» » Упрощенная схема малого и большого круговорота азота. Круговорот азота в природе

Упрощенная схема малого и большого круговорота азота. Круговорот азота в природе

Одним из самых распространенных химических элементов в окружающей среде является азот. Количество азота в атмосфере велико - четыре пятых атмосферы состоит из этого химического элемента. Большая часть элемента пребывает в свободной форме, при котором два атома образуют молекулу N 2 . Из-за достаточно прочной связи между атомами в молекуле использовать такое соединение напрямую не представляется возможным.

Чтобы живые организмы могли полноценно усваивать этот химический элемент, его нужно перевести в «связанное» состояние. В таком состоянии азот представляет собой заряженный нитрат-ион NO3-, в таком виде он может усваиваться растениями.

Круговорот азота в природе невозможен без процесса «связывания», так как именно расщепление молекулы N 2 дает возможность поддерживать различные жизненные процессы на нашей планете.

Характеристики азота

Азот является бесцветным неядовитым газом, который большей частью находится в природе в свободном (несвязанном) состоянии. Это основная часть атмосферы - почти 80% ее занимает молекулярное вещество. В молекулярном виде азот бесполезен для живой природы - молекулы его при нормальных условиях химически реагируют только с литием. Зато значение азота в природе биосферы трудно переоценить. Это вещество является неотъемлемой частью любой, даже самой простой молекулы белка. А ведь именно белок является необходимым элементом всех живых организмов.

Как происходит круговорот

Круговорот азота в природе, по сути, является цепочкой замкнутых взаимосвязанных путей, которыми азот циркулирует в биосфере Земли. В природе основным поставщиком этого связанного элемента выступают различные микроорганизмы. Именно благодаря микроскопическим труженикам от 90 до 140 млн. тонн иона азота переходит в нужное для биосферы состояние.

Нахождение азота в природе во многом связано с жизнедеятельностью бактерий и водорослей. Круговорот N 2 в природе берет свое начало в деятельности различных микроорганизмов, которые извлекают азот из разлагающихся отходов. Одна часть элемента преобразуется в молекулы, необходимые для существования этих микроорганизмов. Другая часть высвобождается в виде ионов аммония и молекул аммиака. Различные разновидности бактерий переводят азот из этих веществ в форму нитратов. Азотистые соединения в виде удобрения усваиваются растениями, а через них и животными. После смерти организма микроэлемент возвращается в почву, чтобы заново совершить круговорот азота в природе. Схема движения азота представлена ниже.

Во время совершения круговорота N 2 может включаться в состав неорганических отложений или высвобождаться в результате деятельности некоторых бактерий. Кроме этого, извержения вулканов, работа гейзеров увеличивают долю этого вещества в земной атмосфере.

Применение азота в сельском хозяйстве

Удобряя землю азотистыми соединениями из расчета - килограмм удобрений на гектар земли, можно повысить урожайность зерновых культур на несколько процентов.
В сельском хозяйстве в виде урожая азот выносится в количестве 1 млн. тонн, при этом азотистых удобрений используется в два раза меньше. Несмотря на высокую рентабельность использования минеральных удобрений, потребности растений в этом веществе покрываются искусственным путем всего на 20-25%. Остальное его количество извлекается из грунта за счет биологической фиксации (естественные удобрения). Дальнейшее повышение урожайности будет зависеть лишь от рационального применения навоза, наращивания производства минеральных удобрений и эффективного использования «биологического» (произведенного микроорганизмами) связанного азота.

Применение азота в промышленности

Применяется азот и в промышленности. Большая часть синтезированного вещества приходится на производство аммиака, взрывчатых систем, различных красителей. Применяется он и в обрабатывающей промышленности - например, при обработке кокса. Свойства азота широко известны и учитываются при производстве различных пищевых добавок. Жидкий азот - отличный хладагент и широко применяется для заморозки продуктов питания. Но все равно основным способом применения его является производство минеральных удобрений.

Самые известные бактерии, преобразующие азот, содержатся в клубнях растений семейства бобовых.

Полезные свойства азота помогают повышать плодородие грунта: в поле сначала сеют чечевицу, горох или фасоль, потом растения запахивают в землю. Затем на этом месте выращивают другие культуры, которые могут использовать азот в качестве естественного удобрения.

Минеральные удобрения

Но природного азота, пригодного в качестве удобрений, оказалось недостаточно для поддержания урожайности. И люди начали использовать минеральные удобрения, включающие в себя связанный азот.

Технология связывания азота в промышленных масштабах была открыта немецкими военными учеными накануне Первой мировой войны. Тогда была разработана схема производства аммиака для нужд оборонной промышленности. Доработав технологию, ученые придумали надежную схему производства связанного азота для сельского хозяйства. Сейчас аграриями применяется более 80 млн. тонн связанного азота для выращивания продовольственных культур.

Природный связанный азот

Удивительно, но определенная часть атмосферного азота связывается во время грозы. Вспышки молний происходят гораздо чаще, чем принято думать. В течение 10 секунд в мире сверкает около пятисот молний. Разряд электричества разогревает вокруг себя атмосферу, азот соединяется с кислородом. Происходит реакция горения азота, на выходе которой и получаются различные виды соединений азота с кислородом. Это довольно красивая форма связывания азота, но она высвобождает только около 10 млн. тонн в год.

Искусственный связанный азот

Как было написано выше, основным источником азота являются минеральные удобрения, которые активно используются в сельском хозяйстве большинства стран мира. Сгорание всех видов ископаемого топлива (уголь, газ, нефтяные производные) также приводит к связыванию свободного азота. Помимо прямого сгорания, при работе двигателей и электрогенераторов также возникает теплота, необходимая для реакции азота с кислородом. В общем, в течение года при сжигании получается около 20 миллионов тонн азота, пригодного для биосферы.

Заключение

Как происходит круговорот азота в природе? Схема этого движения может быть представлена наглядно. Например, можно вообразить, что вся биосфера представляет собой две сообщающиеся между собой емкости. Большая ёмкость представляет собой нахождение азота в природе главным образом в гидросфере и атмосфере. Очень маленькая содержит азот, который является частью жизнедеятельности. Узкий проход соединяет обе ёмкости, в нем азот тем или иным образом переходит в связанное состояние. В естественной среде именно через такие проходы азот попадает в живые организмы и становится частью неживой природы после своей гибели.

За сравнительно короткий период времени деятельность человека стала влиять на уровень N 2 в естественной среде. Роль азота в природе до конца еще не изучена. Уже сейчас ясно, что каждая экологическая система способна усвоить лишь определенное количество этого вещества. Излишек азота в любой экосистеме приводит к чрезмерному росту растений, засоренности рек и водоемов.

Такая проблема называется эвтрофикацией - загрязнением водорослями. При возникновении этой проблемы водоросли затемняют водоем, вытесняя из него конкурирующие формы жизни. После гибели большого количества водорослей понадобится весь кислород, содержащийся в воде, чтобы остатки растений смогли разложиться. Из бедных кислородом водоемов уходит рыба, ракообразные и другие животные. Вода заболачивается и через несколько лет покрывается тиной. Озеро или пруд превращается в мертвое болото.

Дальнейшее изучение круговорота азота в природе поможет предотвратить последствия таких проблем и соблюсти баланс между хозяйственной деятельностью человека и природными экосистемами.

Азот — одно из самых распространенных веществ в биосфере , узкой оболочке Земли, где поддерживается жизнь. Так, почти 80% воздуха, которым мы дышим, состоит из этого элемента. Основная часть атмосферного азота находится в свободной форме (см . Химические связи), при которой два атома азота соединены вместе, образуя молекулу азота — N 2 . Из-за того, что связи между двумя атомами очень прочные, живые организмы не способны напрямую использовать молекулярный азот — его сначала необходимо перевести в «связанное» состояние. В процессе связывания молекулы азота расщепляются, давая возможность отдельным атомам азота участвовать в химических реакциях с другими атомами, например с кислородом, и таким образом мешая им вновь объединиться в молекулу азота. Связь между атомами азота и другими атомами достаточно слабая, что позволяет живым организмам усваивать атомы азота. Поэтому связывание азота — чрезвычайно важная часть жизненных процессов на нашей планете.

Круговорот азота представляет собой ряд замкнутых взаимосвязанных путей, по которым азот циркулирует в земной биосфере. Рассмотрим сначала процесс разложения органических веществ в почве. Различные микроорганизмы извлекают азот из разлагающихся материалов и переводят его в молекулы, необходимые им для обмена веществ. При этом оставшийся азот высвобождается в виде аммиака (NH 3) или ионов аммония (NH 4 +). Затем другие микроорганизмы связывают этот азот, переводя его обычно в форму нитратов (NO 3 -). Поступая в растения (и в конечном счете попадая в организмы живых существ), этот азот участвует в образовании биологических молекул . После гибели организма азот возвращается в почву, и цикл начинается снова. Во время этого цикла возможны как потери азота — когда он включается в состав отложений или высвобождается в процессе жизнедеятельности некоторых бактерий (так называемых денитрифицирующих бактерий), — так и компенсация этих потерь за счет извержения вулканов и других видов геологической активности.

Представьте себе, что биосфера состоит из двух сообщающихся резервуаров с азотом — огромного (в нем находится азот, содержащийся в атмосфере и океанах) и совсем маленького (в нем находится азот, содержащийся в живых существах). Между этими резервуарами есть узкий проход, в котором азот тем или иным способом связывается. В нормальных условиях азот из окружающей среды попадает через этот проход в биологические системы и возвращается в окружающую среду после гибели биологических систем.

Приведем несколько цифр. В атмосфере азота содержится примерно 4 квадрильона (4·10 15) тонн, а в океанах — около 20 триллионов (20·10 12) тонн. Незначительная часть этого количества — около 100 миллионов тонн — ежегодно связывается и включается в состав живых организмов. Из этих 100 миллионов тонн связанного азота только 4 миллиона тонн содержится в тканях растений и животных — все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.

Главный поставщик связанного азота в природе — бактерии: благодаря им связывается приблизительно от 90 до 140 миллионов тонн азота (точных цифр, к сожалению, нет). Самые известные бактерии, связывающие азот, находятся в клубеньках бобовых растений. На их использовании основан традиционный метод повышения плодородия почвы: на поле сначала выращивают горох или другие бобовые культуры, потом их запахивают в землю, и накопленный в их клубеньках связанный азот переходит в почву. Затем поле засевают другими культурами, которые этот азот уже могут использовать для своего роста.

Некоторое количество азота переводится в связанное состояние во время грозы. Вы удивитесь, но вспышки молний происходят гораздо чаще, чем вы думаете, — порядка ста молний каждую секунду. Пока вы читали этот абзац, во всем мире сверкнуло примерно 500 молний. Электрический разряд нагревает атмосферу вокруг себя, азот соединяется с кислородом (происходит реакция горения) с образованием различных оксидов азота. И хотя это довольно зрелищная форма связывания, она охватывает только 10 миллионов тонн азота в год.

Таким образом, в результате естественных природных процессов связывается от 100 до 150 миллионов тонн азота год. В ходе человеческой деятельности тоже происходит связывание азота и перенос его в биосферу (например, все то же засевание полей бобовыми культурами приводит ежегодно к образованию 40 миллионов тонн связанного азота). Более того, при сгорании ископаемого топлива в электрогенераторах и в двигателях внутреннего сгорания происходит разогрев воздуха, как и в случае с разрядом молнии. Всякий раз, когда вы совершаете поездку на автомобиле, в биосферу поступает дополнительное количество связанного азота. Примерно 20 миллионов тонн азота в год связывается при сжигании природного топлива.

Но больше всего связанного азота человек производит в виде минеральных удобрений. Как это часто бывает с достижениями технического прогресса, технологией связывания азота в промышленных масштабах мы обязаны военным. В Германии перед Первой мировой войной был разработан способ получения аммиака (одна из форм связанного азота) для нужд военной промышленности. Недостаток азота часто сдерживает рост растений, и фермеры для повышения урожайности покупают искусственно связанный азот в виде минеральных удобрений. Сейчас для сельского хозяйства каждый год производится чуть больше 80 миллионов тонн связанного азота (заметим, что он употребляется не только для выращивания пищевых культур — пригородные лужайки и сады удобряют им же).

Суммировав весь вклад человека в круговорот азота, получаем цифру порядка 140 миллионов тонн в год. Примерно столько же азота связывается в природе естественным образом. Таким образом, за сравнительно короткий период времени человек стал оказывать существенное влияние на круговорот азота в природе. Каковы будут последствия? Каждая экосистема способна усвоить определенное количество азота, и в последствия этого в целом благоприятны — растения станут расти быстрее. Однако при насыщении экосистемы азот начнет вымываться в реки. Эвтрофикация (загрязнение водоемов водорослями) озер — пожалуй, самая неприятная экологическая проблема, связанная с азотом. Азот удобряет озерные водоросли, и они разрастаются, вытесняя все другие формы жизни в этом озере, поскольку, когда водоросли погибают, на их разложение расходуется почти весь растворенный в воде кислород.

Тем не менее приходится признать, что видоизменение круговорота азота — еще далеко не худшая проблема из тех, с которыми столкнулось человечество. В связи с этим можно привести слова Питера Витошека, эколога из Стэнфордского университета, изучающего растения: «Мы движемся к зеленому и заросшему сорняками миру, но это не катастрофа. Очень важно уметь отличить катастрофу от деградации».

Биосфера – это оболочка Земли, заселенная живыми организмами. Биосфера нашей планеты является сложной системой, в которой постоянно осуществляются круговороты различных веществ, тесно взаимосвязанных между собой. Азот – один из обязательных элементов важнейших органических соединений, из которых состоят ткани всех живых организмов (белков, АТФ, нуклеиновых кислот, т.д.).

Основные запасы данного химического элемента находятся в атмосфере в виде молекулярного азота, который не доступен для усвоения растениями в такой форме. Процесс круговорота азота начинается с поступления в экосистему соединений азота при выпадении осадков. Азотистые соединения образуются в атмосфере при разрядах молний во время гроз. С дождем они попадают в почву и воду.

Малая доля азотистых соединений выбрасывается в окружающую среду при извержениях вулканов. Ученые считают, что источником всего азота при формировании нашей планеты был вулканогенный NH3, который затем подвергся окислению атмосферным кислородом.

Таким образом, есть два пути вовлечения молекулярного азота в биогенный круговорот. Первый способ заключается в электрическом и фотохимическом окислении азота атмосферного воздуха. Второй путь – биологическая фиксация данного элемента микроорганизмами-азотфиксаторами, в т.ч. клубеньковыми бактериями. Лишь некоторые прокариоты способны осуществлять связывание атмосферного азота. В результате их жизнедеятельности образуется в несколько раз больше оксида азота на кв.м. площади поверхности Земли в год, чем при окислении атмосферного азота кислородом.

Клубеньковые бактерии и другие азотфиксаторы переводят азот из молекулярного состояния в соединения, которые легко усваиваются растениями. Затем азот продвигается по пищевым цепочкам экосистем в биосфере до редуцентов, чаще в почвенном покрове. После гибели растений и животных их организмы разлагаются с участием многочисленных микробов. При этом органический азот участвует в различных химических реакциях. Так, в процессе денитрификации органических веществ образуется элементарный азот, который затем возвращается в атмосферу, где начинается новый виток его циркуляции по внешнему кругу. Но основные запасы азота экосистем размещены в почве. При разложении белков с участием гнилостных бактерий образуется аммиак его производные, которые окисляются нитрифицирующими бактериями до нитритов и нитратов. Эти соединения поступают в воды Мирового океана и атмосферный воздух. Именно отсюда данный элемент попадает снова в организмы растений и далее «движется» по внутренним каналам круговорота. Таким образом, живые организмы выполняют ключевую роль в круговороте азота.

Хозяйственная деятельность человека крайне негативно сказывается на балансе азота в природе. До того, как человек стал интенсивно использовать азотные минеральные удобрения для повышения урожайности сельскохозяйственных культур, процессы нитрификации и денитрификации в природе были полностью сбалансированы.

В природе имеется огромное количество азота. 4 / 5 объема окружающего нас воздуха составляет азот. Во всем живом мире (растения, животные) содержится 20-25 млрд. т азота, огромное количество его имеется в пахотном слое почвы - в подзоле примерно 6 г, а в черноземе до 18 г на 1 га. Но весь этот азот, свободный в атмосфере и связанный в органическом веществе, в почвенном гумусе, в торфе, не усваивается растениями, а следовательно, и животными. Таким образом, азот не может непосредственно участвовать в биогенном круговороте веществ. Его вовлечение в круговорот в природе осуществляется при помощи микроорганизмов, из которых одни производят разложение органических азотсодержащих веществ до минеральных азотистых соединений, легко усвояемых растениями; другие, так называемые азотфиксирующие, напротив, извлекают свободный азот из воздуха и синтезируют из него органические соединения.

Производимые микроорганизмами процессы непрерывного разрушения и синтеза азотсодержащих веществ лежат в основе биогенного круговорота азота в природе.

В круговороте азота можно выделить следующие основные биохимические процессы: 1) гниение, или аммонификация; 2) нитрификация; 3) денитрификация и 4) фиксация атмосферного азота.

1. Аммонификация

а. Гниение, или аммонификация, - это превращение органического азота в минеральный азот, разложение сложного белка до аммиака. Поэтому этот процесс и называется аммонификацией. Он проходит в несколько этапов в результате жизнедеятельности различных групп микроорганизмов, главным образом бактерий, а также актиномицетов и плесневых грибов.

Белок и другие азотистые органические вещества всегда содержатся в больших количествах в остатках растений, животных и микробов. Микробы производят гидролитическое расщепление этих веществ при помощи ферментов протеаз. Гидролиз белка может идти с образованием растворимых продуктов по схеме: белок → пептон → полипептиды → аминокислоты. Образовавшиеся аминокислоты способны проникать внутрь микробной клетки, где они подвергаются дальнейшим превращениям - дезаминированию, при котором образуются аммиак, различные органические кислоты и другие более простые продукты.

Если процесс идет в аэробных условиях, то разложение идет до конечных продуктов, причем используется весь запас энергии белка. В анаэробных условиях расщепление белков идет менее глубоко. Если в составе белков имеется сера, то она освобождается в виде сероводорода или меркаптанов, имеющих неприятный запах. Из аминокислот ароматического ряда образуются фенол и дурно пахнущие индол и скатол.

Образовавшийся таким образом аммиак, во-первых, частично идет на синтез азотистых веществ тела самих микробов. Во-вторых, большая часть накапливается в почве, причем интенсивность накопления его в почве зависит от определенного более узкого соотношения углерода и азота (меньше чем 25:1), так как азот идет только на синтез белка, а углерод, кроме синтеза, еще расходуется в процессе дыхания.

Микроорганизмы, участвующие в разложении белка, широко распространены в природе, во всех почвах и водоемах. Обычно здесь наблюдается определенная последовательность разложения белка. Сначала аммонификаторы разлагают белок с образованием аммиака, а затем нитрификаторы окисляют аммиак до азотной кислоты.

Из аэробных бактерий сюда относятся: спороносные - Бас. mycoides, Вас. mesentericus (картофельная палочка), Вас. subtilis (сенная палочка) и др.; неспороносные - Bact. prodigiosum (чудесная палочка), имеющая красный пигмент, Bact. fluorescens, выделяющая зеленоватый пигмент, и др. Из факультативных анаэробных - протейная палочка, одна из вызывающих наиболее глубокий распад белков (NH 3 , СН 4 , СО 2 , Н 2 О и др.), кишечная палочка, в обилии живущая в кишечнике и фекалиях человека и животных. К анаэробным бактериям относятся Вас. sporogenes, Вас. putrificus, также часто встречающиеся в кишечнике и фекалиях. Проникая после смерти человека и животных через стенку кишечника в полости тела, они вызывают быстрое зловонное разложение трупов.

Гнилостные процессы, происходящие в кишечнике, не приводят к полной минерализации азотистых веществ, поэтому фекалии и свежий навоз малопригодны для питания растений. Они должны подвергнуться дальнейшему распаду в почве с образованием аммиачных и азотнокислых солей.

б. Разложение мочевины. Человек и животные выделяют с мочой большое количество связанного азота в виде мочевины - диамида угольной кислоты CO(NH 2) 2 . Человек за сутки выделяет 30-50 г мочевины, а все человечество - около 200 тыс. т. Попадая в почву, мочевина подвергается разложению особыми уробактериями, имеющими фермент уреазу. Мочевина превращается ими в нестойкую углеаммиачную соль, разлагающуюся до аммиака и углекислоты.

В почве связанный азот содержится в основном в форме перегнойных, или гумусовых, веществ. Аммонификация их микроорганизмами также имеет место в почве, но процесс этот происходит очень медленно. Считают, что в умеренном климате в течение года разлагается только 1-3% общего запаса гумуса.

2. Нитрификация

Конечные продукты разложения белка и других азотных веществ - аммиачные соли - уже сами по себе могут усваиваться растениями. Однако наиболее легко усвояемыми для растений являются соли азотной кислоты. Процесс окисления солей аммиака в соли азотной кислоты называется нитрификацией (nitrum - селитра).

Ученые очень долго не могли выяснить сущность процесса нитрификации, так широко распространенного в почве. Эту задачу разрешил русский микробиолог С. Н. Виноградский. Он отказался от обычных бактериологических питательных сред и стал изучать процесс нитрификации на чисто минеральных средах. В результате он доказал, что этот процесс осуществляется особой физиологической группой бактерий. Он также показал, что процесс нитрификации проходит в две фазы. В первой фазе аммиачные соли окисляются в соли азотистой кислоты - нитриты: 2NH 3 +3О 2 →2HNО 2 +2H 2 О+158 ккал. Во второй фазе образовавшиеся соли азотистой кислоты окисляются в соли азотной кислоты - нитраты: 2HNО 2 +О 2 =2HN0 3 +48 ккал.

Первая фаза вызывается бактериями, называемыми нитрозными, которые разделяются на несколько видов и разновидностей (Nitrosomonas, Nitrosospira, Nitrosocistis и др.). Вторая фаза вызывается нитратными бактериями (Nitrobacter). Эти бактерии широко распространены в почве, в иле. Это строгие автотрофы, аэробы, нуждающиеся в большом количестве кислорода. Они очень чувствительны к кислой реакции среды. Оптимальный рН для них 8,6. Окисление же аммиака приводит к подкислению почвы, которое может привести к прекращению их размножения, если не будет произведено известкование. Нитрификаторы создают органическое вещество из углекислоты воздуха и воды за счет химической энергии окисления аммиака.

Окисление аммиака и нитритов - процесс экзотермический, при котором освобождается энергия, затрачиваемая бактериями на усвоение углерода из углекислоты. По расчетам С. Н. Виноградского, на одну часть ассимилированного углерода должно быть окислено 35 частей азота в первой фазе и 135 частей во второй фазе.

Таким образом, С. Н. Виноградский первый открыл процесс синтеза органического вещества с использованием не солнечной, а химической энергии. Этот процесс называется, в отличие от фотосинтеза, хемосинтезом.

Нитрифицирующие бактерии благодаря накоплению азотнокислых солей в почве являются чрезвычайно полезными бактериями, обусловливающими урожайность полей. В течение года в почве может накопляться свыше 300 кг азотной кислоты на 1 га. Это количество вполне достаточно для азотного питания растений, и оно оказывает большое влияние и на их фосфорное питание, ибо азотная кислота растворяет труднорастворимые фосфорнокислые соли, превращая их в усвояемые растениями формы.

3. Денитрификация

Кроме процесса нитрификации в природе могут возникать и противоположные процессы разложения азотнокислых солей вплоть до образования газообразного азота, уходящего обратно в атмосферу. Такие процессы восстановления нитратов с образованием как конечного продукта молекулярного азота называются денитрификацией. Денитрификацию вызывают микроорганизмы, широко распространенные в почве, навозе, на поверхности и корнях растений. Это факультативные анаэробы. Попадая в анаэробные условия или даже в условия недостаточного притока кислорода в среде, денитрифицирующие бактерии отщепляют кислород из азотно- или азотистокислых солей, восстанавливая их до азота. Отщепленным кислородом они окисляют безазотистые органические соединения, получая таким образом необходимую им энергию. Эту так называемую прямую денитрификацию вызывают Bact denitrificans, Bact. fluorescens, синегнойная палочка, палочка Штуцера, Thiobac. denitrificans и др.

Наибольшие потери азота почва несет при плохой аэрации и большой влажности ее. Денитрификация - крайне нежелательный процесс в почве, так как ведет к обеднению почвы нитратами. Борьба с ним заключается в аэрации почвы путем перепахивания.

Потеря азота почвой может происходить еще за счет косвенной денитрификации. Самые различные бактерии восстанавливают нитраты до нитритов (например, кишечная палочка) или разлагают белки с образованием аминокислот и амидов. Между нитритами, аминными и амидными соединениями может происходить чисто химическое взаимодействие с выделением молекулярного азота.

Круговорот азота заканчивается возвращением его в атмосферу в процессе денитрификации.

4. Фиксация атмосферного азота

Огромные запасы газообразного азота совершенно недоступны для высших растений и животных. Вовлечение его в биогенный круговорот совершается двумя путями. В первом случае азот превращается в двуокись азота NO 2 под влиянием электрических разрядов, происходящих во время гроз, или в результате фотохимического окисления. Двуокись азота растворяется в воде, в почве и окисляется дальше. Этим путем за год 1 м 2 поверхности получает 30 мг NO 3 .

Второй путь вовлечения азота в круговорот осуществляется азотфиксирующими микроорганизмами. Эти микробы разделяются на две группы: 1) клубеньковые бактерии, фиксирующие азот в симбиозе с бобовыми растениями, и 2) свободноживущие бактерии. Еще в глубокой древности было замечено, что большинство растений с течением времени истощает почву, бобовые же растения, наоборот, повышают плодородие почвы. Долголетнее изучение этого явления учеными выяснило, что в небольших клубеньках корней бобовых растений находится огромное количество бактерий. Впервые это было установлено М. С. Ворониным в 1865 г. В 1886 г. Г. Гельригель и Т. Вильфарт нашли, что бобовые растения не могут сами фиксировать азот из воздуха. Они фиксируют азот только в симбиозе с живыми бактериями клубеньков. В 1888 г. М. Бейеринк, крупный голландский микробиолог, выделил эти бактерии в чистой культуре и назвал их Bact. radicicola. В настоящее время род этих бактерий чаще называют Rhisobium. Клубеньковые бактерии снабжают растения азотнокислыми соединениями, а растения обеспечивают их безазотистыми органическими веществами.

Клубеньковая бактерия - аэроб. Она проходит особый цикл развития. В молодых клубеньках бактерии имеют вид мелких подвижных палочек. В дальнейшем они теряют подвижность, в них появляются вакуоли, которые как бы образуют пояски на теле их, наряду с прямыми появляются ветвистые палочки, называемые бактероидами. Бактероиды могут распадаться на кокки, которые опять превращаются в подвижные палочки.

Различают несколько форм клубеньковых бактерий. Одни ученые эти формы считают видами, другие - расами. Они специфичны. Каждая раса образует клубеньки на корнях определенных видов бобовых растений. Так, раса, заражающая клевер, никакую другую бобовую культуру не заражает. Раса, заражающая горох, может также заражать вику, чечевицу, чину и конские бобы. Но эта специфичность не абсолютна. Так, соя, привезенная с Дальнего Востока, в Европейской части Союза при посеве на одном поле не образует клубеньков несколько лет, позднее же начинает образовывать клубеньки. По-видимому, за этот период местные клубеньковые бактерии приспосабливаются к новому для них растению.

Специфичность некоторых клубеньковых бактерий к бобовым растениям:

1. Клевер 2. Горох...Вика...Чечевица...Конские бобы 3. Люцерна...Донник 4. Люпин...Сераделла 5. Соя 6. Фасоль 7. Эспарцет 8. Белая акация 9. Желтая акация

В корень растения бактерии проникают через корневые волоски. Клетки корня в местах проникновения их быстро размножаются и образуют клубеньки. Осенью клубеньки разрушаются и бактерии попадают вновь в почву.

На корнях ольхи имеются особые деревянистые вздутия (клубеньки), в которых живут актиномицеты. Ольха также находится в симбиозе с актиномицетами, в результате этого симбиоза происходит усвоение атмосферного азота.

С. Н. Виноградский (1893) открыл свободноживущую азотфиксирующую бактерию: в честь Пастера он назвал ее Clostridium Pasteurianum. Он выделил ее на специальной питательной среде, содержащей только глюкозу и необходимые минеральные соли и совершенно не содержащей азота ни в органической, ни в минеральной форме. Опыт был поставлен в анаэробных условиях. Эта бактерия - строгий анаэроб. Клетка ее довольно больших размеров. Она образует споры, которые шире ее поперечника, отчего палочка со спорой принимает вид веретена, поэтому и названа клостридиум, т. е. веретено.

Чтобы усваивать атмосферный азот, эта бактерия нуждается в азоте воздуха, вредный же для нее кислород воздуха поглощается аэробными сапрофитными бактериями, сожительствующими с ней в почве. Они усваивают масляную кислоту, выделяемую клостридиумом. Ассимилируя азот, клостридиум улучшает условия развития сапрофитов. Здесь наблюдаются симбиотические отношения. Источником энергии для связывания азота служит масляно-кислое брожение безазотистых веществ, глюкозы, сахарозы и др. Крахмал и клетчатку клостридий не усваивает. Он фиксирует 2-3 мг азота на 1 г сброженного сахара. В условиях обильного питания аммиачными солями он предпочитает совсем не усваивать молекулярный азот. Клостридий широко распространен в природе, находится во всех почвах благодаря широкому рН - 4,5-9,0, при котором он развивается. Азот фиксируют и другие виды маслянокислых бактерий, но в меньшей степени.

В 1901 г. М. Бейеринк выделил другой азотфиксатор, названный азотобактером. Это довольно крупные сплюснутые парные шарики, размером 1-10 мк, покрытые общей слизистой капсулой. Аэроб в молодом возрасте подвижен. Деление его происходит путем перетяжки. Он растет на синтетических средах, не содержащих азота, при наличии следов молибдена, который для него является фактором роста. Азотобактер получает энергию за счет окисления Сахаров, органических кислот. Механизм фиксации азота еще недостаточно изучен. Ассимиляция азота осуществляется (по М. В. Федорову) ферментной системой, в которой активными являются карбонильная группа и тяжелые металлы. Азотобактер находится только в 30% всех почв, так как очень чувствителен к реакции почвы. В почвах с рН ниже 5,6 он уже не встречается. Фиксация азота азотобактером происходит более активно, чем у клостридия, 2-12 мг на 1 г сахара.

Азот атмосферы усваивают также некоторые синезеленые водоросли (Nostoc muscorum), отдельные виды актиномицетов, грибы из рода Phoma (Cladosporium) и некоторые почвенные бактерии, микобактерии. Все они фиксируют азот в меньших количествах, но все же надо учитывать и этот источник, принимая во внимание их широкое распространение.

Недавно открытая азотфиксирующая бактерия бейеринкия, названная в честь Бейеринка, - аэроб, в молодом возрасте подвижна. Развивается при широком рН среды - 4,9-9. Хорошо растет на кислых почвах. Благодаря способности к фотосинтезу и усвоению азота из воздуха синезеленые водоросли чрезвычайно неприхотливы и могут существовать там, где совсем не встречаются другие организмы.

Клубеньковые бактерии усваивают от 50 до 400 кг атмосферного азота на 1 га посевов. Свободноживущие бактерии связывают 20-50 кг азота на 1 га почвы. Фиксация азота микроорганизмами дает пахотной почве в Советском Союзе за год 3,5 млн. т азота (Е. Н. Мишустин). Все это ясно указывает, какое значение имеет этот процесс в природе вообще и в сельском хозяйстве в частности. Общая схема круговорота азота представлена на таблице (по А. А. Имшенецкому).

Вы готовы разглядывать только проституток узбечек? Воспользуйтесь веб-сайтом https://prostitutkikrivogoroga.party/nation-uzbechki/ , здесь находится огромное количество предложений достойных зависти индивидуалок со всего двора.

12.2. Круговорот азота, кислорода, углерода

Круговорот азота (рисунок 12.2) является одним из самых сложных круговоротов в природе. Охватывает всю биосферу, а также атмосферу, литосферу, гидросферу. Очень важную роль в круговороте азота играют микроорганизмы. В круговороте азота выделяют следующие этапы:

1-й этап (фиксация азота): а) азотфиксирующие бактерии связывают (фиксируют) газообразный азот с образованием аммонийной формы (NH и солей аммония) – это биологическая фиксация; б) вследствие грозовых разрядов и фотохимического окисления образуются оксиды азота, при взаимодействии с водой они образуют азотную кислоту, в почве она превращается в нитратный азот.

2-й этап – превращение в растительный белок. Обе формы (аммонийная и нитратная) фиксированного азота усваиваются растениями и превращаются в сложные белковые соединения.

3-й этап – превращение в животный белок. Животные поедают растения, в их организме растительные белки превращаются в животные.

4-й этап – разложение белка, гниение. Продукты метаболизма растений и животных, а также ткани отмерших организмов под воздействием микроорганизмов разлагаются с образованием аммония (процесс аммонификации).

5-й этап – процесс нитрификации. Аммонийный азот окисляется до нитритного и нитратного азота.

6-й этап – процесс денитрификации. Нитратный азот под воздействием денитрифицирующих бактерий восстанавливается до молекулярного азота, который поступает в атмосферу. Круг замыкается.

Рисунок 12.2 – Структурная схема круговорота азота

(по Н. И. Николайкину, 2004)

Антропогенное воздействие на круговорот азота заключается в следующем:

1 Промышленное использование азота для получения аммиака примерно на 10% повышает общее количество азота, фиксированного естественным путем.

2 Широкое использование азотных удобрений, превышающее потребности растений, приводит к загрязнению окружающей среды, при этом часть избыточного азота смывается в водоемы, вызывая опасное явление «евтрофирования». Оно вызывает вторичное загрязнение водоемов, нарушение круговорота веществ, изменение их трофического статуса.

Круговорот кислорода сопровождается его приходом и расходом.

Приход кислорода включает : 1) выделение при фотосинтезе; 2) образование в озоновом слое под воздействием УФ-излучения (в незначительном количестве); 3) диссоциацию молекул воды в верхних слоях атмосферы под воздействием УФ-излучения; 4) образование озона – О 3 .

Расход кислорода включает : 1) потребление животными при дыхании; 2) окислительные процессы в земной коре; 3) окисление окиси углерода (СО), выделяющегося при извержении вулканов.

Круговорот кислорода тесно связан с круговоротом углерода.

Круговорот углерода (рисунок 12.3). Масса углекислого газа (СО 2) в атмосфере оценивается в 10 12 тонн.

Приход углекислого газа включает : 1) дыхание живых организмов; 2) разложение отмерших организмов растений и животных микроорганизмами, процесс брожения; 3) антропогенные выбросы при сжигании топлива; 4) вырубку лесов.

Расход углекислого газа включает : 1) фиксацию углекислого газа из атмосферы при фотосинтезе с освобождением кислорода; 2) потребление части углерода животными, питающимися растительной пищей; 3) фиксацию углерода в литосфере (образование органогенных пород – уголь, торф, горючие сланцы, а также почвенных компонентов, как гумуса); 4) фиксацию углерода в гидросфере (образование известняков, доломитов).

Постепенное возрастание содержания углекислого газа в атмосфере в сочетании с другими причинами привело к «парниковому эффекту», влияющему на тепловой баланс, на климат нашей планеты.

Большую роль в общем круговороте веществ в природе кроме рассмотренных элементов играют также фосфор, сера, железо.


Рисунок 12.3 – Структурная схема круговорота углерода

(по Н. И. Николайкину, 2004)

Предыдущая