короны Солнца. При движении к Земле они превращаются в магнитные облака и приводят к сильным, иногда экстремальным возмущениям на Земле. Особенно сильные возмущения магнитного поля Земли - магнитные бури. Некоторые магнитные бури начинаются неожиданно и почти одновременно по всей Земле, а другие развиваются постепенно. Они могут продолжаться несколько часов и даже суток. Часто магнитные бури происходят через 1-2 дня после солнечной вспышки из-за прохождения Земли через поток частиц, выброшенных Солнцем. Исходя из времени запаздывания скорость такого корпускулярного потока оценивают в несколько миллионов км/ч.

Во время сильных магнитных бурь нарушается нормальная работа телеграфа, телефона и радио.

Магнитные бури часто наблюдаются на широте 66-67° (в зоне полярных сияний) и возникают одновременно с полярными сияниями.

Строение магнитного поля Земли меняется в зависимости от широты местности. Проницаемость магнитного поля увеличивается в сторону полюсов. Над полярными областями силовые линии магнитного поля более или менее перпендикулярны земной поверхности и имеют воронкообразную конфигурацию. Через них часть солнечного ветра с дневной стороны проникает в магнитосферу, а затем и в верхнюю атмосферу. Сюда же в период магнитных бурь устремляются частицы из хвостовой части магнитосферы, достигая границ верхней атмосферы в высоких широтах Северного и Южного полушарий. Именно эти заряженные частицы вызывают здесь полярные сияния.

Итак, магнитные бури и суточные изменения магнитного ноля объясняются, как мы уже выяснили, солнечным излучением. Но какова основная причина, создающая постоянный магнетизм Земли? Теоретически удалось доказать, что на 99 % магнитное поле Земли вызывают источники, скрытые внутри планеты. Главное магнитное поле обусловлено источниками, расположенными в глубинах Земли. Их можно условно разделить на две группы. Основная их часть связана с процессами в земном ядре, где вследствие непрерывных и регулярных перемещений электропроводящего вещества создается система электрических токов. Другая — связана с тем, что горные породы земной коры, намагничиваясь главным электрическим полем (полем ядра), создают собственное магнитное поле, которое суммируется с магнитным полем ядра.

Кроме магнитного поля вокруг Земли существуют и другие поля: а) гравитационное; б) электрическое; в) тепловое.

Гравитационным полем Земли называют поле силы тяжести. Она направлена по отвесу перпендикулярно к поверхности геоида. Если бы у Земли была фигура эллипсоида вращения и в нем равномерно распределялись бы массы, то у нее было нормальное гравитационное поле. Разница между напряженностью реального гравитационного поля и теоретического — аномалия тяжести. Различный вещественный состав, плотность горных пород вызывают эти аномалии. Но возможны и другие причины. Их можно объяснить следующим процессом — уравновешение твердой и относительно легкой земной коры на более тяжелой верхней мантии, где и происходит выравнивание давления вышележащих слоев. Эти течения вызывают тектонические деформации, движение литосферных плит и тем самым создают макрорельеф Земли. Сила тяжести удерживает атмосферу, гидросферу, людей, животных на Земле. Силу тяжести нужно обязательно учитывать при изучении процессов в географической оболочке. Термином «геотропизм » называют ростовые движения органов растений, которые под влиянием силы земного тяготения всегда обеспечивают вертикальное направление роста первичного корня перпендикулярно поверхности Земли. Гравитационная биология использует растения в качестве экспериментальных объектов.

Если не учитывать силу тяжести, невозможно рассчитать исходные данные для запуска ракет и космических кораблей, сделать гравиметрическую разведку рудных ископаемых и, наконец, невозможно дальнейшее развитие астрономии, физики и других наук.

Геология. Литология. Предмет и задачи этих наук.

Геология – наука о земле. Литология – наука, изучающая осадочные горные породы. Петрография – наука, изучающая магматические г.п. Главные задачи литологических исследований: 1) изучение особенностей и закономерностей пространственного распределения на Земле осадочных горных пород; 2) на основе выявленных закономерностей поиски месторождений полезных ископаемых генетически, парагенетически и пространственно связанных с осадочными породами. Задачей геологии является последовательность геологических событий.

Современные взгляды на происхождение Вселенной, Солнечной системы и Земли в ней.

Вселенная, которую мы сейчас наблюдаем, содержит лишь 1/9 от того вещества, из которого, согласно расчетам, должна быть образована масса Вселенной. Следовательно, от нас скрыто 8/9 массы ее вещества. В наблюдаемой форме Вселенной возникла около 20 млрд лет назад.

Теории: 1. «Разбегание» галактик и их скоплений. Доказательство этого явления связано с хорошо известными из физики эффектом Доплера, заключающимся в том, что спектральные линии поглощения в наблюдаемых спектрах удаляющегося от нас объекта всегда смещается в красную сторону, а приближающиеся в голубую. 2. Реликтовое излучение. Арно Пензиас и Роберт Вилсон с помощью рупорной антенны обнаружили фоновое электромагнитное излучение на длине волны 7,35 см, одинаковое по всем направлениям и не зависящее от времени суток. Это излучение эквивалентно излучению абсолютно черного тела с Т~2,75K. 3. Химический состав Вселенной составляет по массе ¾ водорода и ¼ гелия. Все остальные элементы не превышают в составе Вселенной даже 1%. В такой пропорции 3:1 H 2 и He образовались в самые первые минуты Большого Взрыва.

Форма и размеры Земли (геоид, трехосный эллипсоид).

Земля имеет форму двухосного эллипсоида. 1ое сжатие на полюсах. 2ое сжатие экваториальное. Длина экватора 40 075 км; Радиус 6377 км; Масса 5,9737* . Геоид – это некоторая воображаемая поверхность по отношению к которой сила тяжести направленна перпендекулярно.

Геофизические поля Земли (гравитационное, магнитное, электрическое, тепловое); их происхождение.

Гравитационное поле Земли - поле силы тяжести, обусловленное тяготением Земли и центробежной силой, вызванной её суточным вращением. Характеризуется пространственным распределением силы тяжести и гравитационного потенциала.

Магнитное поле Земли – магнитное поле, генерируемое токами в жидкой части ядра. Магнитные полюса не совпадают с географическими ни по знакам, ни по координатам. Дрейф магнитных полюсов происходит на протяжении всей геологической истории Земли. Магнитное склонение – это угол м/у направлением магнитной стрелки и направлением географического меридиана. Магнитное наклонение – угол, на который отклоняется стрелка под действием магнитного поля Земли в вертикальной плоскости. В северном полушарии указывающий на север конец стрелки отклоняется вниз, в южном - вверх. Типы магнитных полей: нормальное, переменное, аномальное.

Электрическое поле Земли. Ионосфера под действием радиационного поля солнца приобретает положительный заряд. Промежуточные слои м/у литосферой (-) и ионосферой (+) – изолятор. Поэтому возникают грозы и бьют сверху вниз (от + к -).

Тепловое поле земли. Источники: 1) тепло полученное от Солнца; 2) тепло из недр Земли (тепловой поток); 3) радиоактивный распад; 4) приливы и отливы; 5) движение плит. Геотермический градиент – это на сколько повышение температуры при погружении на единицу расстояния (м). Геотермическая ступень – это расстояние, на которое необходимо опуститься, чтобы температура повысилась на . Пояс постоянства температуры - та глубина, на которой температура равна среднегодовой (неизмен).

ГЕОГРАФИЯ
ЗЕМЛЯ В КОСМИЧЕСКОМ ПРОСТРАНСТВЕ

МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Земля имеет магнитное поле дипольного типа, вроде бы в ее центре расположен гигантский полосовой магнит. Конфигурация этого поля медленно изменяется, вероятно, вследствие движения расплавленного материала во внешнем ядре Земли на глубинах более 2900 км. Главное магнитное поле обусловлено источниками, расположенными в глубинах Земли. На сооб приемная колебания главного магнитного поля накладываются быстрые, но незначительные изменения, вызванные электрическими токами в ионосфере. Элект ричні свойства ионосферы связаны с присутствием в ней заряженных частиц, возникающих при ионизации атмосферы солнечным излучения ем. Ветры, дуют в ионосфере в присутствии постоянного магнитного поля Земли, приводят к возникновение электрических токов, которые, в свою очередь, создают дополнительное переменное магнитное поле. Кроме этих регулярных магнитных колебаний, наблюдаются также возмущения, обусловленные пере одичними солнечными вспышками - источниками ультрафиолетовых и рентге нівських лучей и возмущенного потока заряженных частиц солнечного вет ру. Эта радиация увеличивает ионизацию и вызывает дополнительные электрические тока мы в ионосфере. Временем солнечный ветер настолько эффективно взаимодействует с геомагнитным полем, что формирует кольцевой электрический ток от состоянии в несколько радиусов земного шара; это приводит к уменьшению голо вного магнитного поля; такие магнитные возмущения ощущаются во всем мире те, но наиболее сильно проявляются в полярных районах. В периоды сы ных магнитных возмущений возникают особенно интенсивные полярные сияния, а также часто нарушается радиосвязь. Исследования магнитного поля Земли используются для изучения физического состояния глубоких недр и процессов, происходящих в высоких слоях атмосферы. Магнитное поле играет также важную роль в сферах, отдаленных от поверхности Земли на тысячи километров; в их пределах интенсивный поток частиц, захваченных ма гнітним полем, создает серьезные проблемы для аэрокосмических исследований. Солнечные и галактические космические лучи, несмотря на их высокую энергию, отклоняются магнитным полем Земли еще до того, как попадают в пределы атмосферы. В любой точке Земли магнитное поле характеризуєть ся его интенсивностью и направлением, угол которого с горизонтальной площади ною называется магнитным наклоном (И). Если спроектировать поле на го ризонтальну плоскость, направление в первом приближении будет ориентирован с севера на юг, но в общем случае будет образовывать некоторый угол с истинным направлением географического меридиана; это отклонение но сить название магнитного склонение ( D ). Амплитуда, или напряженность, магни тного поля называется полной магнитной интенсивностью ( F ). Магнитное поле может быть представлено двумя взаимно перпендикулярными компонентами: горизонтальной (Н) и вертикальной ( Z ). Если векторы, показывающие интенсивность и направление горизонтальной компоненты в разных точках Земли, нанести на карту, то видно, что они расходятся от точки вблизи Южного полюса и сходятся в точке вблизи Северного по люса. Эти точки называются соответственно Южным и Северным магнит ними полюсами. На полюсах магнитное поле направлено вертикально.

Линию, на которой магнитное поле направлено горизонтально, называют маг нітним экватором.

Магнитные полюса не совпадают с географическими и быстро переміща ются. Северный магнитный полюс находится в северных водах Кана ды. Его координаты в 1900 г. были 69° с. ш. и 97° зап. д., в 1950 г. - 72° с. ш. и 96° зап. д., в 1980 г. - 75° с. ш. и 100° зап. д., в 1985 г. - 77° с. ш. и 102° зап. д. Южный магнитный полюс в 1985 г. имел координаты 65,5° ю. ш. и 139,5° в. д. Прямая линия, проведенная через эти магнитные полюса, не проходит через центр Земли. Измерения геомагнитного поля показа ют, что на поверхности Земли в целом оно может быть представлено как поле магнита, помещенного в центре планеты. Его еще называют полем магнит ного диполя. Две точки, в которых ось диполя пересекает земную поверхность, називаютьгеомагнітними полюсами. В начале 1990-х годов геомагніт ный экватор был наклонен к географического экватора на 12°. Северный геомагнитный полюс имел координаты 79° с. ш. и 70° зап. д., а ось диполя находилась от центра Земли на 460 км в направлении Тихого океана (18° с. ш., 148° в. д.). Полная магнитная напряженность на геомагнитных полю сах равна примерно 0,6 гаусс, на магнитном экваторе напряженность примерно вдвое меньше.


Магнитное поле Земли . Кто пользовался компасом, тот знает, что, сколько бы ни отклоняли свободно подвешенную стрелку от первоначального направления, она всякий раз будет к нему возвращаться. Это значит, что в географической оболочке и в околоземном пространстве существует магнитное поле, в каждой точке которого стрелка компаса будет располагаться параллельно магнитным силовым линиям. При этом один конец стрелки указывает на северный магнитный полюс, а другой - на южный.

Земля – большой магнит, вокруг которого существует магнитное поле. Область околоземного пространства, физические свойства которого определяются магнитным полем Земли и его взаимодействием с потоками космических частиц называют магнитосферой. Её внешняя граница – магнитопауза (шириной около 200 км) с дневной стороны располагается на высоте 10-14 земных радиусов (магнитосфера сжа­та под ударами солнечного ветра), а с ночной простирается до высоты 900-1000 земных радиусов (магнитосфера вытянута, образуя «хвост»). С удалением от поверхности Земли неоднородность магнитосферы сглаживается, напряженность ее ослабевает, а за пределами магнитопаузы магнитное поле Земли теряет способность захватывать заряженные частицы. Благодаря существованию магнитосферы маг­нитная стрелка компаса устанавливается в на­правлении магнитных силовых линий. Боль­шой круг, в плоскости которого находится магнитная стрелка компаса, называется маг­нитным меридианом данной точки. Магнит­ные меридианы не образуют на земной поверхности правильной сетки и сходятся в двух точках, называемых магнитными полюсами. Они не совпадают с географическими полю­сами и медленно изменяют свое местополо­жение, «дрейфуя» со скоростью 7 - 8 км/год. Так, в 1950 г. северный магнитный полюс имел координаты 72° с. ш., 96° з. д., а южный - 70° ю. ш., 150° з. д.; в 1970 г. соответственно 75°42" с.ш., 101 о 30" з.д. и 65°30" ю. ш., 140°18" з.д., в 1985 г. – 77 о 36 / с.ш. и 102 о 48 / з.д., а южный – 65 о 06 / ю.ш. и 139 о в.д.

Магнит­ные полюса не являются антиподальными точками. Первый из них смещается в направ­лении Северного полюса, второй - в сторо­ну Австралии. Ожидается, что приблизитель­но в 2185 г. магнитный и географический полюса в северном полушарии окажутся в од­ной точке.

Магнитное поле Земли характеризуется тремя элементами земного магнетизма: маг­нитным склонением, магнитным наклонением и напряженностью.

Магнитное склонение - угол между ис­тинным направлением на север, т. е. геогра­фическим меридианом, и направлением север­ного конца магнитной стрелки. Магнитное склонение бывает восточное и западное. При отклонении северного (синего) конца магнит­ной стрелки компаса к востоку от географи­ческого меридиана склонение называется вос­точным и имеет знак «плюс» (положитель­ное), при отклонении к западу - западным и имеет знак «минус» (отрицательное). Маг­нитное склонение обязательно указывается на всех топографических картах. Например, магнитное склонение Москвы около +8° . Чтобы узнать направление геогра­фического меридиана, надо от направления се­верного конца магнитной стрелки компаса от­считать к западу (против часовой стрелки) 8°. При этом синий конец стрелки компаса ука­жет направление на север. Линии одинаково­го магнитного склонения называются изого­нами. Их значение изменяется от 0° до ±180°. Нулевую изогону называют агонической ли­нией. Она разделяет области восточного и за­падного склонения, проходя через оба геогра­фических и оба магнитных полюса. На ней стрелки компаса показывают на географиче­ские полюса, поскольку географический и маг­нитный меридианы совпадают.

Магнитное наклонение - угол между го­ризонтальной плоскостью и магнитной стрел­кой, свободно подвешенной на горизонтальной оси. Оно бывает положительное в северном геомагнитном полушарии и отрицательное в южном. Магнитное наклонение изменяется от 0° до ±90°. На магнитных полюсах оно рав­но + 90° и -90°, поэтому магнитная стрелка компаса занимает вертикальное положение: в северном полушарии синий конец стрелки на­правлен вниз (+90°), в южном - красный (-90°). Магнитные полюсы определяют как точки с наклонением ±90°. Линии, соединяю­щие точки с одинаковым магнитным наклоне­нием, называют изоклинами. Нулевая изокли­на - магнитный экватор - проходит при­мерно вдоль географического экватора: чуть южнее - в западном полушарии, чуть север­нее - в восточном. Он делит Землю на два геомагнитных полушария.

Сила магнитного поля характеризуется на­пряженностью. Величина ее увеличивается от магнитного экватора к полюсам. В север­ном полушарии она больше, нежели в южном, а в целом запасы энергии магнитосферы огромны. В некоторых районах Земли напряжен­ность реального магнитного поля из-за неод­нородности внутреннего строения Земли отли­чается от нормального (теоретического) поля, т. е. такого, какое было бы у Земли, если бы она была однородно намагниченным шаром. Эти отклонения называют магнитными ано­малиями. Крупные мировые аномалии наблю­даются в Восточной Сибири, в районе Зонд­ских островов и т. д.; региональными являют­ся Курская, Криворожская и др., а локальных много.

Магнитное поле Земли складывается из двух магнитных полей разного происхожде­ния - постоянного и переменного. Главная составляющая - постоянное поле (99% по величине). Его образование обусловлено ди­намическими процессами в ядре Земли. По­стоянное поле более или менее устойчиво, и ему присущи правильные колебания - суточ­ные, годовые, вековые. Переменное поле (1% по величине) вызвано внешними причинами - воздействием солнечного ветра и связанными с ним электрическими токами в магнитосфе­ре и верхних слоях атмосферы. Они вызыва­ют, как правило, непериодические резкие воз­мущения всех элементов земного магнетизма, т. е. магнитные бури, которые сопровожда­ются полярными сияниями, ухудшением радио­связи на коротких волнах, радиопомехами, ухудшением самочувствия людей и т. д. Не­смотря на некоторую беспорядочность, маг­нитные бури усиливаются весной и осенью, ослабевают летом и зимой.

Значение магнитосферы исключительно ве­лико. Она выполняет изолирующую роль для корпускулярной солнечной радиации, солнеч­ный ветер ее обтекает. Так что магнитосфеpa - главный невидимый «броневой заслон» планеты. Однако в небольшом количестве сол­нечная плазма с дневной стороны в полярных районах просачивается в магнитосферу, а за­тем в верхние слои атмосферы - так назы­ваемую ионосферу до высот 80-100 км. Для всех просочившихся заряженных частиц маг­нитосфера оказывается своеобразной ловуш­кой. Попав в нее, заряженные частицы дви­гаются по замкнутым траекториям вдоль маг­нитных силовых линий, образуя радиационные пояса: внутренний (протонный) с максималь­ной концентрацией частиц на высоте 3 - 4 тыс. км над экватором и внешний (элек­тронный) - на высоте около 22 тыс. км. Та­ким образом, магнитосфера - наш «магнит­ный зонтик». Пропуская к Земле лучистую энергию Солнца электромагнитной природы, она задерживает корпускулярную радиацию, защищая географическую оболочку и все жи­вое от гибели.

Медико-биоло­гические статистические материалы (частота сердечно-сосудистых приступов у людей, рас­пространения инфекционных заболеваний, травматизма на производстве, аварий на до­рогах и т. д.) свидетельствуют о связи пере численных явлений с изменениями магнитно­го поля Земли.

Изучая естественные магнитные поля, не следует забывать об искусственных электро­магнитных полях, создаваемых промышленны­ми установками, телецентрами, ЛЭП и т. д. Механизм действия магнитных полей на био­логические объекты - явление очень слож­ное, и расшифровка его - дело будущего. Магнитные бури действуют и на технические системы - энергетические, трубопроводы и др., в которых возникают перегрузки.

Магнитное поле Земли помогает ориенти­роваться в пространстве изыскательским пар­тиям, кораблям, подводным лодкам, самоле­там, туристам. При использовании компаса для определения сторон горизонта необходимо обязательно вводить поправку на магнитное склонение. На кораблях сейчас используются гирокомпасы, которые сразу показывают на­правление географического меридиана. По не­которым изменениям магнитного поля можно заранее предсказать приближение магнитной бури, что важно знать связистам, капитанам кораблей и другим специалистам, с которыми осуществляется локационная связь, а также медикам. Локальные магнитные аномалии ука­зывают на месторождения железорудных по­лезных ископаемых, поэтому для поисков их широко применяют магнитометрические мето­ды разведки.


Строение магнитного поля Земли меняется в зависимости от широты. Различают три широтные зоны в каждом полушарии.

1. Экваториальная зона (25° с. ш.- 25° ю. ш.), отличающаяся малым проникновением протонов высоких энергий в атмосферу Земли. Заслон им создают магнитные силовые линии, которые здесь идут практически параллельно земной поверхности и становятся непробиваемыми для частиц Космоса.

2. Зона умеренных широт (30° с. ш. и 55° ю. ш.), характеризующаяся нарастанием интенсивности потоков. В сторону полюсов проницаемость магнитного поля увеличивается.

3. Зона над полярными областями Земли. Здесь силовые линии магнитного поля более или менее перпендикулярны земной поверхности и образуют воронкообразную конфигурацию. Через них часть солнечного ветра с дневной стороны проникает в магнитосферу, а затем и в верхнюю атмосферу. Сюда же в период магнитных бурь устремляются частицы из хвостовой части магнитосферы, достигая границ верхней атмосферы в высоких широтах северного и южного полушария. Именно эти заряженные частицы вызывают здесь полярные сияния.

Магнитное поле становится главным препятствием для проникновения в географическую оболочку губительного для живого вещества корпускулярного излучения Солнца. Одновременно магнитосфера пропускает к поверхности планеты рентгеновские и ультрафиолетовые лучи, радиоволны и лучистую энергию, которая служит основным источником тепла и энергетической базой происходящих в географической оболочке процессов. Экспериментально доказаны связи между различными функциями растений и животных в зависимости от их ориентации в магнитном поле. Многоразовые опыты с культурными и дикими растениями показали, что особое расположение зародыша семян по отношению к направлению геомагнитного поля влияет в будущем на темпы роста и ориентацию корней. Это явление в органическом мире Земли получило название магнитотропизма. Разные группы растений не одинаково реагируют на изменения напряженности геомагнитного поля. Семена одних при искусственном от него экранировании образуют больше корней ростовых почек, а у других, например хвойных пород, в этом случае растягивается период покоя, уменьшается всхожесть, снижается поглощение кислорода и в среднем на 30% падает содержание сухого вещества. Накоплено много достоверных фактов о высокой чувствительности к магнитным полям насекомых, птиц, рыб, моллюсков, червей и даже водорослей.

Гравитационное поле Земли - это по­ле силы тяжести. Сила тяжести действует по­всюду на Земле и направлена по отвесу к по­верхности геоида, уменьшаясь по величине от полюсов к экватору. У Земли было бы нормальное гравита­ционное поле при условии наличия у нее фи­гуры эллипсоида вращения и равномерного распределения в нем масс. Однако Земля та­ким телом не является. Разницу между напря­женностью реального гравитационного поля и теоретического (нормального) поля называют аномалией силы тяжести. Эти аномалии бы­вают вызваны как различным вещественным составом и плотностью горных пород, так и видимыми неровностями земной поверхности. Однако далеко не всегда горы вы­зывают увеличение силы тяжести (положи­тельную аномалию), а океанические впади­ны - их недостаток (отрицательную анома­лию). Такое положение объясняется изостазией (от греч. isostasios - равный по весу) - уравновешиванием твердых и отно­сительно легких верхних горизонтов Земли на более тяжелой верхней мантии, находящейся в пластичном состоянии в слое астеносферы. По современным геофизическим представле­ниям, в недрах Земли на определенной глу­бине (глубине компенсации) происходит гори­зонтальное растекание подкоровых масс ве­щества из мест их избытка на поверхности (в виде гор и т. д.) к периферии и выравни­вание давления вышележащих слоев. Сущест­вование астеносферных течений - необходи­мое условие изостатического равновесия зем­ной коры.

При появлении или исчезновении леднико­вой нагрузки в областях древних и современ­ных ледников тоже нарушается изостатическое равновесие. При нарастании массы льда покровных ледников земная кора прогибает­ся, при стаивании льда происходит ее подня­тие. Такие вертикальные движения земной ко­ры называются гляциоизостазией (от лат. glacies - лед). Гляциоизостатические опуска­ния наиболее резко выражены под централь­ными частями современных ледниковых щи­тов - Антарктиды и Гренландии, где ложе ледников местами прогнуто ниже уровня мо­ря. Поднятия особенно интенсивны в облас­тях, недавно освободившихся от материковых льдов (например, в Скандинавии, Канаде), где их суммарные значения за послеледниковое время достигают нескольких десятков метров. Современные скорости поднятия по инстру­ментальным измерениям местами доходят до 1 м в столетие, например на шведском побе­режье Ботнического залива.

Значение силы тяжести исключительно ве­лико. Она определяет истинную фигуру Зем­ли - геоид. Подкоровые течения в астено­сфере вызывают тектонические деформации и движения литосферных плит, создавая круп­ные формы рельефа Земли. Сила тяжести обус­ловливает гравитационные рельефообразующие процессы: эрозию, оползни, осыпи, обвалы, селевые потоки, движение ледников в горах и т. д. Сила тяжести определяет макси­мальную высоту гор на Земле. Она удержи­вает атмосферу и гидросферу, ей подчиняется перемещение воздуха и водных масс. Сила тя­жести помогает людям и многим животным удерживать вертикальное положение. Геотро­пизм - ростовые движения органов расте­ний под влиянием силы земного тяготения - обусловливает вертикальное направление стеблей и первичного корня. Недаром грави­тационная биология, возникшая в эпоху, ког­да человек начал обживать мир без тяжес­ти - Космос, включает растения в число сво­их экспериментальных объектов. Силу тяжести необходимо учитывать при рассмотрении бук­вально всех процессов в географической обо­лочке. Без учета силы тяжести нельзя рассчи­тать исходные данные для запусков ракет и космических кораблей, невозможна гравимет­рическая разведка рудных полезных ископае­мых и нефтегазоносных структур.

Вокруг Земли существуют различные геофизические поля: магнитное, гравитационное, электрическое, геотермическое и др., влияющие на процессы в географической оболочке.

4.1. Магнитное поле Земли

Земля – большой магнит, вокруг которого существует магнитное поле. Область околоземного пространства, физические свойства которого определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космического происхождения, называют магнитосферой (рис. 19). Она асимметрична по форме. Ее внешняя граница – магнитопауза (шириной около 200 км) с дневной стороны располагается на высоте 10–14 земных радиусов (магнитосфера сжата под ударами солнечного ветра), а с ночной простирается до высоты 900–1000 земных радиусов (магнитосфера вытянута, образуя «хвост»). С удалением от поверхности Земли неоднородность магнитосферы сглаживается, напряженность ее ослабевает, а за пределами магнитопаузы магнитное поле Земли теряет способность захватывать заряженные частицы. Благодаря существованию магнитосферы магнитная стрелка компаса устанавливается в направлении магнитных силовых линий. Большой круг, в плоскости которого находится магнитная стрелка компаса, называется магнитным меридианом данной точки. Магнитные меридианы не образуют на земной поверхности правильной сетки и сходятся в двух точках, называемых магнитными полюсами. Они не совпадают с географическими полюсами и медленно изменяют свое местоположение, «дрейфуя» со скоростью 7 – 8 км/год. Поэтому на географических картах их изображают не точками, а кружками. Магнитный полюс северного полушария в 1985 г. находился в Северном Ледовитом океане, среди островов Канадского Арктического архипелага (77°36" с. ш. и 102°48" з. д.); магнитный полюс южного полушария – в Индийском океане, близ побережья Антарктиды, у Земли Виктории (65°06" ю. ш. и 139°00" в. д.). Магнитные полюса не являются антиподальными точками. Первый из них смещается в направлении Северного полюса, второй – в сторону Австралии. Ожидается, что приблизительно в 2185 г. магнитный и географический полюса в северном полушарии окажутся в одной точке.

Рис. 19. Головная часть магнитосферы Земли (по М. М. Ермолаеву)

Магнитное поле Земли характеризуется тремя элементами земного магнетизма: магнитным склонением, магнитным наклонением и напряженностью.

Магнитное склонение – угол между истинным направлением на север, т. е. географическим меридианом, и направлением северного конца магнитной стрелки. Магнитное склонение бывает восточное и западное. При отклонении северного (синего) конца магнитной стрелки компаса к востоку от географического меридиана склонение называется восточным и имеет знак «плюс» (положительное), при отклонении к западу – западным и имеет знак «минус» (отрицательное). Магнитное склонение обязательно указывается на всех топографических картах. Например, магнитное склонение Москвы около +8° (рис. 20). Чтобы узнать направление географического меридиана, надо от направления северного конца магнитной стрелки компаса отсчитать к западу (против часовой стрелки) 8°. При этом синий конец стрелки компаса укажет направление на север. Линии одинакового магнитного склонения называются изогонами. Их значение изменяется от 0° до ±180°. Нулевую изогону называют агонической линией. Она разделяет области восточного и западного склонения, проходя через оба географических и оба магнитных полюса. На ней стрелки компаса показывают на географические полюса, поскольку географический и магнитный меридианы совпадают.

Магнитное наклонение – угол между горизонтальной плоскостью и магнитной стрелкой, свободно подвешенной на горизонтальной оси. Оно бывает положительное в северном геомагнитном полушарии и отрицательное в южном. Магнитное наклонение изменяется от 0° до +90°. На магнитных полюсах оно равно + 90° и –90°, поэтому магнитная стрелка компаса занимает вертикальное положение: в северном полушарии синий конец стрелки направлен вниз (+90°), в южном – красный (–90°). Магнитные полюсы определяют как точки с наклонением ±90°. Линии, соединяющие точки с одинаковым магнитным наклонением, называют изоклинами. Нулевая изоклина – магнитный экватор – проходит примерно вдоль географического экватора: чуть южнее – в западном полушарии, чуть севернее – в восточном. Он делит Землю на два геомагнитных полушария.

Сила магнитного поля характеризуется напряженностью. Величина ее увеличивается от магнитного экватора к полюсам. В северном полушарии она больше, нежели в южном, а в целом запасы энергии магнитосферы огромны. В некоторых районах Земли напряженность реального магнитного поля из-за неоднородности внутреннего строения Земли отличается от нормального (теоретического) поля, т. е. такого, какое было бы у Земли, если бы она была однородно намагниченным шаром. Эти отклонения называют магнитными аномалиями. Крупные мировые аномалии наблюдаются в Восточной Сибири, в районе Зондских островов и т. д.; региональными являются Курская, Криворожская и др., а локальных много.

Рис. 20. Магнитное склонение

Магнитное поле Земли складывается из двух магнитных полей разного происхождения – постоянного и переменного. Главная составляющая – постоянное поле (99% по величине). Его образование обусловлено динамическими процессами в ядре Земли. Постоянное поле более или менее устойчиво, и ему присущи правильные колебания – суточные, годовые, вековые. Переменное поле (1% по величине) вызвано внешними причинами – воздействием солнечного ветра и связанными с ним электрическими токами в магнитосфере и верхних слоях атмосферы. Они вызывают, как правило, непериодические резкие возмущения всех элементов земного магнетизма, т. е. магнитные бури, которые сопровождаются полярными сияниями, ухудшением радиосвязи на коротких волнах, радиопомехами, ухудшением самочувствия людей и т. д. Несмотря на некоторую беспорядочность, магнитные бури усиливаются весной и осенью, ослабевают летом и зимой.

Значение магнитосферы исключительно велико. Она выполняет изолирующую роль для корпускулярной солнечной радиации, солнечный ветер ее обтекает. Так что магнитосфеpa – главный невидимый «броневой заслон» планеты. Однако в небольшом количестве солнечная плазма с дневной стороны в полярных районах просачивается в магнитосферу, а затем в верхние слои атмосферы – так называемую ионосферу до высот 80–100 км. Для всех просочившихся заряженных частиц магнитосфера оказывается своеобразной ловушкой. Попав в нее, заряженные частицы двигаются по замкнутым траекториям вдоль магнитных силовых линий, образуя радиационные пояса", внутренний (протонный) с максимальной концентрацией частиц на высоте 3 – 4 тыс. км над экватором и внешний (электронный) – на высоте около 22 тыс. км. Таким образом, магнитосфера – наш «магнитный зонтик». Пропуская к Земле лучистую энергию Солнца электромагнитной природы, она задерживает корпускулярную радиацию, защищая географическую оболочку и все живое от гибели.

Экспериментально доказана зависимость функций растений (расположение семян, корней, темпа их роста и урожайность) и животных (перелеты птиц, миграции рыб, насекомых) от ориентации их в магнитном поле. Это явление в органическом мире получило название магнитотропизма. Медико-биологические статистические материалы (частота сердечно-сосудистых приступов у людей, распространения инфекционных заболеваний, травматизма на производстве, аварий на дорогах и т. д.) свидетельствуют о связи перечисленных явлении с изменениями магнитного поля Земли.

Изучая естественные магнитные поля, не следует забывать об искусственных электромагнитных полях, создаваемых промышленными установками, телецентрами, ЛЭП и т. д. Механизм действия магнитных полей на биологические объекты – явление очень сложное, и расшифровка его – дело будущего. Магнитные бури действуют и на технические системы – энергетические, трубопроводы и др., в которых возникают перегрузки.

Магнитное поле Земли помогает ориентироваться в пространстве изыскательским партиям, кораблям, подводным лодкам, самолетам, туристам. При использовании компаса для определения сторон горизонта необходимо обязательно вводить поправку на магнитное склонение. На кораблях сейчас используются гирокомпасы, которые сразу показывают направление географического меридиана. По некоторым изменениям магнитного поля можно заранее предсказать приближение магнитной бури, что важно знать связистам, капитанам кораблей и другим специалистам, с которыми осуществляется локационная связь, а также медикам. Локальные магнитные аномалии указывают на месторождения железорудных полезных ископаемых, поэтому для поисков их широко применяют магнитометрические методы разведки.

Таково в общих чертах влияние геомагнитного поля на природные процессы Земли.