» » По образу жизни вирусы являются. Вирусы ‒ внутриклеточные паразиты

По образу жизни вирусы являются. Вирусы ‒ внутриклеточные паразиты

Табачной мозаики:

Пропуская сок из больных листьев через фарфоровые фильтры, задерживающие все виды бактерий, Ивановский установил, что фильтрат все же содержит возбудителей заболевания, и назвал их «фильтрующимися возбудителями». Но в отличие от бактерий, возбудители табачной мозаики не способны расти на искусственных питательных средах. В своей диссертации показал, что при разбавлении в несколько раз фильтрат полностью сохраняет свои свойства, а при нагревании до 60-70ºС возбудители погибают, что свидетельствовало о живой природе возбудителя. Голландец Бейеринк предложил для загадочного агента термин «вирус» (яд), название прижилось.

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т. е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты – либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

РНК-геномными вирусами вызываются мозаичная болезнь табака, полиомиелит, грипп, корь, бешенство , свинка. Среди них есть и онкогенные вирусы, вызывающие рак у рептилий, птиц, млекопитающих и человека. Есть вирусы с двумя молекулами РНК – ВИЧ, саркома Рауса. К ДНК-геномным вирусам относятся вирусы оспы, герпеса, аденовирусы, вирус гепатита В.

Капсид – оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий и обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты . Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта форма существования называется вирионом . Следует отметить, что вирусы обладают высокой специфичностью, т. е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

В цикле репродукции вируса можно выделит следующие стадии: сначала происходит осаждение на поверхности клетки-хозяина с помощью особых белков вируса, комплементарных рецепторным участкам заражаемой клетки. Затем происходит проникновение вирусной НК в клетку-хозяина, которая может попасть в клетку-хозяина путем «инъекции », растворения оболочки клетки вирусными ферментами или с помощью эндоцитоза. Попав внутрь вирусная НК переводит белок-синтезирующий аппарат клетки под собственный контроль. На следующем этапе происходит синтез необходимых для вируса соединений – синтезируются мРНК для синтеза вирусных белков, затем происходит тиражирование вирусной нуклеиновой кислоты. Причем мелкие ДНК-геномные вирусы проникают для синтеза иРНК в ядро и используют РНК-полимеразы клетки. Крупные вирусы, как например, вирус оспы не могут проникнуть в ядро и используют собственные РНК-полимеразу, а затем происходит синтез вирусных белков с помощью белок-синтезирующего аппарата (рибосом, тРНК, ферментов, аминокислот, энергии) зараженной клетки.

РНК-геномные вирусы синтезируют белки по-разному: у одной группы транскрипция вообще отсутствует, они сами выполняют функцию иРНК и на них происходит синтез белка. Это плюс-нитевые вирусы (вирусы с позитивным геномом), синтез белка у них идет по схеме: РНК → белок. У другой группы на вирусной РНК синтезируется комплементарная ей иРНК (вирус гриппа, кори, паротита), на которой происходит синтез вирусных белков – это минус-нитевые вирусы, вирусы с негативным геномом.

У третьей группы ретровирусов синтез белка происходит наиболее сложно, на однонитчатой РНК синтезируется ДНК ферментом РНК-зависимой ДНК-полимеразой или ревертазой. Эта ДНК встраивается в ДНК клетки-хозяина и там многократно транскрибируется. Образовавшиеся иРНК с одной стороны необходимы для синтеза вирусных белков, кроме того, они сами являются РНК вириона. Синтез белка здесь идет по схеме РНК → ДНК → РНК → белок.

На последнем этапе происходит самосборка и выход из клетки дочерних вирусов, а клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

Внедрившись в ДНК клетки-хозяина, многие вирусы длительное время могут себя не проявлять, причем при делении клетки ДНК вируса тиражируется и попадает во все дочерние клетки.

Такие вирусы называются умеренными , но рано или поздно вирусы активируются и разрушают клетки. Умеренные бактериофаги используются микробиологами в качестве векторов для переноса генов человека в бактериальные клетки.

И в природе вирусы способны переносить различные гены между отдаленными группами живых организмов.

Борьба с вирусами с помощью антибиотиков неэффективна, так как они не действуют на вирусы вне и внутри клетки. Кроме того, многие вирусы, отпочковываясь от клетки, одеваются в ее мембрану – «плащ-невидимку» и иммунная система организма на них не реагирует, антитела на них не образуются (вирусы гриппа, ВИЧ). К тому же многие вирусы легко мутируют, иммунитет, выработанный на определенный вирус, не срабатывает при попадании в организм вируса-мутанта. Кроме антител, главного оружия иммунитета, организм борется с вирусами с помощью интерферонов – после попадания в клетку НК вируса, клетка выделяет особые белки-интерфероны. Молекулы интерферонов, взаимодействуя с соседними клетками вызывают у последних блокирование синтеза белков как вируса, так и самой клетки и размножение в этих клетках вируса становится невозможным.

В мембрану встроены рецепторные «грибовидные» образования, в шляпке которых находятся рецепторы на белки СD4. Под суперкапсидом располагается сердцевина вируса, имеющая форму усеченного конуса и образованная особыми белками. Внутри сердцевины располагаются две молекулы вирусной РНК. Каждая молекула РНК содержит 9 генов ВИЧ и фермент (обратная транскриптаза), осуществляющий синтез вирусной ДНК на матрице вирусной РНК.

Вирус иммунодефицита человека поражает главным образом CD4-лимфоциты (хелперы), именно на их поверхности есть CD4-белки, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки нейроглии ЦНС, кожи, кишечника, В-лимфоциты и макрофаги, которые также имеют на поверхности CD4-белки.

Хелперы начинают иммунный ответ, если численность их популяции невелика, не будет иммунного ответа, иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет.

ВИЧ передается половым путем, через инфицированные инструменты, кровь и ткани, от инфицированной матери к плоду во время беременности , при родах, при вскармливании молоком.

Вирусы способны поражать большинство существующих живых организмов, вызывая различные заболевания. Вирусные заболевания человека: грипп, СПИД, герпес, клещевой энцефалит, оспа, бешенство, корь, инфекционный насморк. У животных – ящур, коровья оспа, бешенство. У растений – МБТ (мозаичная болезнь табака), вирусы могут определять пятнистость окраски цветков (например, у тюльпана), изменения окраски листьев у многих растений.

Ключевые термины и понятия

1. Вирион. 2. Капсид, суперкапсид. 3. Бактериофаг. 4. Ретровирусы. 5. Умеренные вирусы. 6. Вирусы с позитивным и негативным геномом. 7. Интерферон. 8. ВИЧ, СПИД. 9. .

Основные вопросы для повторения

Открытие вирусов. Строение вирусов на примере бактериофага. Основные стадии репродукции вирусов. Строение ВИЧ. Заражение и репродукция ВИЧ. Виды РНК-геномных и ДНК-геномных вирусных заболеваний человека.

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

14. Неклеточная форма жизни: вирусы

Вспомните!

Чем вирусы отличаются от всех остальных живых существ?

Почему существование вирусов не противоречит основным положениям клеточной теории?

Какие вы знаете вирусные заболевания?

В 1892 г. русский ботаник Дмитрий Иосифович Ивановский, изучая мозаичную болезнь растений табака, обнаружил, что при пропускании сока, выделенного из больного растения, через фильтры, задерживающие бактерий, жидкость сохраняла способность вызывать заболевания у здоровых растений. Возбудитель болезни был столь мал, что его и подобные ему структуры, получившие в дальнейшем название вирусы (от лат. virus – яд), стало возможно изучать только после изобретения электронного микроскопа.

Строение вирусов. Вирусы имеют очень простое строение (рис. 46). Каждый вирус состоит из нуклеиновой кислоты (или ДНК, или РНК) и белка. Нуклеиновая кислота является генетическим материалом вируса. Она окружена защитной белковой оболочкой – капсидом . Внутри капсида могут также находиться собственные вирусные ферменты. Некоторые вирусы, например вирус гриппа и ВИЧ, имеют дополнительную оболочку , которая образуется из клеточной мембраны клетки-хозяина. Капсид вируса, состоящий из многих белковых молекул, обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Эта особенность строения позволяет отдельным белкам вируса объединяться в полную вирусную частицу путём самосборки.

Рис. 46. Вирусы: строение и разнообразие

Рис. 47. Жизненный цикл вирусов (А) и электронная фотография бактериофага (Б)

Рис. 48. Бактериофаги на поверхности клетки-хозяина (электронная фотография)

Вирусы как возбудители болезней. Вирусы способны поражать и эукариотические, и прокариотические клетки. Вирусы, инфицирующие бактерий, называют бактериофагами . Вирусы вызывают множество различных заболеваний у животных, растений и грибов, причём каждый из них имеет своего собственного специфического хозяина. Вирус табачной мозаики, например, поражает растения табака, вызывая образование на листьях характерных пятен – это места отмирания тканей. Вирус оспы поражает только эпителиальные клетки, а вирус полиомиелита – клетки нервной ткани. Вирусными заболеваниями человека являются также грипп, корь, краснуха, гепатит, ветряная оспа, бешенство, герпес, СПИД и многие другие.

СПИД. Вирус иммунодефицита человека (ВИЧ), вызывающий синдром приобретённого иммунодефицита (СПИД), впервые был выделен в США в 1981 г. К 2000 г. число инфицированных этим вирусом уже превысило 30 млн человек. В настоящее время болезнь очень быстро распространяется в Азии, Африке, а также в Центральной и Восточной Европе.

ВИЧ относят к группе ретровирусов , генетическим материалом которых является РНК (рис. 49). Обычно перенос генетической информации в клетке идёт в направлении от ДНК к РНК (транскрипция). У ретровирусов при попадании в клетку-хозяина происходит противоположный процесс, так называемая обратная транскрипция, при которой на основе вирусной РНК синтезируется ДНК, которая затем встраивается в ДНК хозяина.

Рис. 49. Вирус иммунодефицита человека (ВИЧ): А – модель вируса; Б – схема строения; В – электронная фотография

Рис. 50. Жизненный цикл вируса иммунодефицита человека (ВИЧ)

Рассмотрим жизненный цикл вируса иммунодефицита (рис. 50). ВИЧ инфицирует и уничтожает лейкоциты, в том числе так называемые лимфоциты-хелперы (от англ. help – помощь), которые обеспечивают формирование иммунитета человека. После проникновения ВИЧ в клетку путём эндоцитоза (рис. 50, 1–3 ) вирусная РНК выходит в цитоплазму (рис. 50, 4 ), где на её основе с помощью специального фермента синтезируется вирусная ДНК (рис. 50, 5 ). Последняя проникает через поры в клеточное ядро и встраивается в ДНК хозяина (рис. 50, 6 ). В дальнейшем при делении клетки одновременно с копированием клеточной ДНК происходит и копирование встроенной вирусной ДНК, в результате чего количество заражённых лимфоцитов быстро растёт. Этот процесс может продолжаться в течение многих лет. По истечении некоторого времени вирус вновь активизируется (рис. 50, 7 ) и «заставляет» клетку работать на себя, синтезируя вирусные РНК и белки (рис. 50, 8 ), из которых собираются новые вирусные частицы, покидающие клетку-хозяина (рис. 50, 9 ). Причины, по которым вирус спустя 5–6 лет скрытого существования переходит в активную форму, неизвестны. Новые вирусные частицы заражают ещё здоровые лимфоциты. В результате иммунная система разрушается, лимфоциты перестают узнавать чужеродные белки и болезнетворные бактерии, попадающие в организм, и человек становится уязвимым для любых инфекционных заболеваний. Ежегодно у 1–2 % ВИЧ-инфицированных развивается СПИД. Больные СПИДом подвержены различным бактериальным, вирусным и грибковым инфекциям, которые и становятся причиной их смерти. Более 60 % заболевших СПИДом погибают от пневмонии, с которой обычно успешно справляется иммунная система здорового человека. У многих носителей ВИЧ развиваются злокачественные опухоли, а при заражении токсоплазмозом поражаются большие полушария головного мозга, что в дальнейшем может привести к параличу и коме.

Обычно ВИЧ передаётся вместе с кровью или спермой. В 90 % случаев заражение происходит при половом контакте, при этом риск заражения увеличивается пропорционально увеличению числа половых партнёров. Многократное использование одного и того же шприца приводит к быстрому распространению вируса среди наркоманов. ВИЧ может попасть в организм человека при контакте с кровью больного, например при обработке ран. Существует вероятность заражения при переливании крови, не прошедшей тестирование на присутствие ВИЧ. От ВИЧ-инфицированной матери вирус может через плаценту попасть в кровь плода или передаться новорождённому при кормлении грудным молоком. Но воздушно-капельным путём и при рукопожатии этот вирус не распространяется.

ВИЧ – это вирус, поэтому антибиотики, которые используют при лечении бактериальных инфекций, в данном случае бессильны. Современная медицина разрабатывает лекарственные средства, которые подавляют репликацию ВИЧ, но их использование имеет много побочных эффектов и перспективы их применения пока неясны. Разработка вакцины против ВИЧ тоже имеет определённые сложности; это связано с особенностями строения данного вируса и тяжестью заболевания, которое он вызывает. На сегодняшний день важным направлением в лечении СПИДа является восстановление иммунной системы инфицированных.

Пока не существует эффективных способов лечения этого заболевания, лучшим способом защиты от СПИДа является соблюдение мер предосторожности:

– следует избегать случайных половых связей, а при половых контактах изолировать себя от спермы и крови партнёра при помощи презерватива;

– в больницах, стоматологических клиниках, поликлиниках и косметических салонах необходимо использовать одноразовые шприцы, а инструменты многоразового применения тщательно стерилизовать, соблюдая все необходимые условия;

– донорскую кровь следует проверять на наличие антител к ВИЧ.

Вирусы как переносчики генетической информации. Существует гипотеза, что вирусы – это генетический материал, некогда покинувший клетку, но сохранивший способность к самовоспроизведению при возвращении в неё. Следовательно, в процессе эволюции вирусы возникли позже появления клеточной формы, а любое вирусное заражение надо рассматривать как получение клеткой некой чужеродной генетической информации.

Многие вирусы способны не только привносить в организм хозяина свою наследственную информацию, но и, встраиваясь в ДНК хозяина, изменять работу клеточных генов. В процессе копирования вирусной ДНК иногда происходит частичное копирование и генетического материала хозяина. В этом случае новые собранные вирусные частицы, покидающие клетку, будут уносить с собой копию некой наследственной информации хозяина. Таким образом вирусы могут переносить гены между организмами разных видов, отрядов и даже классов, скрещивание которых в принципе невозможно. В настоящее время вирусы рассматривают не только как возбудителей инфекционных болезней, но и как переносчиков генов между организмами.

Вопросы для повторения и задания

1. Как устроены вирусы?

2. Каков принцип взаимодействия вируса и клетки?

3. Опишите процесс проникновения вируса в клетку.

4. В чём проявляется действие вирусов на клетку?

5. Используя знания о путях распространения вирусных и бактериальных инфекций, предложите пути предотвращения инфекционных заболеваний.

6. Предложите несколько разных классификаций вирусов. Какие критерии вы положили в основу этих классификаций? Сравните свои классификации и классификации, которые создали ваши одноклассники.

Подумайте! Выполните!

1. Объясните, почему вирус может проявить свойства живого организма, только внедрившись в живую клетку.

2. Почему вирусные заболевания имеют характер эпидемий? Охарактеризуйте меры борьбы с вирусными инфекциями.

3. Выскажите своё мнение о времени появления на Земле вирусов в историческом прошлом, учитывая, что вирусы могут размножаться только в живых клетках.

4. Объясните, почему в середине XX в. вирусы стали одним из главных объектов экспериментальных генетических исследований.

5. Какие сложности возникают при попытках создать вакцину против ВИЧ-инфекции?

6. Объясните, почему перенос вирусами генетического материала от одного организма к другому называют горизонтальным переносом. Как тогда, по вашему мнению, называют передачу генов от родителей детям?

7. В разные годы как минимум семь Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию о современных достижениях в области исследования вирусов.

8. Создайте портфолио по теме «Роль вирусов в жизни организмов и эволюции органического мира на Земле».

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Вироиды. В природе обнаружены инфекционные агенты гораздо меньше вирусов – вироиды . Они состоят только из молекулы кольцевой РНК и лишены каких-либо оболочек. Самые малые вироиды имеют длину всего 220 нуклеотидов. Вироиды обнаружены в клетках многих растений. Считается, что они представляют собой вырезанные участки иРНК, которые приобрели способность к репликации. При этом они не работают, как иРНК, и не кодируют белки.

Попадая в клетки растений, вироиды вмешиваются в работу генома клетки-хозяина и вызывают серьёзные заболевания растений. Так погибли миллионы кокосовых пальм на Филиппинах во второй половине XX в. Периодически от вироидов серьёзно страдают посадки картофеля, цитрусовых, огурцов, декоративных цветов и других диких и сельскохозяйственных растений. В животных клетках и у человека вироиды пока не обнаружены.

Вирусы и рак. Многие вирусы способны, проникая в клетки организма, встраивать свой геном в геном клетки, вызывая тем самым серьёзные нарушения в работе генетического аппарата нормальных клеток. В результате может произойти превращение нормальной клетки в раковую.

У многих животных (рыб, амфибий, птиц, млекопитающих) обнаружены десятки вирусов, вызывающих раковые заболевания. У человека обнаружены целые группы онковирусов. Полагают, что около 15 % опухолей человека провоцируются вирусной инфекцией.

Повторите и вспомните!

Человек

Иммунитет. Белки или полисахариды вирусов, попадающих в организм, являются антигенами. Антигены – это любые чужеродные вещества, которые при проникновении в организм воспринимаются как генетически чужеродные и вызывают иммунную реакцию. Иммунитетом называют способность организмов защищаться от болезнетворных микроорганизмов, вирусов и иных чужеродных тел и веществ, сохраняя тем самым постоянство своего состава и свойств.

Существует несколько видов иммунитета. Если иммунитет существует или возникает у человека без каких-либо специальных воздействий, его называют естественным . Иммунитет, полученный путём использования медицинских средств, носит название искусственного .

Естественный врождённый иммунитет одинаков у всех особей вида и передаётся по наследству, т. е. генетически закреплён. Так, человек не болеет многими болезнями, которые встречаются у животных. Например, человек никогда не заболеет собачьей чумкой, так же как собака не заболеет гриппом.

Естественный приобретённый иммунитет отличается у разных людей и не передаётся по наследству, поэтому его ещё называют индивидуальным иммунитетом. Пассивный естественный иммунитет обеспечивают антитела, полученные ребёнком от матери вместе с грудным молоком. Активный естественный иммунитет формируется после перенесённого заболевания. Такой иммунитет также называют постинфекционным. Он сохраняется в организме в течение длительного времени. После некоторых заболеваний иммунитет сохраняется пожизненно, например после кори, краснухи, скарлатины и других «детских болезней».

Искусственный иммунитет может быть только приобретённым. Искусственный активный иммунитет формируется в ответ на введение в организм вакцины. Вакцина – это препарат из ослабленных или убитых возбудителей заболевания, их фрагментов или токсинов. При введении вакцины (прививке) в организме в слабой форме развивается иммунный ответ, в результате которого в крови образуются специальные клетки, способные синтезировать антитела к данному возбудителю. Антитела – это сложные белки (иммуноглобулины). Они способны связываться с антигенами и обезвреживать их. При связывании антигена образуется неактивный комплекс «антиген – антитело», который может быть уничтожен лейкоцитами.

Искусственный активный иммунитет стойкий, сохраняется годами. Впервые систематические прививки против оспы стали использовать с начала XIX в. после работ английского врача Эдварда Дженнера (1749–1823). Его дело продолжил французский микробиолог Луи Пастер (1822–1895). Он ввёл термин «вакцина» и применял вакцинацию в медицинской практике.

Искусственный пассивный иммунитет возникает при введении человеку лечебной сыворотки , которая уже содержит готовые антитела против возбудителя. Это особенно важно в том случае, если заражение уже произошло. Пассивный иммунитет нестойкий, сохраняется в течение 4–6 недель, на протяжении которых антитела постепенно разрушаются.

Ваша будущая профессия

1. Докажите, что базовые знания о процессах, происходящих на молекулярном и клеточном уровнях организации живого, необходимы не только биологам, но и специалистам в других областях естественных наук.

2. Какие профессии в современном обществе требуют знания строения и особенностей жизнедеятельности прокариотических организмов? Подготовьте небольшое (не более 7–10 предложений) сообщение о той профессии, которая вас наиболее впечатлила. Объясните свой выбор.

3. «Эти специалисты нужны в ветеринарных и медицинских научных институтах, академических институтах, на предприятиях, связанных с биотехнологиями. Они не останутся без работы в лабораториях поликлиник и больниц, на агрономических селекционных станциях, в ветеринарных лабораториях и больницах. Порой именно они могут поставить наиболее достоверный и точный диагноз. Их исследования незаменимы для ранней диагностики онкологических заболеваний». Предположите, о людях какой специальности идёт речь в этих предложениях. Докажите свою точку зрения.

Из книги Рассказ о жизни рыб автора Правдин Иван Федорович

Форма тела рыб Форма тела рыб настолько разнообразна, что невозможно дать ей общую характеристику. Когда мы произносим слова «птица» и «зверь», то сразу же представляем себе в первом случае животное с крыльями, во втором – с четырьмя ногами. А про рыбу можно только

Из книги Теоретические основания дрессировки автора Гриценко Владимир Васильевич

ФОРМА НАУЧЕНИЯ НА ОСНОВЕ ДОМИНАНТЫ К этой форме научения относятся случаи чрезвычайно быстрого образования условнорефлекторной реакции (1-2 сочетания стимула и подкрепления), на базе гипертрофированной, господствующей потребности (доминанты).Явление доминанты было

Из книги Сравнительный анализ различных форм социального обучения у животных автора Резникова Жанна Ильинична

Активное инструктирование как форма социального обучения Активное инструктирование («учительство») является самой сложной формой сигнальной наследственности. Все описанные в научной литературе ситуации учительства у животных касаются передачи навыков от старших

Из книги Стоматология собак автора Фролов В В

Форма головы собаки и ее области У различных пород собак имеется определенная форма черепной коробки. Это произошло в процессе выведения большого количества пород того или иного служебного направления. При выведении новых пород собак человек учитывал ряд служебных

Из книги Непослушное дитя биосферы [Беседы о поведении человека в компании птиц, зверей и детей] автора Дольник Виктор Рафаэльевич

Есть ли форма брачных отношений, «естественная» для человека? Мыслители XIX века полагали, что изначально у первобытного человека существовал промискуитет (беспорядочное спаривание всех со всеми). Теперь мы знаем, что это неверно. Во-первых, у ребенка ярко выражена

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

2. ЕСНО-вирусы. Вирусы Коксаки Относятся к семейству Picornaviridae, роду энтеровирусов.Строение вириона такое же, как у вируса полиомиелита.ЕСНО вирусы выделены в особую группу кишечных вирусов вследствие полного отсутствия патогенного действия на лабораторных животных.

Из книги Микробиология автора Ткаченко Ксения Викторовна

50. Вирус полиомиелита, ЕСНО-вирусы, вирусы Коксаки Вирус полиомиелита. Относится к семейству Picornaviridae, роду энтеровирусов.Это относительно небольшие вирусы с икосаэдральной симметрией. Геном образует несегментированная молекула +РНК.Каждая вирусная частица состоит из

Из книги Новая наука о жизни автора Шелдрейк Руперт

3.2. Форма и энергия В ньютоновской физике вся причинность рассматривалась на языке энергий, с позиций принципа движения и изменения.Все движущиеся вещи имеют энергию - кинетическую энергию движущихся тел, тепловые колебания и электромагнитное излучение, - и эта

Из книги Род человеческий автора Барнетт Энтони

Форма тела Самый высокий рост - у суданцев и негров, живущих в районе озера Чад, в Центральной Африке, самый низкий (150 сантиметров) - у пигмеев, тоже живущих в Центральной Африке. Высокие негры живут по соседству с пигмеями, питаются одинаковой с ними пищей, но выше их на

Из книги Основы психофизиологии автора Александров Юрий

2.1 Размер и форма Размеры нейронов могут быть от 1 (размер фоторецептора) до 1000 мкм (размер гигантского нейрона у морского моллюска Aplysia) (см. [Сахаров, 1992]). Форма нейронов также исключительно разнообразна. Наиболее ясно форма нейронов видна при приготовлении препарата

Из книги Проблемы этологии автора Акимушкин Игорь Иванович

Движение - простейшая форма поведения Тропизмы Первое наиболее четкое различие между животными и растениями ясно каждому: растения не могут передвигаться, тогда как животные этим свойством обладают. И тем не менее именно движение растений (поворот к солнцу цветов)

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Особая форма познания - игры «По мнению У. Торпа, игра… животных всегда связана с элементом познания… У. Торп подчеркивает, что игра может иметь несколько назначений. Она помогает развить „двигательные функции молодого животного“, но игра может „вестись ради самой

Из книги В мире незримого автора Блинкин Семен Александрович

Глава XIV Как в развитии создается форма Форма, возникающая в развитии, - форма целого организма, форма органа или форма клетки - это такой же важный признак организма, как и его биохимические свойства. Ho создание формы - значительно более сложный процесс. Это очевидно

Из книги Биофизика познает рак автора Акоев Инал Георгиевич

1. Форма клеток Форма клеток зависит от их внутренней структуры и свойств клеточной оболочки и от их окружения - соседних клеток и поверхностей контакта. Так, при культивировании отдельных клеток на поверхности стекла все клетки стремятся распластаться по субстрату.

Из книги автора

Глава II. Вирусы в природе и жизни человека

Из книги автора

Лейкоз - генерализованная форма рака Рак - проблема XX века Строго научное определение «рак» объединяет лишь злокачественные опухолевые заболевания кожи и производных его зачаткового листка. Более широкое понятие рака, распространенное, в частности, у неспециалистов

При наблюдении специально окрашенных крупных вирусов в световом микроскопе их форма всегда казалась шаровидной, напоминающей кокки.

Исследование вирусов в электронном микроскопе показало, что они имеют довольно разнообразную форму и сложное строение.

Различаются следующие формы вирусов:

1. Палочковидная , при которой вирус имеет форму прямого цилиндра длиной 20 ммк (вирус табачной мозаики).

2. Нитевидная , напоминающая эластично изгибающиеся нити, иногда длиной более 1000 ммк при диаметре 10ммк. Такая форма характерна для некоторых вирусов растений и бактерий.

3. Сферическая ‑ вирусы напоминают многогранники, величиной 20-130 ммк (аденовирусы, вирус герпеса, реовирусы) или деформированные шары (миксовирусы).

4. Кубовидная – вирусы имеют форму параллелепипедов с закругленными краями размерами 210-310 ммк (вирусы оспы, экстромилии, миксомы и др.).

5. Булавовидная – эту форму имеют многие вирусы бактерий (бактериофаги) и актиномицетов (актинофаги), она характеризуется наличием головки и хвостового отростка.

Вирусы весьма различны по размерам.

· Крупные приближаются по величине к бактериям: 200-350 нм, 100-150 нм (вирус бешенства).

· Средних размеров: 75-120 нм (вирус гриппа, саркомы кур, бактерий).

· Мелкие: 10-12 нм (вирус ящура, полиомиелита, желтой мозаики турнепса).

Строение и организация генетического материала

У вирусов и фагов

Вирусная частица – ее называют также вирионом – состоит из генетического материала (ДНК или РНК), окруженного белковой оболочкой. Эту оболочку называют капсидом . Заключенная в ней нуклеиновая кислота у одних видов вирусов (ВТМ, вирус, вызывающий бородавки, аденовирус) непосредственно соприкасается с оболочкой, а у других (вирус гриппа, вирусы группы герпеса) отделяется от нее особой мембраной (рис.1).

Рис. 1. Форма и величина частиц (вирионов) некоторых вирусов. Б-эллиптическое белковое тельце; О-оболочка

Белковый капсид и НК образуют так называемый нуклеокапсид .

Частица ВТМ представляет собой полый цилиндр с наружным диаметром не более 18 нм. Внутри цилиндра проходит канал диаметром 4 нм. Цилиндр состоит из 2100 капсомеров, расположенных винтообразно. Каждая белковая субъединица – это свернутая полипептидная цепь из 158 аминокислот, последовательность расположения которых известна. В стенке полого цилиндра между белковыми субъединицами лежит спирально закрученная нить РНК (повторяющая все изгибы спирали, образованной субъединицами) (рис 2).

Рис. 2. Модель вируса табачной мозаики. 1 – РНК, 2 – белковые субъединицы.

В зависимости от способа укладки капсомеров различают капсиды, построенные по спиральному или кубическому типу симметрии. В первом случае капсид будет иметь форму цилиндра, во втором ‑ многогранника. Нуклеокапсиды многих вирусов человека и животных одеты внешней оболочкой – суперкапсидом, состоящим из нескольких слоев (рис 3).



Рис. 3. Структурные типы вирусных частиц. Изображены четыре формы: две со спиральной симметрией и две с кубической симметрией (в обоих случаях один вирион «голый» и один – с оболочкой.

Многие вирусы, которые кажутся нам сферическими, в действительности представляют собой многогранники (кубическая симметрия). При кубическом типе симметрии капсомеры располагаются неравномерно, капсид имеет чаще всего форму икосаэдра (двадцатигранника) – тела, ограниченного двадцатью равносторонними треугольниками, или восьмиугольника (октаэдра).

Нуклеиновая кислота в таких вирусах упакована внутри полого многогранника.

Капсид экосаэдрического вируса состоит из капсомеров двух типов: по углам расположены пентамеры, построенные из 5 белковых мономеров, а грани и ребра образованы гексамерами, состоящими из шести мономеров. Различные экосаэдрические вирусы неодинаковы по размерам, величина их зависит от числа капсомеров. Капсид строится из капсомеров по законам кристаллографии. Самый малый икосаэдрический капсид должен состоять из 12 пентамеров, следующий по величине из 12 пентамеров и 20 гексамеров. Существуют вирусы с 252 и даже 812 капсомерами.

Смешанный тип симметрии имеют сложные вирусы (гриппа, некоторые фаги).

То обстоятельство, что капсиды вирусов построены из большого числа идентичных субъединиц, объясняется количеством нуклеиновой кислоты, заключенным в вирусной частице. У многих вирусов это количество очень невелико, и заключенная в НК информация достаточна для синтеза лишь немногих полипептидных цепей, из которых большая часть выполняет ферментную функцию при размножении вируса в клетке-хозяине. Данный принцип построения капсида (из множества идентичных единиц) гарантирует максимальный эффект при минимальной затрате генетического материала.

Вирусы – это особая форма жизни, объединяющая организмы с неклеточным строением.

Вирусы способны существовать в двух формах: вне клеток (свободные вирусы, или вирионы) и внутри клеток.

Вирионы состоят из нуклеиновых кислот, заключенных в белковую оболочку – капсид. Вирионы не проявляют свойств биологических систем: у них отсутствует обмен веществ, и они неспособны к самовоспроизведению.

В состав капсида входит строго определенное количество повторяющихся белковых субъединиц – капсомеров. Например, у вируса полиомиелита в состав капсида входит 60 капсомеров, у аденовируса – 252, у вируса табачной мозаики – 2000.

Размеры вирусов колеблются от 20 до 350 нм. По морфологии различают следующие формы вирусов: сферическую, палочковидную, кубоидальную, сперматозоидную. По характеру симметрии капсида различают вирусы со спиральным, кубическим (икосаэдрическим) и комбинированным типом симметрии.

Степень сложности вириона может быть различной. У простых вирусов в состав вириона входит только нуклеиновая кислота и белки, которые связаны в единую нуклеопротеиновую структуру – нуклеокапсид. У сложных вирусов имеется дополнительная липопротеиновая оболочка – суперкапсид. В состав сложных вирионов могут входить углеводы и некоторые ферменты. Однако вирусы никогда не содержат метаболических систем, обеспечивающих обмен веществ.

Для собственного воспроизведения вирусы должны проникнуть в клетку. Сначала происходит адсорбция (фиксация) вирионов на поверхности клетки, а затем внутрь клетки проникает или весь вирион или только вирусная нуклеиновая кислота. В большинстве случаев вирусы проникают в клетку путем виропексиса (этот механизм проникновения вирусов в клетку сходен с фагоцитозом).

В ряде случаев нуклеиновые кислоты вирусов встраиваются (интегрируются) в состав хромосом хозяина. В интегрированном состоянии вирус называется провирусом. Провирусы неотличимы от генетического материала хозяина и воспроизводится вместе с ним.

В интегрированном (вирогенном) состоянии вирусы могут находиться долгое время. Но в ряде случаев (при изменении физиологического состояния клетки, например, при облучении) начинается репродукция вируса. С помощью ферментов и пластических веществ клетки идет репликация вирусных нуклеиновых кислот и вирусных белков. Путем самосборки из этих молекул формируется множество вирионов, которые покидают клетку. При этом клетка может погибнуть или сохраниться.

Значение вирусов.

Вирусы – возбудители многих инфекционных заболеваний растений, животных и человека. В то же время, вирусы – возбудители заболеваний у нежелательных для человека организмов («враги наших врагов»). Вирусы широко используются как объекты молекулярно-генетических исследований. В генной инженерии вирусы применяются для переноса генетического материала.

Происхождение вирусов.

Существует ряд теорий происхождения вирусов. Согласно одной из теорий, вирусы – крайне упрощенные прокариотические организмы, утратившие цитоплазму. Противоположные теории рассматривают вирусы как часть генетического материала клетки, вынесенного за ее пределы.

Значение вирусов в первую очередь связывается с их патогенностью – способностью вызывать заболевания. Различают острые вирусные заболевания (например, грипп), хронические и латентные (скрытые). Борьба с вирусными заболеваниями человека и животных ведется с использованием неспецифических препаратов (например, интерферона), специфических сывороток и препаратов, подавляющих репродукцию вирусов. Для профилактики вирусных заболеваний применяют различные вакцины. Антибактериальные препараты (сульфаниламиды, антибиотики) на вирусы не действуют.

Геномика вирусов

Геном вирусов может быть представлен различными типами ДНК или РНК. На этом основании различают: ДНК-содержащие вирусы, геном которых представлен различными типами ДНК, и РНК-содержащие вирусы, геном которых представлен различными типами РНК. Нуклеиновые кислоты (ДНК или РНК) представляют собой вирусные хромосомы

1 тип: геном представлен кольцевой двухцепочечной ДНК длиной около 5 тпн. Представители:

– обезьяний вирус SV 40 – мелкий эукариотический вирус (кодирует 5 белков), используется в генной инженерии как вектор переноса генов.

– вирусы бородавок человека.

2 тип: геном представлен кольцевой одноцепочечной ДНК длиной около 5 тпн, которая может быть как кодирующей (+), так и антикодирующей (–). Представители:

– мелкие бактериофаги типа М13; не разрушают клетку; плюс-цепь кодирует 8 белков

– вирус золотистой мозаики фасоли.

3 тип: геном представлен линейной двухцепочечной ДНК длиной 30–150 тпн. Представители:

– крупные бактериофаги (типа Т4, в капсиде 130 белков) ;

– бактериофаги средних размеров (типа «лямбда», в капсиде 38 белков);

– аденовирусы млекопитающих и человека; средних размеров;

– вирусы оспы, герпеса и им подобные; вирионы крупные, есть липопротеиновая оболочка.

4 тип: геном представлен линейной одноцепочечной ДНК длиной около 5 тпн, которая может быть как кодирующей (+), так и антикодирующей (–). Представители:

– спутники аденовирусов человека

5 тип: геном представлен двухцепочечной ДНК длиной 3–8 тпн, которая замкнута в кольцо из перекрывающихся сегментов. Представители:

– вирус гепатита В; кодирует 5 белков; имеется суперкапсид, включающий вирусные и клеточные белки;

– вирус мозаики цветной капусты.

1 тип: геном представлен линейной двухцепочечной РНК длиной около 10 тн, которая может быть сплошной или фрагментированной. Представители:

– мелкие бактериофаги;

– вирусы полиэдроза насекомых;

– реовирусы птиц, млекопитающих и человека (РНК фрагментированная)

2 тип: геном представлен одноцепочечной плюс-РНК, которая может быть сразу использована для трансляции белков. Представители:

– вирус табачной мозаики;

– арбовирусы (вирусы клещевого энцефалита, желтой лихорадки) ;

– вирус бешенства;

– некоторые бактериофаги

3 тип: геном представлен одноцепочечной минус-РНК, которая используется для синтеза плюс-цепи РНК. Представители:

– вирусы гриппа (А, В, С);

– вирус кори;

– вирус чумы;

– вирус паротита (свинки);

– вирус чумы плотоядных животных (чумки)

4 тип: ретровирусы – геном представлен одноцепочечной плюс-РНК, которая используется для синтеза ДНК и её интеграции в хромосомы хозяина. Представитель:

– вирус иммунодефицита человека (ВИЧ)

Жизненные (вегетативно-репродуктивные) циклы и особенности рекомбинации у некоторых бактериофагов

Вегетативно-репродуктивный цикл и особенности рекомбинации у вирулентных фагов (на примере фага Т4)

Фаги фиксируются на поверхности бактериальных клеток и впрыскивают свою ДНК в цитоплазму. Происходит репликация фаговой ДНК и синтез фаговых белков. После достижения определенной концентрации компонентов фагов происходит самосборка новых фагов. После окончания сборки фаговых частиц происходит лизис клетки, поэтому такой жизненный цикл называется литическим.

Клетка может быть заражена одновременно двумя и более штаммами вируса, различающимися по некоторым признакам, например, по устойчивости к повышенной или пониженной температуре. Тогда в зараженной клетке синтезируется два типа вирусной ДНК. Эти два типа вирусной ДНК способны к рекомбинации с образованием новых типов ДНК: AB + ab → Ab + aB.

При самосборке вирионов из общего пула ДНК образуется четыре типа фагов:

исходные:

– чувствительные к повышенной температуре

– чувствительные к пониженной температуре

и рекомбинантные

– чувствительные к любым изменениям температуры

– устойчивые к любым изменениям температуры.

В результате рекомбинации происходит изменение наследственно обусловленных свойств фагов.

Вегетативно-репродуктивный цикл и особенности рекомбинации у умеренных фагов (на примере фага «лямбда»)

Умеренные фаги имеют два цикла развития:

– литический (как у вирулентных фагов) и

– лизогенный, при котором ДНК фага интегрируется в прокариотический геном

Лизогенный цикл умеренных фагов включает:

– фиксацию вирионов на поверхности бактериальной клетки; введение вирусной ДНК в клетку бактерии;

– встраивание (интеграцию) вирусной ДНК в прокариотический геном;

– размножение вирусной ДНК в составе прокариотического генома;

– при определенных условиях фаг активируется: синтезируется свободная вирусная ДНК и происходит синтез вирусных белков, а затем самосборка вирионов;

– вирионы выходят во внешнюю среду и заражают новые бактериальные клетки.

При вырезании фаговой ДНК из прокариотического генома фаг ведет себя подобно плазмиде. В некоторых случаях происходит рекомбинация фаговой и прокариотической ДНК: обмен генами фага и бактерии. Тогда фаг будет содержать часть генов прокариотической клетки.

Умеренные фаги, несущие прокариотическую ДНК, способны осуществлять трансдукцию – перенос генетической информации от одного прокариотического штамма к другому.

Несмотря на то что размер вируса гриппа небольшой, ущерб, им причиняемый, огромен. Это миллионы жизней и миллиарды рублей. Коварство этого возбудителя состоит в способности изменять свои свойства.

Размер вируса гриппа всего около 100 нм (от 80 до 120), одна капля воды вмещает в себя несколько миллионов вирусных частиц. Вроде бы, про него известно все, но эпидемии этого заболевания ежегодно прокатываются по континентам волнами, периодически захлестывая всю планету огромными пандемиями.

Если не понимать сути этого эпидемического процесса, то вполне может сложиться впечатление, что есть некто, кто «запускает» вирус гриппа в человеческую популяцию. Но это не так. У этого возбудителя существуют механизмы, которые постоянно трансформируют его антигенную структуру, обновляя его, делая его неуязвимым для иммунитета.

Несмотря на небольшой размер, вирус гриппа наносит большой ущерб

Вирус гриппа относится к семейству Ортомиксоирусов. Он РНК-содержащий. Это семейство, помимо гриппа, который представлен тремя отдельными родами (A, B и C) включает еще 3 рода, содержащие 5 видов. Особенностью этого семейства, вируса гриппа в том числе, является их тропность к слизистым оболочкам, то есть в организм вирус попадает, изначально поражая клетки слизистых. Частица –миксо- в названии означает слизь (от лат. myxa-).

Приставка орто- (лат. orthos- прямой) характеризует особенность строения нуклеокапсида – он нитевидный. Нуклеокапсид – это внутренняя часть вируса, содержащая генетический материал. У гриппа он представлен РНК. Особенностью РНК этого возбудителя является то, что она фрагментирована. Геном вируса гриппа содержит следующее количество фрагментов – 8 независимых друг от друга участков РНК, которые кодируют все белки.

РНК отличается от ДНК тем, что чаще подвергается мутациям, такова ее особенность. Если генетический материал «упакован» в ДНК, то он закодирован вдвое надежнее – нити ДНК комплементарны друг другу, поэтому информация «записана» дважды. Если происходит потеря фрагмента одной нити ДНК, она восстанавливается по другой.

С РНК такое невозможно. Высокая изменчивость антигенных свойств связана с этой особенностью. Если точечная мутация вируса гриппа затрагивает часть генома, ответственного за синтез гемагглютинина или нейраминидазы (это поверхностные антигены), то появляются штаммы с новыми антигенными свойствами.

Это один из видов изменчивости – антигенный дрейф вируса . Есть еще и другой вид – антигенный шифт . Это полная замена гемагглютинина или нейраминидазы на новый тип. Например, гемагглютинин первого типа (Н1) заменяется на гемагглютинин пятого типа (Н5). Причины этого явления не известны достоверно. Наиболее распространенным является точка зрения, что это связано с обменом фрагментами РНК между вирусами.

Вирус гриппа является РНК-содержащим

Механизм образования новых штаммов

Одной из главных особенностей этого возбудителя является то, что он антропозооноз . Это значит, что жизнеспособность вируса гриппа сохраняется в организме человека и животных. Циркулируя среди животных, он приобретает новые свойства посредством мутации. Возбудители, поражающие животных, могут существенно отличаться от «человеческих». И их передача от животного к человеку не всегда возможна.

Если же случается так, что вирус все-таки приобретает способность передаваться от животного к человеку (благодаря мутации белка рецептора – гемагглютинина) или от животного одного вида другому виду, то ситуация становится угрожающей. Опасен не всегда сам передавшийся штамм, так как он может быть хоть и высоко патогенным, но низко вирулентным. Опасна потенциальная ситуация «встречи» в одном организме разных типов возбудителя.

Не исключена ситуация, что человек или животное, имея в своем организме один тип возбудителя, заражается другим типом. Размер вируса гриппа такой, что одна клетка может служить «фабрикой» по производству большого количества вирусных частиц. Поэтому вполне может оказаться, что одна клетка становится местом размножения обоих типов. При сборке в теле дочернего вируса могут оказаться вновь синтезированные фрагменты РНК различных типов. Этот процесс называется реассортацией вируса гриппа.

Новая комбинация может оказаться очень неблагоприятной. Например, новый вирус может содержать фрагмент от генома человеческого штамма, отвечающий за высокую вирулентность и фрагмент генома гриппа животного с высокой патогенностью.

Человеческий высоковирулентный вирус до этого момента был, конечно, опасен, но не сильно. Так как он циркулировал в популяции, некоторая часть людей уже имеет иммунитет. Грипп животного также был опасен, но его распространение ограничивалось низкой вирулентностью. Новый штамм может сочетать в себе высокую патогенность гриппа животного с вирулентностью человеческого.

Вирус гриппа постоянно мутирует и приобретает новые свойства

При попадании этого вируса в человеческую популяцию происходит его лавинообразное распространение среди людей. Каждый, кто инфицируется, заболевает практически со стопроцентной вероятностью. Пандемическое распространение нового штамма прекращается только после того, как примерно половина популяции переболела и получила иммунитет.

Методы борьбы с возбудителем болезни

Эпидемическое распространение это заболевание получает чаще всего во время сезонов, когда понижена температура воздуха (осень, зима). При низких температурах он выживает дольше.

Для того чтобы защититься от заражения надо знать, чего боятся вирусы гриппа и ОРВИ:

  1. На них губительно действует высокая температура. Возбудители погибают уже при 70°С. Кипячение, проглаживание горячим утюгом убивает их практически моментально.
  2. Погибают они от высушивания. В сухом свежем воздухе они выживают гораздо меньше, чем во влажной застоявшейся атмосфере. Поэтому так важны проветривания во время сезона гриппа.
  3. Они не переносят ультрафиолетового света. Поэтому не стоит сомневаться в том, убивает ли кварц вирус гриппа. Использование бактерицидных ламп и рециркуляторов предотвращает заражение, особенно в помещениях с большим скоплением людей (холлы и коридоры поликлиник, например).
  4. И также они погибают от обычных дезинфицирующих средств, применяемых в стандартных концентрациях.

Самым действенным способом профилактики заражения гриппом является прививка. Особенностью современных вакцин является то, что для их производства используются именно те штаммы, которые в настоящее время циркулируют среди людей.

В лабораториях культивируют вирусы гриппа для создания вакцин

Эпидемиологами производится постоянный мониторинг того, какие штаммы вызывают заболевание. Для идентификации вирусов гриппа применяют различные серологические реакции. Суть их заключается в том, что препарат, который надо исследовать, обрабатывается составом, содержащим антитела. Если реакция произошла, это свидетельствует о том, что препарат содержит вирусы. Это упрощенная схема, она имеет множество модификация, благодаря которым штаммы довольно точно типируют.

Прививку от гриппа желательно делать за несколько недель до ожидаемого подъема заболеваемости, чтобы иммунитет успел выработаться . Особенно желательно сделать прививку людям из группы риска (согласно календарю прививок и санитарным правилам):

  • детям (посещающим детские учреждения, школьникам);
  • студентам;
  • пациентам старше 60 лет, они составляют основную категорию людей, часто погибающих от этого заболевания и его осложнений;
  • больным с тяжелыми хроническими заболеваниями (ИБС, сахарный диабет, бронхиальная астма и другие), потому что эти заболевания часто обостряются во время гриппа;
  • медицинским работникам и представителям социальных профессий, так как риск заразиться у них очень высок;
  • воинскому контингенту.

При создании вакцины опираются на прогнозы ВОЗ

Информация о том, какие штаммы предпочтительнее использовать для изготовления вакцины, периодически обновляется. Поэтому современные вакцины достаточно надежно защищают от заражения. А в случае заболевания облегчают течение болезни.