» » Основные свойства азотсодержащих соединений.

Основные свойства азотсодержащих соединений.

















































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  1. Актуализировать знания учащихся о природных полимерах на примере белков. Познакомить с составом, строением, свойствами и функциями белков.
  2. Способствовать развитию внимания, памяти, логического мышления, умению сравнивать и анализировать.
  3. Формирование интереса у учащихся к данной теме, коммуникативных качеств.

Тип урока: урок формирования новых знаний.

Образовательные ресурсы:

  1. Библиотека электронных наглядных пособий “Химия 8–11 классы”, разработчик “Кирилл и Мефодий”, 2005 г.
  2. Электронное издание “Химия 8-11. Виртуальная лаборатория”, разработчик Мар ГТУ, 2004 г.
  3. Электронное издание по курсу “Биотехнология”, разработчик “Новый диск”, 2003 г.

Материально-техническое оснащение, дидактическое обеспечение: Компьютер, проектор, экран. Презентация “Белок”. Учеб. Рудзитис Г.Е.Химия 10-й класс 2011 г., Учеб. Ю.И. Полянский. Общая биология.10–11-й класс. 2011 г.

Лабораторное оборудование и реактивы: Раствор белка, гидроксид натрия, ацетат свинца, сульфат меди, концентрированная азотная кислота, спиртовка, держатель, пробирки.

Ход урока

I. Организационный момент (3–5’)

II. Сообщение темы и цели урока (3–5’). (Слайд 1–2)

III. Объяснение материала по теме “Азотсодержащие органические соединения. Белки”.

1. Белки (Слайд 3 ). Изучение белка начинаем с высказывания биохимика Ж. Мюльдера “Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна”.

2. Определение белка (Слайд 4–6) учащиеся обсуждают и записывают в тетрадь.

Слайд 4. Определение белков. Белки – азотсодержащие высокомолекулярные органические вещества со сложным составом и строением молекул.

Слайд 5. Белки наряду с углеводами и жирами являются основной составной частью нашей пищи.

Слайд 6. Белок – высшая форма развития органических веществ. С белками связаны все жизненные процессы. Белки входят в состав клеток и тканей всех живых организмов. Содержание белков в различных клетках может колебаться от 50 до 80%.

3. История белка (Слайд 7–11). Знакомство с первыми исследователями белка (Якопо Бартоломео Беккари, Франсуа Кене, Антуана Франсуа де Фуркруа).

Слайд 7. Название белки получили от яичного белка. В древнем Риме яичный белок применялся как лечебное средство. Подлинная история белков начинается, когда появляются первые сведения об их свойствах.

Слайд 6. Впервые белок был выделен (в виде клейковины) в 1728 г. итальянцем Я.Б. Беккари из пшеничной муки. Это событие принято считать рождением химии белка. Вскоре обнаружили, что сходные соединения находятся во всех органах не только растений, но и животных. Этот факт очень удивил ученых, привыкших делить вещества на соединения “животного и растительного мира”. Общим свойством новых веществ оказалось то, что при нагревании они выделяли вещества основного характера – аммиак и амины.

Слайд 9. 1747 год – французский физиолог Ф.Кене впервые применил термин “белковый” к жидкостям живого организма.

Слайд 10. 1751 год термин белковый вошел в “Энциклопедию” Д.Дидро и Ж.Аламбера.

4. Состав белка (Слайд 12) учащиеся записывают в тетрадь.

Слайд 12. Состав белков. Элементарный состав белка колеблется незначительно (в % на сухую массу): C – 51–53%, O – 21,5–23,5%, N – 16,8–18,4%, H – 6,5–7,3%, S – 0,3–2,5%. Некоторые белки содержат P, Se и др.

5. Строение белка (Слайд 13–15).

Слайд 13. Белки – природные полимеры, молекулы которых построены из остатков аминокислот соединенных пептидной связью. В инсулине 51 остаток, в миоглобине 140.

Относительная молекулярная масса белков очень большая, колеблется от 10 тысяч до многих миллионов. Например: инсулин – 6500, белок куриного яйца – 360 000, а одного из белков мышц достигает 150000.

Слайд 14. В природе обнаружено свыше 150 аминокислот, но только около 20 аминокислот входит в состав белков.

Слайд 15. Учащиеся повторяют определение, название и строение аминокислот. Аминокислотами называют азотсодержащие органические соединения, в молекулах которых содержатся аминогруппы – NН 3 и карбоксильные группы – СООН.

Аминокислоты можно рассматривать как производные карбоновых кислот, у которых атом водорода в радикале замещен на аминогруппу.

6. Пептидная теория строения белка (Слайд 16–19). Вопрос учащимся Что называется пептидной связью?

Пептидная связь – это связь образующая между остатком – NН – аминогруппы одной молекулы аминокислоты и остатком – СО – карбоксильной группы другой молекулы аминокислоты.

Слайд 16. К началу ХIХ века появляются новые работы по химическому изучению белков. Фишер Эмиль Герман в1902году предложил пептидную теорию строения белка, экспериментально доказал, что аминокислоты связываются, образуя соединения, названные им полипептидами. Лауреат Нобелевской премии 1902 года.

Слайд 17. Белки включают несколько сотен, а иногда тысяч комбинаций основных аминокислот. Порядок их чередования самый разнообразный. Каждая аминокислота может встречаться в белке несколько раз. Для белка, состоящего из 20 остатков аминокислот теоретически возможно около 2х10 18 вариантов (один из вариантов).

Слайд 18. Полимер, состоящий из аминокислот (второй вариант).

19 Слайд. Цепь, состоящую из большого числа соединенных друг с другом аминокислотных остатков называют полипептидной. В ее состав входят десятки и сотни аминокислотных остатков. У всех белков полипептидный остов одинаков. На один виток спирали приходится 3,6 аминокислотных остатка.

7. Классификация белков (Слайд20). Сообщение учащегося на тему “Несколько классификаций белков”. (Приложение 2) .

8. Структура белковой молекулы (Слайд 21–29). При изучении состава белков было установлено, что все белки построены по единому принципу и имеют четыре уровня организации. Учащиеся слушают , обсуждают и записывают определение структур белковой молекулы.

Слайд 21. Структура белковой молекулы. В первой половине 19 века выяснилось, что белки составляют неотъемлемую часть всех без исключения живых веществ на Земле. Открытие аминокислот, исследование свойств и методов получения пептидов явились ступенькой к установлению структуры белковых молекул. При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.

Слайд 22. Первичная структура белка. Представляет собой линейную цепь аминокислотных остатков, расположенных в определенной последовательности и соединенных между собой пептидными связями. Число аминокислотных звеньев в молекуле может колебаться от нескольких десятков до сотен тысяч. Это отражается на молекулярной массе белков, изменяющейся в широких пределах: от 6500 (инсулин) до 32 миллионов (белок вируса гриппа). Первичная структура белковой молекулы играет чрезвычайно важную роль. Изменение только одной аминокислоты на другую может привести либо к гибели организма, либо к появлению совершенно нового вида.

Слайд 23. Повторение механизма образования пептидной связи.

Учащиеся получают задание: Составить уравнение реакции получения дипептида из любых двух аминокислот из предложенного списка (прилагается таблица аминокислот). Проверка выполненного задания.

Слайд 24. Данилевский А.Я. – русский биохимик, академик. Один из основоположников отечественной биохимии. Работал в области ферментов и белков. В 1888 г. Данилевский А.Я. предложил теорию строения белковой молекулы (существование в белках пептидных связей). Экспериментально доказал, что под действием сока поджелудочной железы белки подвергаются гидролизу. Изучал белки мышц (миозин), обнаружил антипепсин и антитрипсин.

Слайд 25. Вторичная структура белка – скрученная в спираль полипептидная цепь. Она удерживается в пространстве за счет образования многочисленных водородных связей между группами – СО – и – NH –, расположенных на соседних витках спирали. Существует два класса таких структур – спиралевидные и складчатые. Все они стабилизируются за счет водородных связей. Полипептидная цепь может быть закручена в спираль, на каждом витке которой располагается 3,6 звена аминокислот с обращенными наружу радикалами. Отдельные витки скреплены между собой водородными связями между группами различных участков цепи. Такая структура белка называется – спираль и наблюдается, к примеру, у кератина (шерсть, волосы, рога, ногти). Если боковые группы аминокислотных остатков не очень велики (глицин, аланин, серин), две полипептидные цепи могут быть расположены параллельно и скрепляться между собой водородными связями. При этом полоса получается не плоской, а складчатой. Это – структура белка, характерная, например, для фиброина шелка.

Слайд 26. В 1953 г. Л. Полинг разработал модель вторичной структуры белка. В 1954 году ему была присуждена Нобелевская премия по химии. В 1962 году – Нобелевская премия мира.

Слайд 27. Третичная структура – это способ расположения спирали или структуры в пространстве. Это реальная трехмерная конфигурация закрученной в пространстве спирали полипептидной цепи (т. е. спираль, скрученная в спираль).

Слайд 28. Третичная структура поддерживается связями, возникающими между функциональными группами радикалов – дисульфидные мостики (–S–S–) между атомами серы (между двумя остатками цистеина различных участков цепи), – сложноэфирные мостики между карбоксильной группой (–COOH) и гидроксильной группой (–OH), – солевые мостики между карбоксильной группой (–COOH) и аминогруппой (–NH 2). По форме белковой молекулы, которая определяется третичной структурой, выделяют глобулярные белки (миоглобин) и фибриллярные (кератин волоса), которые выполняют в организме структурную функцию.

Слайд 29. Четвертичная структура – форма взаимодействия между несколькими полипептидными цепями. Между собой полипептидные цепи соединяются водородными, ионными, гидрофобными и др. связями. Сообщение учащегося по теме “Четвертичная структура белковой молекулы”. (Приложение 3) .

9. Химические свойства белков (Слайд 30). Из химических свойств рассматриваем следующие свойства: денатурацию, гидролиз и цветные реакции на белок.

Слайд 30. Свойства белков многообразны: некоторые белки – твердые вещества, нерастворимые в воде и солевых растворах; большинство белков – жидкие или студнеобразные, растворимые в воде вещества (например, альбумин – белок куриного яйца). Протоплазма клеток состоит из коллоидного белка.

Слайд 31. Денатурация белков – разрушение вторичной, третичной и четвертичной структур белковой молекулы под действием внешних факторов. Обратимая денатурация возможна в растворах солей аммония, калия и натрия. Под действием солей тяжелых металлов происходит необратимая денатурация. Поэтому для организма крайне вредны пары тяжелых металлов и их солей. Для дезинфекции, консервирования и пр. используют формалин, фенол, этиловый спирт действие которых также приводят к необратимой денатурации. Белок при денатурации утрачивает ряд важнейших функций живой структуры: ферментативные, каталитические, защитные и др.

10. Денатурация белков (Слайд 31–32). Денатурация белков – разрушение вторичной, третичной и четвертичной структур белковой молекулы под действием внешних факторов. (Учащиеся записывают определение в тетрадь)

Слайд 32. Денатурация белков. Факторы вызывающие денатурацию: температура, механическое воздействие, действие химических веществ и др.

11. Виртуальная лабораторная работа (Слайд 33–35). Просмотр видео фильма и обсуждение.

Слайд 33. Опыт №1. Обратимая денатурация белка. К раствору белка добавляют насыщенный раствор сульфата аммония. Раствор мутнеет. Произошла денатурация белка. В пробирке осадок белка. Этот осадок можно опять растворить если несколько капель мутного раствора добавить в воду и раствор помешать. Осадок растворяется.

Слайд 34. Опыт №2. Необратимая денатурация белка. Нальем в пробирку белок и нагреем его до кипения. Прозрачный раствор мутнеет. Происходит выпадение в осадок свернувшегося белка. При воздействии на белки высокой температуры происходит необратимое свертывание белка.

Слайд 35. Опыт №3. Необратимая денатурация белка под действием кислот. В пробирку с азотной кислотой добавить осторожно раствор белка. На границе двух растворов появилось кольцо свернувшегося белка. При встряхивании пробирки количество свернувшегося белка увеличилось. Происходит необратимое свертывание белка.

12. Цветные реакции белков (Слайд 36). Демонстрация опытов :

  1. Биуретовая реакция.
  2. Ксантопротеиновая реакция.
  3. Качественное определение серы в белках.

1) Биуретовая реакция. При действии на белки свежеполученного осадка гидроксида меди в щелочной среде возникает фиолетовое окрашивание. Из цветных реакций на белки наиболее характерна биуретовая т. к. пептидные связи белков дают комплексное соединение с ионами меди (II).

2) Ксантопротеиновая реакция (взаимодействие ароматических циклов радикалов с концентрированной азотной кислотой). При действии на белки концентрированной азотной кислотой образуется белый осадок, который при нагревании желтеет, а при добавлении раствора аммиака становится оранжевым.

3) Качественное определение серы в белках. Если к раствору белков прилить ацетат свинца, а затем гидроксида натрия и нагреть, то выпадает черный осадок, что указывает на содержание серы.

13. Гидролиз белков (Слайд 37–38). Виды гидролиза белка учащиеся анализируют и записывают в тетрадь.

Слайд 37. Гидролиз белков одно из важнейших свойств белков. Происходит в присутствии кислот, оснований или ферментов. Для полного кислотного гидролиза нужно кипятить белок соляной кислотой в течение 12-70 часов. В организме полный гидролиз белков происходит в очень мягких условиях под действием протолитических ферментов. Важно обратить внимание учащихся на то, что конечным продуктом гидролиза белков являются аминокислоты.

Слайд 38. Виды гидролиза белка. Каждый вид организмов, каждый орган и ткань содержат свои характерные белки, и при усвоении белков пищи организм расщепляет их до отдельных аминокислот, из которых организм создает собственные белки. Расщепление белков осуществляется в пищеварительных органах человека и животных (желудке и тонком кишечнике) под действием пищеварительных ферментов: пепсина (в кислой среде желудка) и трипсина, хемотрипсина, дипептидазы (в слабощелочной – pH 7,8 среде кишечника). Гидролиз – основа процесса пищеварения. В организм человека ежедневно должно поступать с пищей 60 80 г белка. В желудке под действием ферментов и соляной кислоты белковые молекулы распадаются на “кирпичики” аминокислоты. Попадая в кровь, они разносятся по всем клеткам организма, где участвуют в строительстве собственных белковых молекул, свойственных только данному виду.

14. Исследования в области изучения белков в 19 веке (Слайд 39–42). Открытия ученых – химиков Ф. Сэнгера, М.Ф.Перуц и Д.К. Кендырю.

Слайд 39. Учеными полностью определена структура некоторых белков: гормона инсулина, антибиотика грамицидина, миоглобина, гемоглобина и т. д.

Слайд 40. В 1962 г. М.Ф. Перуц и Д.К. Кендырю были удостоены Нобелевской премии за исследования в области изучения белков.

Слайд 41. Молекула гемоглобина (Mr = (C 738 H 1166 O 208 S 2 Fe) = 68000) построена из четырех полипептидных цепей (Mr = 17000 каждая). При соединении с кислородом молекула изменяет свою четвертичную структуру, захватывая кислород.

Слайд 42. В 1954 г. Ф. Сэнгер расшифровал аминокислотную последовательность в инсулине (через 10 лет он был синтезирован). Ф. Сенгер – английский биохимик. С 1945 года он приступил к изучению природного белка инсулина. Этот гормон поджелудочной железы регулирует в организме содержание глюкозы в крови. Нарушение синтеза инсулина приводит к сбою углеводного обмена и тяжелому заболеванию – сахарному диабету. Воспользовавшись всеми доступными ему методами и проявив огромное искусство, Ф. Сенгер расшифровал строение инсулина. Оказалось, что он состоит из двух полипептидных цепей длиной 21 и 30 остатков аминокислот, соединенных между собой в двух местах дисульфидными мостиками цистеиновых фрагментов. Работа потребовала долгих девяти лет. В 1958 г. ученому была присуждена Нобелевская премия “за работы по структуре протеинов, особенно инсулина”. На основе открытия Ф. Сенгера в 1963 г был завершен первый синтез инсулина из отдельных аминокислот. Это был триумф синтетической органической химии.

15. Функции белков (Слайд 43). Проводится самостоятельная работа учащихся с учебником Ю.И. Полянского. Общая биология стр.43-46. Задание для учащихся: записать в тетрадь функции белков.

Слайд 43. Проверка и закрепление выполненного задания.

16. Белки как компонент пищи животных и человека (Слайд 44–49). Пищевая ценность белков определяется содержанием в них незаменимых аминокислот.

Слайд 44. При полном расщеплении 1 грамма белка освобождается 17,6 кДж энергии.

Сообщение учащегося на тему: “Белки – источник незаменимых аминокислот в организме” (Приложение 4).

46 Слайд. Менее ценны растительные белки. Они беднее лизином, метионином, триптофаном, труднее перевариваются в желудочно-кишечном тракте.

В процессе пищеварения белки расщепляются до свободных аминокислот, которые после всасывания в кишечнике поступают в кровь и разносятся ко всем клеткам.

47 Слайд. Полноценные и неполноценные белки. Полноценные белки – это те, в состав которых входят все незаменимые аминокислоты. Неполноценные белки содержат не все незаменимые аминокислоты.). Сообщение учащегося на тему – “Энергетическая ценность некоторых продуктов”. (Приложение 6) .

17. Значение белков (Слайд 48–49).

Слайд 48. Белки – обязательная составная часть всех живых клеток, играют исключительно важную роль в живой природе, являются главным, наиболее ценным и незаменимым компонентом питания. Белки являются основой структурных элементов и тканей, поддерживают обмен веществ и энергии, участвуют в процессах роста и размножения, обеспечивают механизмы движений, развитие иммунных реакций, необходимы для функционирования всех органов и систем организма.

Слайд 49. Завершаем изучение темы определением жизни Ф. Энгельса “Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка”.

IV. Разбор домашнего задания: Химия. Г.Е.Рудзитис, стр. 158–162 изучить материал.

V. Подведение итогов урока.

Литература:

  1. Баранова Т.А. Правильное питание. – М.: Интербук, 1991. – С. 78–80.
  2. Волков В.А., Вонский Е.В., Кузнецова Г.И. Выдающиеся химики мира. – М.: ВШ, 1991. 656 с.
  3. Габриелян О.С. Химия. Учеб.10 кл. для общеобразоват. учреждений – М.: Дрофа, 2007.
  4. Горковенко М.Ю. Поурочные разработки по химии. – М.: Вако, 2006. С. 270–274.
  5. Полянский Ю.И. Общая биология. Учеб.10–11 класс. 2011г.
  6. Рудзитис Г.Е. Химия: Органическая химия. Учеб. 10 кл. для общеобразоват. учреждений. – М.: Просвещение, 2011 – стр.158–162.
  7. Фигуровский Н.А. Очерк общей истории химии. От древнейших времен до начала XIX века. – М.: Наука, 1969. 455 с.
  8. Интернет-ресурсы.

Аминами называются производные аммиака NH 3 , в молекуле которого один или несколько атомов водорода замещены остатками углеводородов.

Аминами можно рассматривать и как производные углеводородов, образованные замещением атомов водорода в углеводородах на группы

NH 2 (первичный амин);  NHR (вторичный амин);  NR " R " (третичный амин).

В зависимости от числа атомов водорода у атома азота, замещенных радикалами, амины называют первичными, вторичными или третичными.

Группа - NH 2 , входящая в состав первичных аминов, называется аминогруппой. Группа >NH во вторичных аминах называется иминогруппой .

Номенклатура аминов

Обычно амины называют по тем радикалам, которые входят в их молекулу, с прибавлением слова амин.

СН 3 NH 2 – метиламин; (СН 3) 2 NH – диметиламин; (СН 3) 3 N – триметиламин.

Ароматические амины имеют особенности номенклатуры.

С 6 Н 5 NH 2 фениламин или анилин.

Физические свойства аминов

Первые представители аминов – метиламин, диметиламин, триметиламин – представляют собой при обычной температуре газообразные вещества. Остальные низшие амины – жидкости. Высшие амины – твердые вещества.

Первые представители, подобно аммиаку, растворяются в воде в больших количествах; высшие амины в воде нерастворимы.

Низшие представители обладают сильным запахом. Метиламин CH 3 NH 2 содержится в некоторых растениях, имеет запах аммиака; триметиламин в концентрированном состоянии имеет запах, сходный с запахом аммиака, но в малых концентрациях, с которыми обычно приходится встречаться, имеет очень неприятный запах гнилой рыбы.

Триметиламин (CH 3) 3 N в довольно больших количествах содержится в селедочном рассоле, а также в ряде растений, например, в цветах одного вида боярышника.

Диамины – это группа соединений, которые можно рассматривать как углеводороды, в молекулах которых два атома водорода замещены аминогруппами (NH 2).

Путресцин был впервые найден в гное. Он представляет собой тетраметилендиамин:

Н 2 С – СН 2 – СН 2 – СН 2

  тетраметилендиамин

Кадаверин, гомолог путресцина, был найден в разлагающихся трупах (cadaver – труп), он является пентаметилендиамином:

Н 2 С – СН 2 – СН 2 – СН 2 – СН 2

  пентаметилендиамин

Путресцин и кадаверин образуются из аминокислот при гниении белковых веществ. Оба вещества – сильные основания.

Органические основания, образующиеся при гниении трупов (в том числе путресцин и кадаверин), объединяют общим названием птомаины . Птомаины ядовиты.

Следующий представитель диаминов – гексаметилендиамин – применя-ется для получения ценного синтетического волокна – найлона.

Н 2 С – СН 2 – СН 2 – СН 2 – СН 2 – СН 2

  гексаметилендиамин

Способы получения аминов

1. Действие аммиака на алкилгалогениды (галогенуглеводороды) - реакция Гофмана.

Начальная реакция:

СН 3 I+NH 3 = I

I+NH 3 CH 3 NH 2 +NH 4 I

метиламин

CH 3 NH 2 + СН 3 I[(CH 3) 2 NH 2 ]I

диметиламмонийиодид

[(CH 3) 2 NH 2 ]I + NH 3  (CH 3) 2 NH + NH 4 I

диметиламин

(CH 3) 2 NH + СН 3 I  [(CH 3) 3 NH]I

триметиламмонийиодид

[(CH 3) 3 NH]I + NH 3  (CH 3) 3 N + NH 4 I

триметиламин

(CH 3) 3 N + СН 3 I  [(CH 3) 4 N]I

тетраметиламмонийиодид –

соль четырехзамещенного аммония

Исходный метиламин может быть получен и следующим образом:

I + NaOH = CH 3 NH 2 + NaI + H 2 O

метиламин

В результате этих реакций получается смесь замещенных солей аммония (на первых стадиях реакцию остановить невозможно).

Подобная реакция позволяет получать так называемые инвертные мыла , мыла, которые используются в кислой среде.

(CH 3) 3 N+ С 16 Н 33 Cl[(CH 3) 3 NС 16 Н 33 ]Cl

триметилцетиламмоний хлорид

Моющим действием здесь обладает не анион, как в обычных мылах, а катион. Особенность этого мыла в том, что они используются в кислой среде.

Такие мыла не сушат кожу, имеющую, как известно, кислую среду с

В структуру инвертного мыла можно ввести заместитель, проявляющий антимикробную активность. В этом случае синтезируют бактерицидные мыла, используемые в хирургической практике.

2. Восстановление нитросоединений (катализатор никель)

СН 3 NO 2 + 3H 2 =CH 3 NH 2 + 2Н 2 О

3. В природных условиях алифатические амины образуются в результате гнилостных бактериальных процессов разложения азотистых веществ – в первую очередь при разложении аминокислот, образующихся из белков. Такие процессы происходят в кишечнике человека и животных.

Химические свойства аминов

1. Взаимодействие с кислотами

Амин + кислота = соль

Реакция аналогична реакции образования солей аммония:

NH 3 +HCl=NH 4 Cl

аммиак хлорид аммония

CH 3 NH 2 +HCl= Cl

метиламин хлорид метиламмония

2. Реакция с азотистой кислотой

Эта реакция дает возможность различать первичные, вторичные и третичные алифатические, а также ароматические амины, т.к. они по-разному относятся к действию азотистой кислоты.

Азотистая кислота используется в момент выделения по реакции разбавленной соляной кислоты с нитритом натрия, проводимой на холоду:

NaNO 2 (тв) +HCl(водн)NaCl(водн) +HON=O(водн)

Используя данный видеоурок, все желающие смогут получить представление о теме "Азотсодержащие органические соединения". При помощи этого видеоматериала вы узнаете об органических соединениях, имеющих в своём составе азот. Учитель расскажет об азотосодержащих органических соединениях, их составе и свойствах.

Тема: Органические вещества

Урок: Азотсодержащие органические соединения

В большинстве природных органических соединений азот входит в состав NH 2 - аминогруппы. Органические вещества, молекулы которых содержат аминогруппу , называются аминами. Строение молекул аминов аналогично строению аммиака, и поэтому свойства этих веществ сходны.

Аминами называют производные аммиака, в молекулах которого один или несколько атомов водорода замещены углеводородными радикалами. Общая формула аминов - R - NH 2.

Рис. 1. Шаростержневые модели молекулы метиламина ()

Если замещен один атом водорода, то образуется первичный амин. Например, метиламин

(см. Рис. 1).

Если замещены 2 атома водорода, то образуется вторичный амин. Например, диметиламин

При замещении всех 3 атомов водорода в аммиаке, образуется третичный амин. Например, триметиламин

Разнообразие аминов определяется не только числом замещенных атомов водорода, но и составом углеводородных радикалов. С n Н 2 n +1 - N Н 2 - это общая формула первичных аминов.

Свойства аминов

Метиламин, диметиламин, триметиламин - это газы с неприятным запахом. Говорят, что они обладают запахом рыбы. Благодаря наличию водородной связи, они хорошо растворяются в воде, спирте, ацетоне. Из-за водородной связи в молекуле метиламина наблюдается и большое различие в температурах кипения метиламина (t кип.= -6,3 ° С) и соответствующего углеводорода метана CH 4 (t кип.= -161,5 ° С). Остальные амины являются жидкими или твердыми, при нормальных условиях, веществами, обладающие неприятным запахом. Только высшие амины практически не имеют запаха. Способность аминов вступать в реакции, подобные аммиаку, обусловлена также наличием в их молекуле «неподеленной» пары электронов (см. Рис. 2).

Рис. 2. Наличие у азота «неподеленной» пары электронов

Взаимодействие с водой

Щелочную среду в водном растворе метиламина можно обнаружить с помощью индикатора. Метиламин СН 3 - N Н 2 - тоже основание, но иного типа. Его основные свойства обусловлены способностью молекул присоединять катионы H + .

Суммарная схема взаимодействия метиламина с водой:

СН 3 - N Н 2 + Н-ОН → СН 3 - N Н 3 + + ОН -

МЕТИЛАМИН ИОН МЕТИЛ АММОНИЯ

Взаимодействие с кислотами

Подобно аммиаку, амины взаимодействуют с кислотами. При этом образуются твердые солеподобные вещества.

С 2 Н 5 - N Н 2 + НС l → С 2 Н 5 - N Н 3 + + С l -

ЭТИЛАМИН ХЛОРИД ЭТИЛ АММОНИЯ

Хлорид этиламмония хорошо растворяется в воде. Раствор этого вещества проводит электрический ток. При взаимодействии хлорида этиламмония со щелочью образуется этиламин.

С 2 Н 5 - N Н 3 + С l - + N аОН → С 2 Н 5 - N Н 2 + N аС l + Н 2 О

При горении аминов образуются не только оксиды углерода и вода, но и молекулярный азот .

4СН 3 - N Н 2 + 9О 2 → 4 СО 2 + 10 Н 2 О + 2 N 2

Смеси метиламина с воздухом взрывоопасны.

Низшие амины используют для синтеза лекарственных средств, пестицидов, а также при производстве пластмасс. Метиламин - токсичное соединение. Он раздражает слизистые оболочки, угнетает дыхание, отрицательно действует на нервную систему, внутренние органы.

Подведение итога урока

Вы узнали еще один класс органических веществ - амины. Амины относятся к азотсодержащим органическим соединениям. Функциональная группа аминов - NН 2 , называемая аминогруппой. Амины можно рассматривать как производные аммиака, в молекулах которого один или несколько атомов водорода замещены на углеводородный радикал. Рассмотрели химические и физические свойства аминов.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009.

2. Попель П.П. Химия. 9 класс: Учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С. Кривля. - К.: ИЦ «Академия», 2009. - 248 с.: ил.

3. Габриелян О.С. Химия. 9 класс: Учебник. - М.: Дрофа, 2001. - 224 с.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009. - №№ 13-15 (с. 173).

2. Вычислите массовую долю азота в метиламине.

3. Напишите реакцию горения пропиламина. Укажите сумму коэффициентов продуктов реакции.

НИТРОСОЕДИНЕНИЯ

НИТРОСОЕДИНЕНИЯ − производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на нитрогруппу (NO 2) .

Строение

В зависимости от того, с какими атомами углерода связана нитрогруппа, различают первичные (I), вторичные (II) и третичные (III) нитросоединения.

Номенклатура

По систематической номенклатуре нитросоединения называют, добавляя приставку нитро- к названию соответствующего углеводорода.

Получение

1. При действии азотистокислого серебра на галогеналканы

2. Нитрование алканов разбавленной азотной кислотой при нагревании до 250–500 о С и давлении (парофазное нитрование) – реакция Коновалова . Замещение водорода происходит у менее гидрогенизированного атома углерода

Механизм взаимодействия – радикальный. Нитрующий агент NO 2 × – радикалоподобный оксид азота

Взаимодействие двух радикалов приводит к образованию нитросоединений:

Химические свойства

1. Восстановление нитросоединений с образованием первичных аминов

2. Действие щелочей на нитросоединения

3. Взаимодействие с азотистой кислотой (является качественной реакцией на нитросоединения):

а) соли нитроловых кислот окрашены в ярко-красный цвет (с вторичными нитросоединениями):

б) псевдонитрол имеет бирюзовое окрашивание (с третичныминитросоединениями):

АМИНЫ

АМИНЫ − органические соединения, которые можно рассматривать как производные аммиака, в котором атомы водорода (один, два или три) замещены на углеводородные радикалы.

Амины могут быть первичными, вторичными и третичными (в зависимости от того, сколько атомов водорода при одном атоме углерода замещены на радикал)

Изомерия

Изомерия аминов связана:

1. Со строением углеродного скелета и положением аминогруппы

2. Первичные, вторичные и третичные амины, содержащие одинаковое число атомов углерода, являются изомерами друг друга

Номенклатура

По рациональной номенклатуре название строится следующим образом: в алфавитном порядке перечисляют названия углеводородных радикалов и добавляют окончание -амин .

По систематической номенклатуре

Получение

1. Алкилирование аммиака (при нагревании и при повышенном давлении)

При избытке алкилгалогенида можно получить:

2. Первичные амины получают:

а) восстановлением нитросоединений

б) при восстановлении амидов сильными восстановителями

в) восстановлением нитрилов

3. Взаимодействие амидов кислот со щелочными растворами бромноватистых или хлорноватистых солей (реакция Гофмана)


4. В биологических системах может происходить ферментативноедекарбоксилирование аминокислот

Химические свойства

1. Благодаря наличию электронной пары на атоме азота, все амины обладают основными свойствами. Причём, алифатические амины более сильные основания, чем аммиак.

Водные растворы аминов имеют щелочную реакцию (окрашивают красный лакмус в синий цвет)

2. Амины взаимодействуют с кислотами, образуя соли, которые являются аналогами солей аммония

3. Щёлочи превращают соли аминов в свободные амины

4. Амины – органические аналоги аммиака, поэтому они могут образовывать комплексные соединения с переходными металлами

5. Взаимодействие с азотистой кислотой:

а) первичные амины

б) вторичные амины образуют нитрозоамины

в) третичные амины устойчивы к действию кислоты.

6. Амины вступают в реакцию алкилирования

7. Амины вступают в реакцию ацилирования

Очень важны в народном хозяйстве азотсодержащие органические вещества. Азот может входить в органические соединения в виде нитрогруппы NO 2 , аминогруппы NH 2 и амидогруппы (пептидной группы) – C(O)NH, причем всегда атом азота будет непосредственно связан с атомом углерода.

Нитросоединения получают при прямом нитровании предельных углеводородов азотной кислотой (давление, температура) или при нитровании ароматических углеводородов азотной кислотой в присутствии серной кислоты, например:

Низшие нитроалканы (бесцветные жидкости) используются как растворители пластмасс, целлюлозного волокна, многих лаков, низшие нитроарены (желтые жидкости) – как полупродукты для синтеза аминосоединений.

Амины (или аминосоединения) можно рассматривать как органические производные аммиака. Амины могут быть первичными R – NH 2 , вторичными RR"NH и третичными RR"R" N, в зависимости от числа атомов водорода, которые замещены на радикалы R, R", R". Например, первичный амин - этиламин C 2 H 5 NH 2 , вторичный амин - дижетиламин (CH 3) 2 NH, третичный амин – триэтиламин (C 2 H 5) 3 N.

Амины, как и аммиак, проявляют основные свойства, они в водном растворе гидратируются и диссоциируют как слабые основания:



а с кислотами образуют соли:



Третичные амины присоединяют галогенпроизводные с образованием солей четырехзамещенного аммония:



Ароматические ажины (в которых аминогруппа связана непосредственно с бензольным кольцом) являются более слабыми основаниями, чем алкиламины, из-за взаимодействия неподеленной пары электронов атома азота с?-электронами бензольного кольца. Аминогруппа облегчает замещение водорода в бензольном кольце, например на бром; из анилина образуется 2,4,6-триброманилин:



Получение: восстановление нитросоединений с помощью атомарного водорода (получают либо непосредственно в сосуде по реакции Fe + 2НCl = FeCl 2 + 2Н 0 , либо при пропускании водорода Н 2 над никелевым катализатором Н 2 = 2Н 0) приводит к синтезу первичных аминов:

б) реакция Зинина

Амины используются в производстве растворителей для полимеров, лекарственных препаратов, кормовых добавок, удобрений, красителей. Очень ядовиты, особенно анилин (желто-коричневая жидкость, всасывается в организм даже через кожу).

11.2. Аминокислоты. Белки

Аминокислоты – органические соединения, содержащие в своем составе две функциональные группы – кислотную СООН и аминную NH 2 ; являются основой белковых веществ.

Примеры:




Аминокислоты проявляют свойства и кислот, и аминов. Так, они образуют соли (за счет кислотных свойств карбоксильной группы):



и сложные эфиры (подобно другим органическим кислотам):



С более сильными (неорганическими) кислотами они проявляют свойства оснований и образуют соли за счет основных свойств аминогруппы:



Реакцию образования глицинатов и солей глициния можно объяснить следующим образом. В водном растворе аминокислоты существуют в трех формах (на примере глицина):




Поэтому глицин в реакции со щелочами переходит в глицинат-ион, а с кислотами – в катион глициния, равновесие смещается соответственно в сторону образования анионов или катионов.

Белки – органические природные соединения; представляют собой биополимеры, построенные из остатков аминокислот. В молекулах белков азот присутствует в виде амидогруппы – С(О) – NH– (так называемая пептидная связь С – N). Белки обязательно содержат С, Н, N, О, почти всегда S, часто Р и др.

При гидролизе белков получают смесь аминокислот, например:




По числу остатков аминокислот в молекуле белка различают дипептиды (приведенный выше глицилаланин), трипептиды и т. д. Природные белки (протеины) содержат от 100 до 1 10 5 остатков аминокислот, что отвечает относительной молекулярной массе 1 10 4 – 1 10 7 .

Образование макромолекул протеинов (биополимеров), т. е. связывание молекул аминокислот в длинные цепи, происходит при участии группы СООН одной молекулы и группы NH 2 другой молекулы:




Физиологическое значение белков трудно переоценить, не случайно их называют «носителями жизни». Белки – основной материал, из которого построен живой организм, т. е. протоплазма каждой живой клетки.

При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма). Среди них есть и такие, которые не синтезируются вообще (или синтезируются в недостаточном количестве) самим организмом, они называются незаменимыми аминокислотами и вводятся в организм вместе с пищей. Пищевая ценность белков различна; животные белки, имеющие более высокое содержание незаменимых аминокислот, считаются для человека более важными, чем растительные белки.

Примеры заданий частей А, В, С

1-2. Класс органических веществ

1. нитросоединения

2. первичные амины

содержит функциональную группу

1) – О – NO 2


3. Водородные связи образуются между молекулами

1) формальдегида

2) пропанола-1

3) циановодорода

4) этиламина


4. Число структурных изомеров из группы предельных аминов для состава C 3 H 9 N равно


5. В водном растворе аминокислоты CH 3 CH(NH 2)COOH химическая среда будет

1) кислотной

2) нейтральной

3) щелочной


6. Двойственную функцию в реакциях выполняют (по отдельности) все вещества набора

1) глюкоза, этановая кислота, этиленгликоль

2) фруктоза, глицерин, этанол

3) глицин, глюкоза, метановая кислота

4) этилен, пропановая кислота, аланин


7-10. Для реакции в растворе между глицином и

7. гидроксидом натрия

8. метанолом

9. хлороводородом

10. аминоуксусной кислотой продуктами будут

1) соль и вода

3) дипептид и вода

4) сложный эфир и вода


11. Соединение, которое реагирует с хлороводородом, образуя соль, вступает в реакции замещения и получается восстановлением продукта нитрования бензола, – это

1) нитробензол

2) метиламин


12. При добавлении лакмуса к бесцветному водному раствору 2-аминопропановой кислоты раствор окрашивается в цвет:

1) красный

4) фиолетовый


13. Для распознавания изомеров со строением СН 3 -СН 2 -СН 2 -NO 2 и NH 2 -СН(СН 3) – СООН следует использовать реактив

1) пероксид водорода

2) бромная вода

3) раствор NaHCO 3

4) раствор FeCl 3


14. При действии концентрированной азотной кислоты на белок появляется… окрашивание:

1) фиолетовое

2) голубое

4) красное


15. Установите соответствие между названием соединения и классом, к которому оно относится




16. Анилин действует в процессах:

1) нейтрализация муравьиной кислотой

2) вытеснение водорода натрием

3) получение фенола

4) замещение с хлорной водой


17. Глицин участвует в реакциях

1) окисления с оксидом меди (II)

2) синтеза дипептида с фенилаланином

3) этерификации бутанолом-1

4) присоединения метиламина


18-21. Составьте уравнения реакций по схеме