» » Центральная догма молекулярной биологии кратко. Основной постулат молекулярной биологии

Центральная догма молекулярной биологии кратко. Основной постулат молекулярной биологии

Синтез белка

1. Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

2. Процессинг (только у эукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков.

3. Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.

4. Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.

5. Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

6. Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, гема), соединение нескольких полипептидов в четвертичную структуру.

http://biokhimija.ru/lekcii-po-biohimii/21-matrichnye-biosintezy/95-transljacija.html

Существуют три процесса молекулярной биологии

Основной фигурой матричных биосинтезов являются нуклеиновые кислоты РНК и ДНК. Они представляют собой полимерные молекулы, в состав которых входят азотистые основания пяти типов, пентозы двух типов и остатки фосфорной кислоты. Азотистые основания в нуклеиновых кислотах могут быть пуриновыми (аденин , гуанин ) и пиримидиновыми (цитозин ,урацил (только в РНК), тимин (только в ДНК)). В зависимости от строения углевода выделяютрибонуклеиновые кислоты – содержат рибозу (РНК), и дезоксирибонуклеиновые кислоты – содержат дезоксирибозу (ДНК).

Термин "матричные биосинтезы " подразумевает способность клетки синтезировать полимерные молекулы, таких как нуклеиновые кислоты и белки , на основе шаблона –матрицы . Это обеспечивает точную передачу сложнейшей структуры от уже существующих молекул к новосинтезируемым.

Основной постулат молекулярной биологии

В подавляющем большинстве случаев передача наследственной информации от материнской клетки к дочерней осуществляется при помощи ДНК (репликация ). Для использования генетической информации самой клеткой необходимы РНК, образуемые на матрице ДНК (транскрипция ). Далее РНК непосредственно участвуют на всех этапах синтеза белковых молекул (трансляция ), обеспечивающих структуру и деятельность клетки.

Информация, содержащаяся в биологических последовательностях

Биополимеры - это синтезируемые живыми существами (биологические) полимеры . ДНК, РНК и белки относятся к линейным полимерам, то есть каждый входящий в их состав мономер соединяется с минимум двумя другими мономерами. Последовательность мономеров кодирует информацию, правила передачи которой описываются центральной догмой. Информация передаётся с высокой точностью, детерминистически и один биополимер используется как шаблон для сборки другого полимера с последовательностью, которая полностью определяется последовательностью первого полимера.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 × 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

  • Общий - встречающиеся у большинства живых организмов;
  • Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;
  • Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу мРНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Принципиальная схема реализации генетической информации у про- и эукариот.
ПРОКАРИОТЫ. У прокариот синтез белка рибосомой (трансляция) пространственно не отделён от транскрипции и может происходить ещё до завершения синтеза мРНК РНК-полимеразой . Прокариотические мРНК часто полицистронные , то есть содержат несколько независимых генов .
ЭУКАРИОТЫ. мРНК эукариот синтезируется в виде предшественника, пре-мРНК, претерпевающего затем сложное стадийное созревание - процессинг , включающий присоединение кэп-структуры к 5"-концу молекулы, присоединение нескольких десятков остатков аденина к ее 3"-концу (полиаденилирование), выщепление незначащих участков - интронов и соединение друг с другом значащих участков - экзонов (сплайсинг). При этом соединение экзонов одной и той же пре-мРНК может проходить разными способами, приводя к образованию разных зрелых мРНК, и в конечном итоге разных вариантов белка (альтернативный сплайсинг). Только мРНК, успешно прошедшая процессинг, экспортируется из ядра в цитоплазму и вовлекается в трансляцию.

Трансляция (РНК → белок)

Репликация РНК (РНК → РНК)

Репликация РНК - копирование цепи РНК на комплемлементарную ей цепь РНК с помощью фермента РНК-зависимой РНК-полимеразы. Вирусы, содержащие одноцепочечную (например, пикорнавирусы, к которым относится вирус ящура) или двуцепочечную РНК реплицируются подобным способом.

Прямая трансляция белка на матрице ДНК (ДНК → белок)

Прямая трансляция была продемонстрирована в клеточных экстрактах кишечной палочки , которые содержали рибосомы , но не иРНК . Такие экстракты синтезировали белки с введённых в систему ДНК, и антибиотик неомицин усиливал этот эффект.

Эпигенетические изменения

Эпигенетические изменения - это изменения в проявлении генов, не обусловленные изменением генетической информации (мутациями). Эпигенетические изменения происходят в результате модификации уровня экспрессии генов, то есть их транскрипции и/или трансляции. Наиболее изученным видом эпигенетической регуляции является метилирование ДНК с помощью белков ДНК-метилтрансфераз , что приводит к временной, зависящей от условий жизни организма инактивации метилированного гена . Однако поскольку первичная структура молекулы ДНК при этом не изменяется, это исключение нельзя считать истинным примером передачи информации от белка к ДНК.

Прионы

Прионы - белки, которые существуют в двух формах. Одна из форм (конформаций) белка является функциональной, обычно растворимой в воде. Вторая форма образует нерастворимые в воде агрегаты, часто в виде молекулярных трубочек-полимеров. Мономер - молекула белка - в этой конформации способен просоединяться к другим сходным молекулам белка, переводя их во вторую, прионоподобную, конформацию. У грибов такие молекулы могут передаваться по наследству. Но, как и в случае метилирования ДНК, первичная структура белка в данном случае остаётся прежней, и переноса информации на нуклеиновые кислоты не происходит.

История возникновения термина «догма»

Оригинальный текст (англ.)

My mind was, that a dogma was an idea for which there was no reasonable evidence. You see?!" And Crick gave a roar of delight. "I just didn"t know what dogma meant. And I could just as well have called it the "Central Hypothesis," or - you know. Which is what I meant to say. Dogma was just a catch phrase

Кроме того, в автобиографической книге «Что за сумасшедший поиск» («What mad pursuit») Крик писал о выборе слова «догма» и о вызванных этим выбором проблемах:

«Я назвал эту идею центральной догмой, я подозреваю, по двум причинам. Я уже использовал слово гипотеза в гипотезе о последовательности, кроме того, я хотел предположить, что это новое допущение более центральное и сильное… Как оказалось, использование термина догма вызвало больше неприятностей, чем оно того стоило… Через много лет Жак Моно сказал мне, что по-видимому я не понимал, что подразумевается под словом догма, которая означает часть веры, не подлежащая сомнению. Я смутно опасался подобного значения слова, но поскольку я считал, что все религиозные убеждения не имеют основания, я использовал слово так, как понимал его я, а не большинство других людей, применив его к грандиозной гипотезе, которая, несмотря на внушаемое ею доверие, была основана на небольшом количестве прямых экспериментальных данных».

Оригинальный текст (англ.)

I called this idea the central dogma, for two reasons, I suspect. I had already used the obvious word hypothesis in the sequence hypothesis, and in addition I wanted to suggest that this new assumption was more central and more powerful. ... As it turned out, the use of the word dogma caused almost more trouble than it was worth.... Many years later Jacques Monod pointed out to me that I did not appear to understand the correct use of the word dogma, which is a belief that cannot be doubted. I did apprehend this in a vague sort of way but since I thought that all religious beliefs were without foundation, I used the word the way I myself thought about it, not as most of the world does, and simply applied it to a grand hypothesis that, however plausible, had little direct experimental support.

См. также

Примечания

Ссылки

  1. B. J. McCarthy, J. J. Holland. Denatured DNA as a Direct Template for in vitro Protein Synthesis // PNAS . - 1965. - Т. 54. - С. 880-886.
  2. Werner, E. Genome Semantics, In Silico Multicellular Systems and the Central Dogma // FEBS Letters . - 2005. - В. 579. - С. 1779-1782. PMID 15763551
  3. Horace Freeland Judson. Chapter 6: My mind was, that a dogma was an idea for which there was no reasonable evidence. You see?! // The Eighth Day of Creation: Makers of the Revolution in Biology (25th anniversary edition). - 1996.

Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле. Транскрипция и трансляция. Условно весь процесс транскрипции и трансляции можно отобразить в cхеме: Транскрипция представляет собой процесс воспроизведения информации, хранящейся в ДНК, в виде одноцепочной молекуле и РНК (информационной РНК, которая переносит информацию о строении белка из ядра клетки в цитоплазму клетки к рибосомам). Этот процесс проявляется в синтезе молекулы и РНК по матрице ДНК. Молекула и РНК состоит и нуклеотидов, каждый из которых включает в себя остаток фосфорной кислоты сахар рибозу и одно из четырёх азотистых оснований (А, Г, Ц и У-урацил вместо Т-тюлина). В основе синтеза и РНК лежит принцип комплиментарности, т.е. против А в одной цепочке ДНК располагается У в и РНК, а против Г в ДНК - Ц в и РНК (см. рис. Транскрипция- на предыдущей странице), таким образом, и РНК является комплиментарной копией ДНК или её определённого участка, и содержит информацию, кодирующую аминокислоту или белок. Каждая аминокислота в ДНК и РНК шифруется последовательностью из 3-х нуклеотидов, т.е. - триплетом, который получил название кодонЕсли в транскрипции узнавание двух молекул друг другом проявляется только в принципе комплиментарности, то в трансляции помимо комплиментарности (временное объединение кодона и РНК и антикодона РНК (транспортной РНК, которая подносит аминокислоты нужные для синтеза белка, к месту синтеза - рибосома - см. рис. Транскрипция) молекулярное узнавание проявляется в процессе присоединения аминокислоты к тРНК с помощью фермента кодазы. Дело в том, что молекула тРНК состоит из головки, включающей в себя антиэАОК-триплет, состоящий из последовательности трёх нуклеотидов, и хвостика имеющего определённую форму. Сколько существует видов антикозонов тРНК, столько и существует форм хвостиков, и каждому антикозону соответствует своя форма хвостика в тРНК. Сколько существует форм хвостиков, столько существует видов форм фермента кодазы, который присоединяет аминокислоты к хвостику, а форма каждой кодазы подходит только к форме определённой аминокислоты. Т.о., тРНК носит с собой информацию не только в п последовательности нуклеотидов в антикозоне но и в форме хвостика молекулы. А основная передача информации здесь заключается в воспроизведении последовательности аминокислот в белке, которую подсказывает ферменту, кодирующему белок и РНК

Предыдущие материалы:

Весь процесс биосинтеза белка можно представить в виде очень простой схемы, которую необходимо хорошо запомнить (рис. 1). Представление о том, что генетическая информация хранится в клетке в виде молекулы ДНК и реализуется благодаря транскрипции в РНК и последующей трансляции в белок известно как «Центральная догма молекулярной биологии».

ДНК----®РНК-----® белок.

транскрипция трансляция

Как видно, функционирование (экспрессия) генов от ДНК до белка реализуется благодаря двум глобальным молекулярно-генетическим механизмам: транскрипции и трансляции.

Итак, генная информация у всех клеток закодирована в виде последовательности нуклеотидов в ДНК. Первый этап реализации этой информации состоит в образовании РНК по подобию ДНК, который называется транскрипцией.

I этап биосинтеза белка – транскрипция.

Транскрипция начинается с обнаружения особого участка гена в молекуле ДНК, который указывает место начала транскрипции - промотора (рис. 2) с помощью специального фермента РНК-полимеразы. После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи расходятся и на одной из них фермент осуществляет синтез м-РНК. Сборка рибонуклеотидов в цепь происходит с соблюдением правила комплементарности нуклеотидов. В связи с тем, что РНК-полимераза способна собирать полинуклеотид только в одном направлении, а именно от 5’ к 3’-концу, матрицей может служить только та цепь ДНК, которая обращена к ферменту своим 3’-концом. Такую цепь называют матричной или антисмысловой (рис.2). Другая, антипараллельная цепь ДНК, называется кодогенной или смысловой, т.к. последовательность нуклеотидов этой цепи полностью соответствует последовательности РНК и читается в том-же направлении, т.е. от 5’ к 3’-концу. Поэтому генетический код иногда пишут по молекуле РНК, иногда – по кодогенной ДНК.

Продвигаясь вдоль цепи ДНК, РНК-полимераза осуществляет последовательное точное переписывание информации до тех пор, пока она не встречает на своем пути STOP-кодон-терминатор транскрипции. У человека три стоп-кодона – TAG, TGA, ТAA (или UAG, UGA, UAA).

П этап биосинтеза белка -трансляция .

Трансляция включает 3 фазы: инициация, элонгация и терминация.

1 - Инициация - фаза начала синтеза полипептида.

1) Происходит объединение находящихся порознь в цитоплазме субчастиц рибосомы (большой и малой). Формируется рибосома, в составе которой различают пептидильный и аминоацильный центры.

2) Происходит присоединение к рибосоме первой аминоацил т-РНК.

Рассмотрим, как же проходят в клетке эти процессы.

1) В молекуле любой мРНК вблизи 5’-конца имеется участок, комплементарный последовательности нуклеотидов рРНК малой субчастицы рибосомы. Рядом с этим участком расположен стартовый кодон АУГ, кодирующий аминокислоту - метионин. Малая субчастица рибосомы соединяется с мРНК. Затем происходит объединение малой субчастицы с большой субчастицей, формируется рибосома. В рибосоме образуются два важных участка – пептидильный центр - П-участок и аминоацильный центр – А-участок. К концу фазы инициации П-участок занят аминоацил т-РНК, связанной со стартовой аминокислотой - метионином, а А-участок готов принять следующий за стартовым кодон.

2) В рибосомы транспортируются молекулы тРНК (см. таблицу, рис. 6). Молекулы тРНК состоят из 75-95 нуклеотидов и по форме напоминают лист клена (рис. 7). В своем составе они имеют два активных центра:

1) акцепторный конец, к которому присоединяется транспортируемая аминокислота путем ковалентной связи с затратой энергии 1 АТФ. Формируется аминоацил т-РНК.

2) антикодоновая петля, комплементарная кодону мРНК.

2-я фаза элонгация - удлиннение полипептида (рис. 6, таблица) .

Внутри большой субчастицы рибосомы одновременно находятся около 30 нуклеотидов мРНК и только 2 информативных триплета-кодона: один - в аминоацильном А-участке, другой - в пептидильном П-участке. Молекула тРНК с аминокислотой вначале подходит к А-центру рибосомы. В том случае, если антикодон т-РНК комплементарен кодону мРНК, происходит временное присоединение аминоацил-тРНК к кодону мРНК. После этого рибосома передвигается на 1 кодон по мРНК, а тРНК с аминокислотой перемещается в П-участок. К освободившемуся А-участку приходит новая аминоацил-тРНК с аминокислотой и вновь останавливается там в том случае, если антикодон тРНК комплементарен кодону м-РНК. Между аминокислотой и полипептидом образуется пептидная связь и одновременно разрушается связь между аминокислотой и ее тРНК, а также между тРНК и мРНК. Освободившаяся от аминокислоты тРНК выходит из рибосомы в цитоплазму. Она готова соединиться со следующей аминокислотой. Рибосома снова перемещается на 1 триплет.

Какая же информация записана в молекуле ДНК, и как происходит расшифровка или декодирование этой информации? В начале ХХ века в 1902 году Арчибальд Гаррод высказал предположение о том, что некоторые наследственные заболевания обусловлены врожденными ошибками метаболизма. В 30-е годы в работах Бидла и Эфрусси, выполненных на дрозофиле, было убедительно показано, что мутации блокируют определенные этапы биосинтеза конечного продукта. И, наконец, в 1952 году были найдены прямые доказательства предположения А. Гаррода на примере известного наследственного заболевания человека – гликогеноза 1 типа. Было показано, что болезнь развивается вследствие снижения активности всего лишь одного фермента – глюкозо-6-фосфатазы. Так было сформулировано важнейшее положение: «один ген – один фермент», названное впоследствии центральной догмой молекулярной генетики . В дальнейшем было показано, что это положение справедливо не только для ферментов, но и для других белков. Современная формулировка центральной догмы молекулярной генетики звучит так: «один ген – одна полипептидная цепь », так как многие белки состоят из разных полипептидных цепей, при этом каждая из них кодируется собственным . Но и это положение оказывается справедливо не для всех генов. Конечными продуктами примерно четверти генов человека являются не белки, а рибонуклеиновые кислоты () .

Также как ДНК, состоят из четырех типов произвольно чередующихся нуклеотидов. Правда, в функции Т выполняет другой нуклеотид – У (урацил) – рис.15. Второе важное структурное отличие заключается в том, что в РНК в основании располагается другой сахар — не дезоксирибоза, а рибоза. Рибоза также содержит 5 углеродных атомов, однако в отличие от дезоксирибозы атом водорода при втором атоме углерода в рибозе замещен на гидроксильную группу (-ОН). РНК функционируют в виде однонитевых структур, хотя они и способны образовывать двунитевые структуры, в частности, с молекулами ДНК.

Разберем более подробно, как происходит переход от ДНК к полипептидной цепи – рис. 17.

Рисунок 17. Центральная догма молекулярной генетики

Первым шагом на пути расшифровки информации в молекуле ДНК является транскрипция – синтез молекул РНК, комплементарных определенным участкам в молекуле ДНК. Транскрипция происходит в ядрах клеток и осуществляется с помощью фермента – РНК-полимеразы . Те участки молекулы ДНК, которые транскрибируются, как раз и являются генами. Молекулы РНК, которые образуются в результате транскрипции, носят название преРНК или точнее первичный РНК-транскрипт. Серия модификаций превращает преРНК в информационную или матричную РНК — мРНК . Большой вклад в открытие и изучение роли мРНК внесли исследования С. Бреннера и Ф. Жакоба, выполненные в 1961 году на микроорганизмах. При процессинге преРНК, то есть переходе от преРНК к мРНК, происходят изменения на концах молекулы. Это полиаденелирование – присоединение полиА-последовательности к 3’-концу, и кэпирование – присоединение гуанозин-3-фосфата к 5’-концу молекулы преРНК. Концевые модификации обеспечивают стабилизацию мРНК и возможность ее продвижения к нужным органеллам, в первую очередь, к рибосомам. У прокариот процессинг преРНК ограничивается только этими концевыми модификациями.

Но у эукариот, в том числе и у человека, одной из главных смысловых модификаций при переходе от преРНК к мРНК является сплайсинг . Для того чтобы определить, что такое сплайсинг, нужно вспомнить о прерывистой структуре большинства генов эукариот. В отличие от прокариот, кодирующие области генов эукариот, которые называются экзонами , как правило, перемежаются с длинными некодирующими участками – интронами . В процессе транскрипции и экзоны, и интроны переписываются в молекулу преРНК. А потом в ходе процессинга преРНК действует механизм избирательного вырезания интронов и сшивки экзонов с образованием мРНК. Это и есть сплайсинг – рис.18. Поскольку интроны суммарно, в среднем, значительно длиннее экзонов, молекулы мРНК могут быть в десятки раз короче молекул преРНК.

Рисунок 18. Сплайсинг

На следующем этапе мРНК переходит в цитоплазму клетки и транслируется. Трансляция – это синтез полипептидной цепи по молекуле мРНК. На рис. 19 изображены основные этапы трансляции.

Рисунок 19. Трансляция мРНК

Трансляция происходит на рибосомах – небольших органеллах, широко представленных в клетках. Рибосомы состоят из двух главных субъединиц рибосомальной РНК (рРНК) . Важнейшими участниками процесса трансляции являются молекулы транспортной РНК (тРНК) . Молекулы тРНК имеют форму кленового листа (рис. 20), и они способны образовывать комплекс с одной из аминокислот и транспортировать ее к рибосоме. Какую именно аминокислоту будет транспортировать тРНК, зависит от последовательности из трех нуклеотидов в очень важном функциональном участке тРНК, который называется антикодоном .

Рисунок 20. Транпортная РНК (тРНК)

В процессе трансляции три нуклеотида мРНК, которые называются кодоном или кодирующим триплетом , входят в рибосому. Это является сигналом приближения к рибосомальному комплексу той тРНК, у которой антикодон комплементарен этому кодону, и она доставляет свою аминокислоту. После этого происходит дальнейшее продвижение рибосомы по мРНК, и в неё включается следующий кодон. Это является сигналом приближения к рибосомальному комплексу другой тРНК, у которой антикодон комплементарен следующему кодону. И эта новая тРНК доставляет к рибосомальному комплексу следующую аминокислоту, которая образует пептидные связи с предыдущей. Таким образом, происходит сшивка аминокислот на рибосоме с образованием полипептидной цепи.

Итак, полипептидная цепь – это последовательность аминокислот, соединенных между собой пептидными связями. Зрелый белок отличается от полипептидной цепи, прежде всего, наличием третичной пространственной структуры. В процессе созревания белка, то есть при белковом процессинге, на одной полипептидной цепи могут происходить десятки биохимических реакций. Белковый процессинг высоко специфичен для разных белков, и его изучение выходит за рамки нашего курса.

В основе перехода от последовательности нуклеотидов в мРНК к последовательности аминокислот в полипептидной цепи лежит генетический код (табл.3) или соответствие последовательности из трех нуклеотидов в мРНК определенной аминокислоте в белке.

Таблица 3. Генетический код

Физическим прообразом генетического кода служат молекулы транспортных РНК. Именно они обеспечивают соответствие между нуклеотидами в мРНК и аминокислотами в белке. Итак, генетический код триплетен и составлен из четырех нуклеотидов. Количество возможных сочетаний из четырех нуклеотидов по три в кодоне равно 4 3 или 64. Из этих 64 вариантов три являются сигналами прекращения процесса трансляции. Это стоп-кодоны или нонсенс-кодоны . Как только любой из этих вариантов включается в рибосому, трансляция прекращается. Остальные триплеты кодируют 20 аминокислот, причем все аминокислоты, за исключением метионина, кодируются не одним, а несколькими вариантами триплетов. Лейцин, например, кодируется шестью вариантами триплетов. Это свойство генетического кода называется вырожденностью . Вариация между триплетами, кодирующими одну и ту же аминокислоту и потому получившими название кодонов-синонимов или синономических триплетов , как правило, идет по третьему нуклеотиду в кодоне.

Расшифровка генетического кода, которая ассоциируется с исследованиями М. Ниренберга, Х. Г. Корана и М. Мессельсона, выполненными в 1966 году, также относится к разряду величайших открытий в области молекулярной генетики, позволяющих перейти от анализа генов к анализу белков и изучения функционирования клетки, как целой взаимосвязанной системы. Действительно, знание нуклеотидной последовательности кодирующей ДНК позволяет однозначно прогнозировать аминокислотную последовательность кодируемого белка. В то же время знание аминокислотной последовательности полипептидной цепи не позволяет однозначно прогнозировать нуклеотидную последовательность мРНК или кодирующую область гена в силу вырожденности генетического кода. Например, стоит в белке лейцин, и Вы не можете сказать, какой из шести возможных синономических триплетов кодирует эту аминокислоту в гене. Вы можете только написать все шесть возможных вариантов триплетов.

А почему метионин кодируется одним вариантом триплетов? Потому что он кодируется ATG-кодоном, который, в свою очередь, является местом начала транскрипции или, как говорят, сайтом инициации транскрипции . А потому трансляция всех белков начинается с метионина. Это незначащая аминокислота, она затем отщепляется при процессинге белка. Таким образом, необходимо запомнить, что ATG – это начало транскрипции, а метионин – это начало трансляции.

Удивительным является то, что генетический код оказался одинаковым для всех живых существ от вирусов до человека. Универсальность генетического кода является бесспорным доказательством родственности всего живого на Земле. При этом наиболее правдоподобной гипотезой возникновения жизни кажется ее привнесение в форме взаимодействия нуклеиновых кислот и белков откуда-то извне. Правда, остается неразрешимым вопрос, а как жизнь образовалась там, откуда она пришла на Землю? В этом месте уместнее всего произнести слово Бог и говорить о божественном характере возникновения жизни на Земле. Но это уже вопрос не науки, а убеждения. С другой стороны, еще 100 лет назад все описанные ранее и вполне материальные факты показались бы настолько фантастическими, что их объяснение могло быть произведено только с позиций божественного начала. Можно лишь надеется, что наши внуки или даже правнуки узнают, откуда пришла жизнь на Землю.

На универсальности генетического кода основана возможность проведения геноинженерных манипуляций с молекулами ДНК. Можно, например, выделить ген человека, включить его в состав ДНК вируса, ввести эту генетическую конструкцию в бактериальную клетку и быть уверенным в том, что бактериальная клетка прочтет информацию, записанную в гене человека, точно так же, как это сделала бы клетка человека. Почему? Потому что генетический код универсален! Одним из практических приложений этих биотехнологий является геноинженерное производство лекарственных препаратов, таких как , интерферон и многие другие.

Рассмотренные в данном разделе основные информационные процессы , такие как репликация, транскрипция и трансляция, обеспечивающие передачу генетической информации внутри или между клетками, основаны на матричных процессах , то есть таких процессах, когда одна из нитей ДНК или РНК служит матрицей для последующего синтеза. К матричным процессам относятся также репарация , то есть исправление дефектов, возникающих при репликации ДНК и рекомбинация — обмен между гомологичными (кроссинговер) или негомологичными участками ДНК. Молекулярные основы всех матричных процессов в настоящее время хорошо изучены.