» » Находим периметр треугольника различными способами. Как найти периметр треугольника если известны не все стороны Что нужно сделать чтобы найти периметр треугольника

Находим периметр треугольника различными способами. Как найти периметр треугольника если известны не все стороны Что нужно сделать чтобы найти периметр треугольника

Одной из базовых геометрических фигур является треугольник. Он образуется при пересечении трех отрезков прямых. Данные отрезки прямых формируют стороны фигуры, а точки их пересечения называются вершинами. Каждый школьник, изучающий курс геометрии, обязан уметь находить периметр этой фигуры. Полученное умение будет полезным для многих и во взрослой жизни, к примеру, пригодится студенту, инженеру, строителю,

Существуют разные способы найти периметр треугольника. Выбор необходимой для вас формулы зависит от имеющихся исходных данных. Чтобы записать данную величину в математической терминологии используют специальное обозначение – Р. Рассмотрим, что такое периметр, основные способы его расчета для треугольных фигур разных видов.

Самым простым способом найти периметр фигуры, если есть данные всех сторон. В этом случае используется следующая формула:

Буквой «P» обозначается сама величина периметра. В свою очередь «a», «b» и «c» – это длины сторон.

Зная размер трех величин, достаточно будет получить их сумму, которая и является периметром.

Альтернативный вариант

В математических задачах все данные длины редко бывают известны. В таких случаях рекомендуется воспользоваться альтернативным способом поиска нужной величины. Когда в условиях указана длина двух прямых, а также угол, находящийся между ними, расчет производится через поиск третьей. Для поиска этого числа необходимо добыть квадратный корень по формуле:

.

Периметр по двум сторонам

Для расчета периметра не обязательно знать все данные геометрической фигуры. Рассмотрим способы расчета по двум сторонам.

Равнобедренный треугольник

Равнобедренным называется такой треугольник, не меньше двух сторон которого имеют одинаковую длину. Они называются боковыми, а третья сторона – основанием. Равные прямые образовывают вершинный угол. Особенностью в равнобедренном треугольникеявляется наличие одной оси симметрии. Ось – вертикальная линия, выходящая из вершинного угла и заканчивающаяся посредине основания. По своей сути ось симметрии включает в себя такие понятия:

  • биссектриса вершинного угла;
  • медиана к основанию;
  • высота треугольника;
  • срединный перпендикуляр.

Чтобы определить периметр равнобедренного вида треугольной фигуры, воспользуйтесь формулой.

В данном случае вам необходимо знать только две величины: основание и длину одной стороны. Обозначение «2а» подразумевает умножение длины боковой стороны на 2. К полученной цифре нужно добавить величину основания – «b».

В исключительном случае, когда длина основания равнобедренного треугольника равна его боковой прямой, можно воспользоваться более простым способом. Он выражается в следующей формуле:

Для получения результата достаточно умножить это число на три. Эта формула используется для того, чтобы найти периметр правильного треугольника.

Полезное видео: задачи на периметр труегольника

Треугольник прямоугольный

Главным отличием прямоугольного треугольника от других геометрических фигур этой категории является наличие угла 90°. По этому признаку и определяется вид фигуры. Прежде, чем определить, как найти периметр прямоугольного треугольника, стоит заметить, что данная величина для любой плоской геометрической фигуры составляет сумму всех сторон. Так и в этом случае самый простой способ узнать результат – суммировать три величины.

В научной терминологии те стороны, которые прилегают к прямому углу, имеют название «катеты», а противоположная к углу 90º – гипотенуза. Особенности этой фигуры исследовались еще древнегреческим ученым Пифагором. Согласно с теоремой Пифагора, квадрат гипотенузы равен сумме квадратов катетов.

.

На основании данной теоремы выведена еще одна формула, объясняющая, как найти периметр треугольника по двум известным сторонам. Рассчитать периметр при указанной длине катетов можно, используя следующий способ.

.

Чтобы узнать периметр, имея информацию о размере одного катета и гипотенузы, нужно определить длину второй гипотенузы. С этой целью используют такие формулы:

.

Также периметр описанного вида фигуры определяется и без данных о размерах катетов.

Вам потребуется знать длину гипотенузы, а также угол, прилегающий к ней. Зная длину одного из катетов, если имеется угол, прилегающий к нему, периметр фигуры рассчитывают по формуле:

.

Расчет через высоту

Рассчитать периметр таких категорий, как равнобедренные и прямоугольные треугольники, можно через показатель их средней линии. Как известно, высота треугольника разделяет его основание пополам. Таким образом, она образует две прямоугольных фигуры. Далее, нужный показатель вычисляется при помощи теоремы Пифагора. Формула будет иметь следующий вид:

.

Если известна высота и половина основания, используя этот способ, вы получите нужное число без поиска остальных данных о фигуре.

Полезное видео: нахождение периметра треугольника

Треугольник - это одна из базовых фигур, образованная тремя пресекающимися отрезками прямых. Точки пересечения называются вершинами, а сами отрезки сторонами треугольника. Периметр треугольника - это сумма длин его сторон. Находить площадь треугольника учат еще в школе и впоследствии эти знания используются многими людьми включая студентов, математиков и инженеров. В зависимости от исходный данных площадь треугольника может быть надена различными способами. Рассмотрим их все по порядку.

1 способ Если известны длины всех сторон треугольника a, b и с, то в данном случае периметр определяется как сумма длин всех сторон:

P = a + b + c


где P - периметр треугольника;
a, b, c - длины сторон треугольника.

В частном случае для равнобедренного треугольника данная формула примет следующий вид:

P = 3a


то есть длина стороны, умноженная на три.
Если треугольник будет равнобедренный, то формула может быть записана в виде:

P = 2a + c


где a - боковая сторона, c - основание.

2 способ

Но длины всех сторон могут быть заданы не всегда. Если известны только две стороны и величина угла между ними, то периметр треугольника может быть определен через нахождение третьей стороны, лежащей напротив угла β. Эта сторона (назовем ее с) будет равна квадратному корню из выражения

a2+b2-2∙a∙b∙cosβ


В этом случае периметр треугольника может быть найден по формуле:

P = a+b+√(a2+b2-2∙a∙b∙cosα)


где a, b - длины сторон;
α - величина угла между сторонами a и b.

3 способ
Если известна сторона и два прилегающих к ней угла, то периметр треугольника определяется по теореме синусов по формуле:

P = а+sinα∙а/(sin(180°-α-β)) + sinβ∙а/(sin(180°-α-β))


где - a - длина стороны треугольника;
α, β - величина прилегающих к стороне a углов.

4 способ
Если задача предполагает нахождение периметра треугольника по радиусу вписанной в него окружности и площади треугольника, то в данном случае периметр может быть определен по формуле.

Как найти периметр треугольника? Таким вопросом задавался каждый из нас, учась в школе. Попробуем вспомнить все, что мы знаем об этой удивительной фигуре, а также ответить на заданный вопрос.

Ответ на вопрос о том, как найти периметр треугольника, обычно является довольно-таки простым - требуется всего-лишь выполнить процедуру сложения длин всех его сторон. Однако есть ещё несколько простых методов искомой величины.

Советы

В том случае, если радиус (r) окружности, которая вписана в треугольник, и его площадь (S) известны, то ответить на вопрос о том, как найти периметр треугольника, довольно просто. Для этого вам необходимо воспользоваться обычной формулой:

Если известны два угла, допустим, α и β, которые прилегают к стороне, и сама длина стороны, то периметр можно найти с помощью весьма и весьма популярной формулы, которая имеет вид:

sinβ∙а/(sin(180° - β - α)) + sinα∙а/(sin(180° - β - α)) + а

Если вы знаете длины смежных сторон и угол β, находящийся между ними, то для того, чтобы найти периметр, требуется воспользоваться Периметр вычисляется по формуле:

P = b + a + √(b2 + a2 - 2∙b∙а∙cosβ),

где b2 и а2 являются квадратами длин смежных сторон. Подкоренное выражение - это длина третьей стороны, которая неизвестна, выраженная посредством теоремы косинусов.

Если вы не знаете, как найти периметр то здесь, на самом деле, нет ничего сложного. Вычислите его по формуле:

где b - основание треугольника, а - его боковые стороны.

Для нахождения периметра правильного треугольника следует воспользоваться простейшей формулой:

где а - длина стороны.

Как найти периметр треугольника, если известны только радиусы окружностей, которые описаны около него или вписаны в него? Если треугольник является равносторонним, то тогда следует применить формулу:

P = 3R√3 = 6r√3,

где R и r являются радиусами описанной и вписанной окружности соответственно.

Если треугольник является равнобедренным, то для него применима формула:

P=2R (sinβ + 2sinα),

где α - это угол, который лежит у основания, а β - угол, который противолежит основанию.

Зачастую для решения математических задач требуется глубочайший анализ и специфическое умение находить и выводить требуемые формулы, а это, как многим известно, довольно непростая работа. Хотя некоторые задачи можно решить всего лишь с помощью одной-единственной формулы.

Давайте рассмотрим формулы, которые являются базовыми для ответа на вопрос о том, как найти периметр треугольника, по отношению к самым разнообразным типам треугольников.

Безусловно, главное правило для нахождения периметра треугольника - это данное утверждение: для нахождения периметра треугольника требуется сложить длины всех его сторон по соответствующей формуле:

где b, a и с - это длины сторон треугольника, а Р - периметр треугольника.

Есть несколько частных случаев данной формулы. Допустим, ваша задача формулируется следующим образом: «как найти периметр прямоугольного треугольника?» В таком случае вам следует воспользоваться следующей формулой:

P = b + a + √(b2 + a2)

В этой формуле b и а являются непосредственными длинами катетов прямоугольного треугольника. Несложно догадаться, что вместо стороны с (гипотенузы) используется выражение, полученное по теореме великого ученного древности - Пифагора.

Если требуется решить задачу, где треугольники являются подобными, то логично было бы воспользоваться данным утверждением: отношение периметров соответствует коэффициенту подобия. Допустим, у вас есть два подобных треугольника - ΔABC и ΔA1B1C1. Тогда для нахождения коэффициента подобия необходимо разделить периметр ΔABC на периметр ΔA1B1C1.

В заключение можно отметить, что периметр треугольника можно найти при помощи самых различных методик, в зависимости от тех исходных данных, которые у вас имеются. Необходимо добавить, что существуют некоторые частные случаи для прямоугольных треугольников.