» » Какой хим элемент клетки не является макроэлементом. Химический состав клетки - какой он? К углеводам моносахаридам относятся

Какой хим элемент клетки не является макроэлементом. Химический состав клетки - какой он? К углеводам моносахаридам относятся

Химический состав клетки тесно связан с особенностями строения и функционирования этой элементарной и функциональной единицы живого. Как и в морфологическом отношении, наиболее общим и универсальным для клеток представителей всех царств является химический состав протопласта. Последний содержит около 80% воды, 10% органических веществ и 1% солей. Ведущую роль в образовании протопласта среди них имеют, прежде всего, белки , нуклеиновые кислоты , липиды и углеводы .

По составу химических элементов протопласт чрезвычайно сложен. В нем содержатся вещества как с небольшим молекулярным весом так, так и вещества с крупной молекулой. 80% веса протопласта составляют высоко молекулярные вещества и лишь 30% приходится на низкомолекулярные соединения. В то же время на каждую макромолекулу приходятся сотни, а на каждую крупную макромолекулы тысячи и десятки тысяч молекул.

В состав любой клетки входят более 60 элементов периодической таблицы Менделеева .

По частоте встречаемости элементы можно поделить на три группы:

Неорганические вещества имеют малый молекулярный вес, встречаются и синтезируются как в живой клетке, так и в неживой природе. В клетке эти вещества представлены главным образом водой и растворенной в ней солями.

Вода составляет около 70% клетки. Благодаря своему особому свойству поляризации молекул вода играет огромную роль в жизни клетки.

Молекула воды состоит из двух атомов водорода и одного атома кислорода.

Электрохимическая структура молекулы такова, что на кислороде имеется небольшой избыток отрицательного заряда, а на атомах водорода - положительного, то есть молекула воды имеет две части, которые притягивают другие молекулы воды разноименно заряженными частями. Это приводит к увеличению связи между молекулами, что в свою очередь определяет жидкое агрегатное состояние при температурах от 0 до 1000С, несмотря на относительно малый молекулярный вес. Вместе с тем, поляризованные молекулы воды обеспечивают лучшую растворимость солей.

Роль воды в клетке:

· Вода является средой клетки, в ней протекают все биохимические реакции.

· Вода осуществляет транспортную функцию.

· Вода является растворителем неорганических и некоторых органических веществ.

· Вода сама участвует в некоторых реакциях (например, фотолиз воды).

Соли находятся в клетке, как правило, в растворенном виде, то есть в виде анионов (отрицательно заряженных ионов) и катионов (положительно заряженных ионов).

Важнейшими анионами клетки являются гидроскид (ОН -), карбонат (СО 3 2-), гидрокарбонат (СО 3 -), фосфат (РО 4 3-), гидрофосфат (НРO 4 -), дигидрофосфат (Н 2 РO 4 -). Роль анионов огромна. Фосфат обеспечивает образование макроэргических связей (химических связей с большой энергией). Карбонаты обеспечивают буферные свойства цитоплазмы. Буферность - это способность поддерживать постоянной кислотность раствора.

К важнейшим катионам относятся протон (Н +), калий (К +), натрий (Nа +). Протон участвует во многих биохимических реакциях, а так же своей концентрацией определяет такую важную характеристику цитоплазмы как ее кислотность. Ионы калия и натрия обеспечивают такое важное свойство клеточной мембраны как проводимость электрического импульса.

Клетка является той элементарной структурой, в которой осуществляются все основные этапы биологического обмена веществ и содержатся все основные химические компоненты живой материи. 80% веса протопласта составляют высокомолекулярные вещества - белки, углеводы, липиды , нуклеиновые кислоты, АТФ. Органические вещества клетки представлены различными биохимическими полимерами, то есть такими молекулами, которые состоят из многочисленных повторений более простых, сходных по структуре участков (мономеров).

2. Органические вещества, их строение и роль в жизнедеятельности клетки.

В клетках разных организмов обнаружено около 70 элементов периодической системы элементов Д. И. Менделеева, но лишь 24 из них имеют вполне установленное значение и встречаются постоянно во всех типах клеток.

Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные или биогенные элементы . На долю этих элементов приходится более 95 % массы клеток, причем их относительное содержание в живом веществе гораздо выше, чем в земной коре. Жизненно важными являются также кальций, фосфор, сера, калий, хлор, натрий, магний, йод и железо. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов .

Другие химические элементы: медь, марганец, молибден, кобальт, цинк, бор, фтор, хром, селен, алюминий, йод, железо, кремний - содержатся в исключительно малых количествах (менее 0,01 % массы клеток). Они относятся к группе микроэлементов .

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень его важности и необходимости в организме. Так, например, многие микроэлементы входят в состав различных биологически активных веществ - ферментов, витаминов (кобальт входит в состав витамина B 12), гормонов (йод входит в состав тироксина);оказывают влияние на рост и развитие организмов (цинк, марганец, медь), кроветворение (железо, медь), процессы клеточного дыхания (медь, цинк) и т. д. Содержание и значение для жизнедеятельности клеток и организма в целом различных химических элементов приведено в таблице:

Важнейшие химические элементы клетки
Элемент Символ Примерное содержание, % Значение для клетки и организма
Кислород O 62 Входит в состав воды и органических веществ; участвует в клеточном дыхании
Углерод C 20 Входит в состав всех органических веществ
Водород H 10 Входит в состав воды и органических веществ; участвует в процессах преобразования энергии
Азот N 3 Входит в состав аминокислот, белков, нуклеиновых кислот, АТФ, хлорофилла, витаминов
Кальций Ca 2,5 Входит в состав клеточной стенки у растений, костей и зубов, повышает свертывание крови и сократимость мышечных волокон
Фосфор P 1,0 Входит в состав костной ткани и зубной эмали, нуклеиновых кислот, АТФ, некоторых ферментов
Сера S 0,25 Входит в состав аминокислот (цистеин, цистин и метионин), некоторых витаминов, участвует в образовании дисульфидных связей при образовании третичной структуры белков
Калий K 0,25 Содержится в клетке только в виде ионов, активирует ферменты белкового синтеза, обуславливает нормальный ритм сердечной деятельности, участвует в процессах фотосинтеза, генерации биоэлектрических потенциалов
Хлор Cl 0,2 Преобладает отрицательный ион в организме животных. Компонент соляной кислоты в желудочном соке
Натрий Na 0,10 Содержится в клетке только в виде ионов, обуславливает нормальный рит сердечной деятельности, влияет на синтез гормонов
Магний Mg 0,07 Входит в состав молекул хлорофилла, а также костей и зубов, активирует энергетический обмен и синтез ДНК
Йод I 0,01 Входит в состав гормонов щитовидной железы
Железо Fe 0,01 Входит в состав многих ферментов, гемоглобина и миоглобина, участвует в биосинтезе хлорофилла, в транспорте электронов, в процессах дыхания и фотосинтеза
Медь Cu Следы Входит в состав гемоцианинов у беспозвоночных, в состав некоторых ферментов, участвует в процессах кроветворения, фотосинтеза, синтеза гемоглобина
Марганец Mn Следы Входит в состав или повышает активность некоторых ферментов, участвует в развитии костей, ассимиляции азота и процессе фотосинтеза
Молибден Mo Следы Входит в состав некоторых ферментов (нитратредуктаза), участвует в процессах связывания атмосферного азота клубеньковыми бактериями
Кобальт Co Следы Входит в состав витамина B 12 , участвует в фиксации атмосферного азота клубеньковыми бактериями
Бор B Следы Влияет на ростовые процессы растений, активирует восстановительные ферменты дыхания
Цинк Zn Следы Входит в состав некоторых ферментов, расщепляющих полипептиды, участвует в синтезе растительных гормонов (ауксинов) и гликолизе
Фтор F Следы Входит в состав эмали зубов и костей

Сегодня обнаружено и выделено в чистом виде много химических элементов таблицы Менделеева, а пятая их часть встречается в каждом живом организме. Они, подобно кирпичикам, являются главными составляющими органических и неорганических веществ.

Какие химические элементы входят в состав клетки, по биологии каких веществ можно судить об их наличии в организме - все это мы рассмотрим далее в статье.

Что такое постоянство химического состава

Для соблюдения стабильности в организме каждая клетка должна поддерживать концентрацию каждой своей составляющей на постоянном уровне. Этот уровень определяется видовой принадлежностью, средой обитания, экологическими факторами.

Чтобы ответить на вопрос, какие химические элементы входят в состав клетки, необходимо четко понимать, что в составе любого вещества находятся какие-либо из составляющих таблицы Менделеева.

Порой идет речь о сотых и тысячных долях процента содержания определенного элемента в клетке, но при этом изменение названного числа хотя бы на тысячную часть уже может нести серьезные последствия для организма.

Из 118 химических элементов в клетке человека должно быть как минимум 24. Нет таких составляющих, которые встречались бы в живом организме, но не входили в состав неживых объектов природы. Этот факт подтверждает тесную связь между живым и неживым в экосистеме.

Роль различных элементов, входящих в состав клетки

Так какие химические элементы входят в состав клетки? Их роль в жизнедеятельности организма, следует заметить, напрямую зависит от частоты встречаемости и концентрации их в цитоплазме. Однако, несмотря на разное содержание элементов в клетке, значимость каждого из них в равной степени высока. Дефицит любого из них может привести к пагубному воздействию на организм, отключив из метаболизма важнейшие биохимические реакции.

Перечисляя, какие химические элементы входят в состав клетки человека, нужно упомянуть три основных вида, которые мы рассмотрим далее:

Основные биогенные элементы клетки

Неудивительно, что элементы О, С, Н, N относятся к биогенным, ведь именно они образуют все органические и многие неорганические вещества. Невозможно представить белки, жиры, углеводы или нукленовые кислоты без этих важнейших для организма составляющих.

Функция этих элементов определила их высокое содержание в организме. На их долю в совокупности приходится 98% от всей сухой массы тела. В чем еще может проявляться активность этих ферментов?

  1. Кислород. Его содержание в клетке около 62% от общей сухой массы. Функции: построение органических и неорганических веществ, участие в цепи дыхания;
  2. Углерод. Его содержание достигает 20%. Основная функция: входит в состав всех ;
  3. Водород. Его концентрация принимает значение в 10%. Кроме того, что этот элемент является составляющей органических веществ и воды, он также учавствует в преобразованиях энергии;
  4. Азот. Количество не превышает 3-5%. Его основная роль - это образование аминокислот, нуклеиновых кислот, АТФ, многих витаминов, гемоглобина, гемоцианина, хлорофилла.

Вот какие химические элементы входят в состав клетки и образуют большинство необходимых для нормальной жизнедеятельности веществ.

Значение макроэлементов

Макроэлементы также помогут подсказать, какие химические элементы входят в состав клетки. Из курса биологии становится понятно, что, кроме основных, 2% сухой массы составляют другие составляющие периодической таблицы. И к макроэлементам относятся те из них, содержание которых не ниже 0,01%. Их основные функции представлены в виде таблицы.

Кальций (Са)

Отвечает за сокращение мышечных волокон, входит в состав пектина, костей и зубов. Усиливает свертываемость крови.

Фосфор (Р)

Входит в состав важнейшего источника энергии - АТФ.

Участвует в образовании дисульфидных мостиков при сворачивании белка в третичную структуру. Входит в состав цистеина и метионина, некоторых витаминов.

Ионы калия участвуют в клетки, а также влияют на потенциал мембраны.

Главный анион организма

Натрий (Na)

Аналог калия, участвующий в тех же процессах.

Магний (Mg)

Ионы магния - это регуляторы процесса В центре молекулы хлорофилла также распологается атом магния.

Участвует в транспорте электронов по ЭТЦ дыхания и фотосинтеза, является структурным звеном миоглобина, гемоглобина и многих ферментов.

Надеемся, из перечисленного несложно определить, какие химические элементы входят в состав клетки и относятся к макроэлементам.

Микроэлементы

Есть и такие составляющие клетки, без которых организм не может нормально функционировать, однако их содержание всегда меньше 0,01%. Давайте определим, какие химические элементы входят в состав клетки и относятся к группе микроэлементов.

Входит в состав ферментов ДНК- и РНК-полимераз, а также многих гормонов (например, инсулин).

Участвует в процессах фотосинтеза, синтеза гемоцианина и некоторых ферментов.

Является структурной составляющей гормонов Т3 и Т4 щитовидной железы

Марганец (Mn)

менее 0,001

Входит в состав ферментов, костей. Участвует в азотфиксации у бактерий

менее 0,001

Влияет на процесс роста растений.

Входит в состав костей и эмали зубов.

Органические и неорганические вещества

Кроме перечисленных, еще какие химические элементы входят в состав клетки? Ответы можно найти, просто изучив строение большинства веществ организма. Среди них выделяют молекулы органического и неорганического происхождения, и каждая из этих групп имеет в составе фиксированный набор элементов.

Основные классы органических веществ - это белки, нуклеиновые кислоты, жиры и углеводы. Они построены полностью из основных биогенных элементов: скелет молекулы всегда образован углеродом, а водород, кислород и азот входят в состав радикалов. У животных доминирующим классом являются белки, а у растений - полисахариды.

Неорганические вещества - это все минеральные соли и, конечно же, вода. Среди всей неорганики в клетке больше всего Н 2 О, в которой растворены остальные вещества.

Все сказанное выше поможет вам определить, какие химические элементы входят в состав клетки, и их функции в организме больше не будут для вас загадкой.

Сегодня мы рассмотрим клетку и содержащиеся в ней микроэлементы. Процентное содержание в клетке также будет нами подробно описано. Для начала поговорим о самом понятии «клетка».

Все, что нас окружает и сами мы - это своеобразный конструктор. Все состоит из мельчайших частиц, которые невозможно увидеть без специального оборудования под названием Микроскоп. Клетка - это полость, внутри которой водный раствор химических веществ, окружена она мембраной. Перед тем, как нами будут рассмотрены микроэлементы (процентное содержание в клетке и другие вопросы), необходимо понимать: клетка способна выжить самостоятельно и обладает рядом особенностей:

  • обмен веществ;
  • самовоспроизводство и так далее.

Последнее, что стоит упомянуть: цитология занимается изучением элементарных структурных элементов, то есть клеток.

Атомный состав

В периодической системе Дмитрия Ивановича Менделеева существует более ста элементом, а в человеческой клетке содержится более половины из них. Кроме этого, порядка 20 из этих элементов являются необходимыми для жизнедеятельности организма, их можно обнаружить практически во всех ее типах. Наш основной вопрос - это микроэлементы, процентное содержание в клетке. Но, необходимо знать и то, что элементы по их процентному содержанию в клетке могут делиться на классы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

Если взять все микроэлементы, то их процентное содержание в общей сумме не превышает трех процентов. К данным элементам можно отнести следующие:

  • магний;
  • хлор;
  • натрий;
  • калий;
  • кальций;
  • железо;
  • сера;
  • фосфор.

Как видите, их всего восемь, по сравнению с макроэлементами, которых насчитывается всего 4, а их общее процентное содержание превышает показатель 90. К группе ультрамикроэлементов относится множество элементов, а их общее процентное содержание не превышает 0,1.

Микроэлементы

Сейчас рассмотрим микроэлементы.

Процентное содержание в клетке микроэлементов следующее:

Как видите, эти цифры очень малы. В таблице мы рассмотрели процентное содержание в клетке микроэлементов, но какова их функция. Некоторые из элементов мы выделили отдельно, а сейчас кратко об остальных. И так, натрий выполняет несколько функций, среди которых:

  • обеспечение нормального ритма сердечных сокращений;
  • создание мембранного потенциала клетки;
  • с помощью данного элемента происходит проведение нервных импульсов;
  • поддержание водно-солевого баланса.

Процентное содержание в клетке микроэлементов (калий, сера и хлор) составляет менее 1 процента. Тем не менее, данные элементы выполняют множество необходимых функций:

  • калий - это основной катион, он, так же как и натрий, обеспечивает нормальную сердечную работу, оказывает помощь при синтезе белка;
  • сера - это составляющий элемент аминокислот, витамина В 1 и других ферментов;
  • хлор - это внеклеточный анион, входит в состав кислоты желудочного сока.

Магний

Мы рассмотрели все микроэлементы. Процентное содержание в клетке так же представлено в таблице выше. Но зачем нужен магний, и какие функции он выполняет? С этим мы сейчас и разберемся.

Мы его можем найти практически во всех клетках человека. Почему? Именно магний принимает участие в большинстве биохимических реакций, которых более 300. Первое основное предназначение - это участие в создании энергии, то есть АТФ. Это очень важно, так как АТФ выполняет роль энергетической станции как для клеток, так и для организма в общем.

Вторая функция - это помощь в усвоении некоторых веществ и синтезе белка. Третья функция - это регуляция в организме следующих элементов:

  • натрия;
  • кальция.

Это нужно для правильной работы сердца и нервной системы, предотвращения ишемической болезни сердца.

Кальций

Мы рассмотрели процентное содержание микроэлементов, из таблицы видно, что кальций составляет всего 0,02% всех элементов. Тем не менее, его значение также велико. И так:

  • кальций входит в состав стенок клетки;
  • входит в состав костной ткани и зубной эмали;
  • кальций способен активировать свертывание крови;
  • входит в состав раковин множества беспозвоночных;
  • служит посредником внутри клеток и регулирует различные процессы;
  • координирует сердцебиение;
  • регулирует кровяное давление;
  • участвует в работе нервной системы;
  • сохраняет кислотно-щелочное равновесие в нашем организме;
  • препятствует попаданию вирусов в клетки и так далее.

Железо

Этот элемент просто необходим для нормального процесса жизнедеятельности организма. Именно он помогает в транспортировке кислорода ко всем органам и тканям. Также этот элемент входит в состав ферментов, гемоглобина, миоглобина. Железо участвует в процессе дыхания и фотосинтеза у растений.

Фосфор

Элемент необходим для организма по многим причинам. Основные из них:

  • формирование зубов;
  • формирование костей;
  • входит в состав множества ферментов;
  • участвует в регенерации клеток и тканей;
  • производство АТФ-молекул, необходимых хранилищ энергии для организма;
  • помощь в функционировании почек;
  • регуляция мышечных сокращений.

Клетки растений и животных содержат неорганические и органические вещества. К неорганическим относят воду и минеральные вещества. К органическим веществам относят белки, жиры, углеводы, нуклеиновые кислоты.

Неорганические вещества

Вода - это соединение, которое живая клетка содержит в наибольшем количестве. Вода составляет около 70% массы клетки. Большинство внутриклеточных реакций протекает в водной среде. Вода в клетке находится в свободном и связанном состоянии.

Значение воды для жизнедеятельности клетки определено ее строением и свойствами. Содержание воды в клетках может быть различным. 95% воды находится в клетке в свободном состоянии. Она необходима как растворитель для органических и неорганических веществ. Все биохимические реакции в клетке идут при участии воды. Вода используется для выведения различных веществ из клетки. Вода обладает высокой теплопроводностью и предотвращает резкие колебания температуры. 5% воды находится в связанном состоянии, образуя непрочные соединения с белками.

Минеральные вещества в клетке могут быть в диссоциированном состоянии или в соединении с органическими веществами.

Химические элементы, которые участвуют в процессах обмена веществ и обладают биологической активностью, называют биогенными.

Цитоплазма содержит около 70% кислорода, 18% углерода, 10% водорода, кальций, азот, калий, фосфор, магний, серу, хлор, натрий, алюминий, железо. Эти элементы составляют 99,99% от состава клетки и их называют макроэлементами. Например, кальций и фосфор входят в состав костей. Железо - составная часть гемоглобина.

Марганец, бор, медь, цинк, йод, кобальт - микроэлементы. Они составляют тысячные доли процента от массы клетки. Микроэлементы нужны для образования гормонов, ферментов, витаминов. Они влияют на обменные процессы в организме. Например, йод входит в состав гормона щитовидной железы, кобальт - в состав витамина В 12 .

Золото, ртуть, радий и др. - ультрамикроэлементы - составляют миллионные доли процента от состава клетки.

Недостаток или избыток минеральных солей нарушает жизнедеятельность организма.

Органические вещества

Кислород, водород, углерод, азот входят в состав органических веществ. Органические соединения представляют собой круп- ные молекулы, называемые полимерами. Полимеры состоят из многих повторяющихся единиц (мономеров). К органическим полимерным соединениям относят углеводы, жиры, белки, нуклеиновые кислоты, АТФ.

Углеводы

Углеводы состоят из углерода, водорода, кислорода.

Мономерами углеводов являются моносахариды. Углеводы раз- деляют на моносахариды, дисахариды и полисахариды.

Моносахариды - простые сахара с формулой (СН 2 О) n , где n - любое целое число от трех до семи. В зависимости от числа угле- родных атомов в молекуле различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С).

Триозы С 3 Н 6 О 3 - например глицеральдегид и дигидроксиацетон - играют роль промежуточных продуктов в процессе дыхания, уча- ствуют в фотосинтезе. Тетрозы С 4 Н 8 О 4 встречаются у бактерий. Пентозы С 5 Н 10 О 5 - например рибоза - входит в состав РНК, дезоксирибоза входит в состав ДНК. Гексозы - С 6 Н 12 О 6 - например глюкоза, фруктоза, галактоза. Глюкоза - источник энергии для клетки. Вместе с фруктозой и галактозой глюкоза может участвовать в образовании дисахаридов.

Дисахариды образуются в результате реакции конденсации между двумя моносахаридами (гексозами) с потерей молекулы воды.

Формула дисахаридов С 12 Н 22 О 11 Среди дисахаридов наиболее широко распространены мальтоза, лактоза и сахароза.

Сахароза, или тростниковый сахар, синтезируется у растений. Мальтоза образуется из крахмала в процессе его переваривания в организме животных. Лактоза, или молочный сахар содержится только в молоке.

Полисахариды (простые) образуются в результате реакции конденсации большого числа моносахаридов. К простым полисахаридам относят крахмал (синтезируется у растений), гликоген (содержится в клетках печени и мышцах животных и человека), целлюлозу (образует клеточную стенку у растений).

Сложные полисахариды образуются в результате взаимодействия углеводов с липидами. Например, гликолипиды входят в состав мембран. К сложным полисахаридам относят также соединения углеводов с белками (гликопротеиды). Например, гликопротеиды входят в состав слизи, выделяемой железами желудоч- но-кишечного тракта.

Функции углеводов:

1. Энергетическая: 60% энергии организм получает при распаде углеводов. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.

2. Структурная и опорная: углеводы входят в состав плазматической мембраны, оболочки растительных и бактериальных клеток.

3. Запасающая: питательные вещества (гликоген, крахмал) откладываются в запас в клетках.

4. Защитная: секреты (слизь), выделяемые различными железами, предохраняют стенки полых органов, бронхов, желудка, кишечника от механических повреждений, вредных бактерий и вирусов.

5. Участвуют в фотосинтезе.

Жиры и жироподобные вещества

Жиры состоят из углерода, водорода, кислорода. Мономерами жиров являются жирные кислоты и глицерин. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением. Растительные жиры жидкие (масла), животные - твердые (например сало). Жиры нерастворимы в воде - это гидрофобные соединения. Жиры, соединяясь с белками, образуют липопротеиды, соединяясь с углеводами - гликолипиды. Гликолипиды и липопротеиды - это жироподобные вещества.

Жироподобные вещества входят в состав мембран клеток, мембранных органелл, нервной ткани. Жиры могут соединяться с глюко- зой и образовывать гликозиды. Например, гликозид дигитоксина - вещество, используемое при лечении болезней сердца.

Функции жиров:

1. Энергетическая: при полном распаде 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии.

2. Структурная: входят в состав клеточной мембраны.

3. Защитная: слой жира защищает организм от переохлаждения, механических ударов и сотрясений.

4. Регуляторная: стероидные гормоны регулируют процессы обмена веществ и размножение.

5. Жир - источник эндогенной воды. При окислении 100 г жира выделяется 107 мл воды.

Белки

В состав белков входят углерод, кислород, водород, азот. Мономерами белка являются аминокислоты. Белки построены из двадцати различных аминокислот. Формула аминокислоты:

В состав аминокислот входят: NH 2 - аминогруппа, обладающая основными свойствами; СООН - карбоксильная группа, имеет кислотные свойства. Аминокислоты отличаются друг от друга своими радикалами - R. Аминокислоты - амфотерные соединения. Они соединяются друг с другом в молекуле белка с помощью пептидных связей.

Схема конденсации аминокислот (образование пептидной связи)

Есть первичная, вторичная, третичная и четвертичная структуры белка. Порядок, количество и качество аминокислот, входящих в состав молекулы белка, определяют его первичную структуру. Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру. Полипептидные цепи скручиваются определенным образом в компактную структуру, образуя глобулу (шар) - это тре- тичная структура белка. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы. Белки, имеющие глобулярную структуру, объединяются вместе и образуют четвертичную структуру. Замена одной аминокислоты приводит к изменению свойств белка (рис. 30).

При воздействии высокой температуры, кислот и других факторов может происходить разрушение белковой молекулы. Это явление называется денатурацией (рис. 31). Иногда денатуриро-

Рис. 30. Различные структуры молекул белка.

1 - первичная; 2 - вторичная; 3 - третичная; 4 - четвертичная (на примере гемоглобина крови).

Рис. 31. Денатурация белка.

1 - молекула белка до денатурации;

2 - денатурированный белок;

3 - восстановление исходной молекулы белка.

ванный белок при изменении условий вновь может восстановить свою структуру. Этот процесс называется ренатурацией и возможен лишь тогда, когда не разрушена первичная структура белка.

Белки бывают простые и сложные. Простые белки состоят только из аминокислот: например, альбумины, глобулины, фибриноген, миозин.

Сложные белки состоят из аминокислот и других органических соединений: например, липопротеины, гликопротеины, нук- леопротеины.

Функции белков:

1. Энергетическая. При распаде 1 г белка выделяется 17,6 кДж энергии.

2. Каталитическая. Служат катализаторами биохимических реакций. Катализаторы - ферменты. Ферменты ускоряют биохимические реакции, но не входят в состав конечных продуктов. Ферменты строго специфичны. Каждому субстрату соответствует свой фермент. Название фермента включает название субстрата и окончание «аза»: мальтаза, рибонуклеаза. Ферменты активны при определенной температуре (35 - 45 О С).

3. Структурная. Белки входят в состав мембран.

4. Транспортная. Например, гемоглобин переносит кислород и СО 2 в крови позвоночных.

5. Защитная. Защита организма от вредных воздействий: выработка антител.

6. Сократительная. Благодаря наличию белков актина и миозина в мышечных волокнах происходит сокращение мышц.

Нуклеиновые кислоты

Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Мономе- рами нуклеиновых кислот являются нуклеотиды.

ДНК (дезоксирибонуклеиновая кислота). В состав нуклеотида ДНК входит одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц) (рис. 32), углевод дезоксирибоза и остаток фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, построенную по принципу комплементарности. В молекуле ДНК комплементарны следующие азотистые основания: А = Т; Г = Ц. Две спирали ДНК соединены водородными связями (рис. 33).

Рис. 32. Строение нуклеотида.

Рис. 33. Участок молекулы ДНК. Комплементарное соединение нуклеотидов разных цепей.

ДНК способна к самоудвоению (репликации) (рис. 34). Репликация начинается с разделения двух комплементарных цепей. Каждая цепь используется в качестве матрицы для образования новой молекулы ДНК. В процессе синтеза ДНК участвуют ферменты. Каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Новая молекула ДНК абсо- лютно идентична старой по последовательности нуклеотидов. Такой способ репликации обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле ДНК.

Рис. 34. Удвоение молекулы ДНК.

1 - матричная ДНК;

2 - образование двух новых цепей на основе матрицы;

3 - дочерние молекулы ДНК.

Функции ДНК:

1. Хранение наследственной информации.

2. Обеспечение передачи генетической информации.

3. Присутствие в хромосоме в качестве структурного компонента.

ДНК находится в ядре клетки, а также в таких органеллах клетки, как митохондрии, хлоропласты.

РНК (рибонуклеиновая кислота). Рибонуклеиновые кислоты бывают 3 видов: рибосомная, транспортная и информационная РНК. Нуклеотид РНК состоит из одного из азотистых оснований: аденина (А), гуанина (Г), цитозина (Ц), урацила (У), углевода - рибозы и остатка фосфорной кислоты.

Рибосомная РНК (рРНК) в соединении с белком входит в состав рибосом. рРНК составляет 80% от всей РНК в клетке. На рибосомах идет синтез белка.

Информационная РНК (иРНК) составляет от 1 до 10% от всей РНК в клетке. По строению иРНК комплементарна участку молекулы ДНК, несущему информацию о синтезе определенного белка. Длина иРНК зависит от длины участка ДНК, с которого считывали информацию. иРНК переносит информацию о синтезе белка из ядра в цитоплазму к рибосоме.

Транспортная РНК (тРНК) составляет около 10% всей РНК. Она имеет короткую цепь нуклеотидов в форме трилистника и находится в цитоплазме. На одном конце трилистника находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце триплет нуклеотидов, к которому при- соединяется аминокислота. Для каждой аминокислоты имеется своя тРНК. тРНК переносит аминокислоты к месту синтеза белка, т.е. к рибосомам (рис. 35).

РНК находится в ядрышке, цитоплазме, рибосомах, митохондриях и пластидах.

АТФ - Аденазинтрифосфорная кислота. Аденазинтрифосфорная кислота (АТФ) состоит из азотистого основания - аденина, сахара - рибозы, и трех остатков фосфорной кислоты (рис. 36). В молекуле АТФ накапливается большое количество энергии, необходимой для биохимических процессов, идущих в клетке. Синтез АТФ происходит в митохондриях. Молекула АТФ очень неустой-

чива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии. Связи в молекуле АТФ называют макроэргическими.

АТФ → АДФ + Ф + 40 кДж АДФ→ АМФ + Ф + 40 кДж

Рис. 35. Строение тРНК.

А, Б, В и Г - участки комплементарного соединения внутри одной цепочки РНК; Д - участок (активный центр) соединения с аминокислотой; Е - участок комплементарного соединения с молекулой.

Рис. 36. Строение АТФ и ее превращение в АДФ.

Вопросы для самоконтроля

1. Какие вещества в клетке относят к неорганическим?

2. Какие вещества в клетке относят к органическим?

3. Что является мономером углеводов?

4. Какое строение имеют углеводы?

5. Какие функции выполняют углеводы?

6. Что является мономером жиров?

7. Какое строение имеют жиры?

8. Какие функции выполняют жиры?

9. Что является мономером белка? 10.Какое строение имеют белки? 11.Какие структуры имеют белки?

12.Что происходит при денатурации белковой молекулы?

13.Какие функции выполняют белки?

14.Какие нуклеиновые кислоты известны?

15.Что является мономером нуклеиновых кислот?

16.Что входит в состав нуклеотида ДНК?

17.Какое строение имеет нуклеотид РНК?

18.Какое строение имеет молекула ДНК?

19.Какие функции выполняет молекула ДНК?

20. Какое строение имеет рРНК?

21.Какое строение имеет иРНК?

22.Какое строение имеет тРНК?

23.Какие функции выполняют рибонуклеиновые кислоты?

24.Какое строение имеет АТФ?

25.Какие функции выполняет АТФ в клетке?

Ключевые слова темы «Химический состав клеток»

азотистое основание альбумины

аминокислотная группа аминокислоты

амфотерные соединения

антикодон

бактерии

белки

биологическая активность биологический катализатор

биохимические реакции

болезнь

вещества

видовая специфичность

витамины

вода

водородные связи вторичная структура выработка антител высокая температура галактоза гексозы гемоглобин гепарин

гидрофобные соединения

гликоген

гликозиды

гликопротеиды

глицерин

глобула

глобулины

глюкоза

гормоны

гуанин

двойная спираль дезоксирибоза денатурация дисахарид

диссоциированное состояние

ДНК

единица информации живой организм животное жизнедеятельность жирные кислоты жировая ткань жироподобные вещества жиры

запас питательных веществ избыток

индивидуальная специфичность

источник энергии

капли

карбоксильная группа

качество кислота

клеточная стенка кодон

колебание температуры

количество

комплементарность

конечные продукты

кости

крахмал

лактоза

лечение

липопротеиды

макроэлементы

макроэргические связи

мальтоза

масса

мембрана клетки

микроэлементы

минеральные соли

миозин

митохондрии

молекула

молочный сахар

мономер

моносахарид

мукополисахариды

мукопротеиды

наследственная информация недостаток

неорганические вещества нервная ткань нуклеиновые кислоты нуклеопротеиды нуклеотид обмен веществ обменные процессы органические вещества пентозы

пептидные связи первичная структура перенос кислорода плоды

подкожная клетчатка

полимер полисахарид

полупроницаемая мембрана

порядок

потеря

проникновение воды

процент

радикал

разрушение

распад

растворитель

растение

расщепление

реакция конденсации

ренатурация

рибоза

рибонуклеаза

рибосома

РНК

сахар

свертывание крови

свободное состояние

связанное состояние

семена

сердце

синтез белка

слой

слюна

сократимые белки

строение

субстрат

теплопроводность

тетрозы тимин

тканевая специфичность

третичная структура

трилистник

триозы

триплет

тростниковый сахар углеводы

ультрамикроэлементы

урацил

участок

ферменты

фибриноген

формула

фосфорная кислота фотосинтез фруктоза функция

химические элементы

хлоропласты

хромосома

целлюлоза

цепь

цитозин

цитоплазма

четвертичная структура шар

щитовидная железа

элементы

ядро