» » Фотоэффект вентильный. Вентильный фотоэффект Физические основы вентильного фотоэффекта

Фотоэффект вентильный. Вентильный фотоэффект Физические основы вентильного фотоэффекта
  • Лекция № 10 Фотоэффект. Эффект Комптона. Линейчатые спектры атомов. Постулаты Бора.
  • По охвату единиц совокупности различают сплошное и несплошное наблюдение.
  • По порядку составления различают первичные и сводные документы.
  • Внутренний фотоэффект - это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости - повышению электропроводности полупроводника или диэлектрика при его освещении.

    Вентильный фотоэффект (разновидность внутреннего фотоэффекта)

    1. возникновение ЭДС (фото-ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект используется в солнечных батареях для прямого преобразования солнечной энергии в электрическую.

    Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитного излучения.

    Схема для исследования внешнего фотоэф­фекта . Два электрода (катод К из исследуемого металла и анод А ) в вакуумной трубке подключены к батарее так, что можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникаю­щий при освещении катода монохроматическим светом (через кварцевое окошко) измеряется включенным в цепь миллиамперметром. Зависимость фототока I , образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между катодом и анодом называется вольт-амперной харак­теристикой фотоэффекта.

    По мере увеличения U фототок посте­пенно возрастает пока не выходит на насыщение. Максимальное значение тока I нас - фототок насыщения - определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода: I нас = en , где n - число электронов, испус­каемых катодом в 1с. При U = О фототок не

    исчезает, поскольку фотоэлектроны при вылете из катода обладают некоторой начальной скоростью. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U 0 . При U = U 0 ни один из электронов, даже обладающий при вылете максимальной начальной скоростью, не может преодолеть задерживающего поля и достигнуть анода:

    т.е., измерив задерживающее напряжение U 0 , можно определить максимальное значение скорости υ max и кинетической энергии K m ах фотоэлектронов.



    45. Законы фотоэффекта.

    (1) Закон Столетова : при фиксированной частоте падающего света число фотоэлектронов, испускаемых фотокатодом в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Е е катода).

    (2) Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой ν

    (3) Для каждого вещества существует красная граница фотоэффекта - минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

    Для объяснения механизма фотоэффекта Эйнштейн предположил, что свет частотой ν не только испускается отдельными квантами (согласно гипотезе Планка), но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых ε 0 =h ν.

    Кванты электромагнитного излучения, движущиеся со скоростью с распространения света в вакууме, называются фотонами.

    Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла (см. стр.3-31) и на сообщение вылетевшему фотоэлектрону кинетической энергии. Уравнение Эйнштейна для внешнего фотоэффекта:



    Это уравнение объясняет зависимость кинетической энергии фотоэлектронов от частоты падающего света (2й закон). Предельная частота

    (или ), при которой кинетическая

    энергия фотоэлектронов становится равной нулю, и есть красная граница фотоэффекта (3-й закон). Другая форма записи уравнения Эйнштейна

    На рисунке изображена зависимость максимальной кинетической энергии фотоэлектронов от частоты облучающего света для алюминия, цинка и никеля. Все прямые параллельны друг другу, причем производная d(eU 0)/dv не зависит от материала катода и численно равна постоянной Планка h. Отрезки, отсекаемые на оси ординат, численно равны работе А выхода электронов из соответствующих металлов.

    На явлении фотоэффекта основано действие фотоэлементов и фотосопротивлений (фоторезисторов) в фотоэкспонометрах, люксметрах и устройствах управления и автоматизации различных процессов, пультах дистанционного управления, а также полупроводниковых фотоэлектронных умножителей и солнечных батарей.

    Существование фотонов было продемонстри­ровано в опыте Боте. Тонкая металлическая фольга Ф, расположенная между двумя счетчиками Сч, под действием жесткого облучения испускала рентгеновские лучи. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, то оба счетчика должны были бы срабатывать одновре­менно, и на движущейся ленте Л появлялись бы синхронные отметки маркерами М. В действительно­ сти же расположение отметок было беспорядочным. Следовательно, в отдельных актах испускания рождаются световые частицы (фотоны), летящие то в одном, то в другом направлении.

    46. Масса и импульс фотона. Единство корпускулярных и волновых свойств света.

    Используя соотношения , получаем выражения для энергии, массы и импульса фотона

    Эти соотношения связывают квантовые (корпускулярные) характеристики фотона - массу, импульс и энергию - с волновой характеристикой света - его частотой.

    Свет обладает одновременно волновыми свойствами, которые проявля­ются в закономерностях его распространения, интерференции, дифракции, поляризации, и корпускулярными , которые проявляются в процессах взаимодействия света с веществом (испускания, поглощения, рассеяния).

    47. Давление света.

    Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление.

    Пусть поток монохроматического излучения частоты падает перпенди­кулярно поверхности. Если за 1с на 1м 2 поверхности тела падает N фотонов, то при коэффициенте отражения р света от поверхности тела отразится ρN фотонов, а (1-ρ)N фотонов - поглотится. Каждый поглощенный фотон передает поверхности импульс p γ , а каждый отраженный фотон -2p γ

    Давление света на поверхность равно импульсу, который передают

    поверхности за 1с N фотонов

    Энергетическая освещенность поверхности (энергия всех фотонов, падающих на единицу поверхности в единицу времени). Объемная

    плотность энергии излучения: . Отсюда

    Волновая теория света на основании уравнений Максвелла приходит к такому же выражению. Давление света в волновой теории объясняется тем, что под действием электрического поля электромагнитной волны электроны в металле будут двигаться в направлении (обозначенном на рисунке) противоположном Магнитное поле электромагнитной волны действует на движущиеся электроны с силой Лоренца в направлении (по правилу левой руки) перпендикулярном поверхности металла. Таким образом, электромагнитная волна оказывает на поверхность металла давление.

    48. Эффект Комптона.

    Корпускулярные свойства света отчетливо проявляются в эффекте Комптона - упругом рассеянии коротковолнового электромагнитного излучения (рентгеновского и -излучений) на свободных (или слабосвязанных) электронах вещества,сопровождающееся увеличением длины волны. Это увеличение не зависит от длины волны λ падающего

    Лабораторная работа № 58

    Цель работы:

    1. Ознакомиться с явлением вентильного фотоэффекта.

    2. Исследовать характеристики вентильного фотоэлемента.

    Теоретическое введение

    Вентильный фотоэффект заключается в возникновении фото-ЭДС в выпрямляющем контакте при его освещении. Наибольшее практическое применение имеет вентильный фотоэффект, наблюдаемый в р-n переходе.

    В области границы раздела полупроводников р -типа и n -типа образуется так называемый запирающий слой, обедненный основными носителями заряда - электронами со стороны электронного полупроводника и дырками - со стороны дырочного полупроводника. Ионы донорных и акцепторных примесей этого слоя соответственно создают положительный объемный заряд в n -области и отрицательный - в р -области. Между р - и n - областями возникает контактная разность потенциалов, препятствующая движению основных носителей.

    При освещении р-n перехода, например, со стороны р -области светом, энергия кванта которого достаточна для образования пары электрон-дырка, вблизи границы р-n перехода образуются так называемые фотоэлектроны и фотодырки (внутренний фотоэффект). Образовавшиеся в р -области носители участвуют в тепловом движении и перемещаются в различных направлениях, в том числе и к р-n переходу. Однако из-за наличия контактной разности потенциалов дырки не перейдут в n -область. Электроны же, напротив, будут затягиваться полем в n -область (рисунок 1).

    Если цепь фотоэлемента разомкнута (R н = ∞ , режим холостого хода), то накопление фотоэлектронов в n -области и фотодырок в р -области приводит к появлению дополнительной разности потенциалов между электродами фотоэлемента. Эта разность потенциалов носит название фото-ЭДС (U ф хх ). Накопление неравновесных носителей в соответствующих областях не может продолжаться беспредельно, так как одновременно происходит понижение высоты потенциального барьера на величину возникшей фото-ЭДС. Уменьшение же высоты потенциального барьера или уменьшение результирующей напряженности электрического поля ухудшает "разделительные" свойства p-n перехода.

    Если замкнуть электроды фотоэлемента накоротко (R н = 0), то образованные светом носители заряда будут циркулировать в цепи фотоэлемента, создавая фототок короткого замыкания I ф кз. Величина фото-ЭДС холостого хода U ф хх и сила фототока короткого замыкания I ф кз определяются концентрацией образованных светом носителей заряда, которая, в свою очередь, зависит от освещенности фотоэлемента Е .

    Зависимости фототока I ф кз и фото-ЭДС U ф хх от освещенности фотоэлемента E (или от светового потока Ф = E∙S , где S - площадь приемной поверхности фотоэлемента) называются световыми характеристиками фотоэлемента (рисунок 2).

    Из сказанного выше следует, что вентильный фотоэлемент позволяет осуществить непосредственное превращение лучистой энергии в электрическую. Для того, чтобы использовать полученную электрическую энергию, нужно включить в цепь фотоэлемента нагрузочное сопротивление R н. На этом сопротивлении будет выделятся полезная мощность

    P = I∙U = I 2 ∙R н, (1)

    где I - сила тока в цепи фотоэлемента (I < I ф кз ), А,

    U - напряжение на контактах фотоэлемента (U< U ф хх ), В.

    Сила тока I , напряжение U , а следовательно, и мощность P при постоянной освещенности определяется величиной нагрузочного сопротивления R н. Изменяя сопротивление R н от ∞ до 0, можно получить зависимость U(I) , которая носит название нагрузочной характеристики вентильного фотоэлемента (рисунок 3).

    Уменьшение напряжения на выводах фотоэлемента с ростом тока нагрузки связано с потерей напряжения на внутреннем сопротивлении фотоэлемента. В режиме короткого замыкания, когда R н равно нулю, все развиваемое фотоэлементом напряжение U ф хх падает на внутреннем сопротивлении, и напряжение на выходе фотоэлемента также равно нулю.

    На практике нагрузочное сопротивление подбирают таким образом, чтобы выделяемая на нем мощность была максимальной. При этом максимального (для данной освещенности) значения достигает и коэффициент полезного действия вентильного фотоэлемента, который определяется соотношением

    η = P∙ Ψ / Ф = P∙ Ψ / (E∙S), (2)

    где Ψ- так называемая световая отдача, которая для волны длиной λ = 535 нм равна 628 лм/Вт.

    Вентильные фотоэлементы изготовляют из селена, кремния, германия, сернистого серебра и других полупроводниковых материалов. Они находят широкое применение в автоматике, измерительной технике, счетно-решающих механизмах и других устройствах. Например, селеновые фотоэлементы, спектральная чувствительность которых близка к спектральной чувствительности человеческого глаза, используются в фотометрических приборах (экспонометрах, фотометрах и др.).

    Кремниевые фотоэлементы находят широкое применение в качестве преобразователей солнечной энергии в электрическую. КПД кремниевых фотоэлементов составляет ≈ 12 %. Большое количество фотоэлементов, соединенных между собой, образуют солнечную батарею. Напряжение солнечных батарей достигает десятков вольт, а мощность - десятков киловатт. Солнечные батареи служат основным источником энергопитания космических летательных аппаратов.



    Описание установки

    Кремниевый вентильный фотоэлемент представляет собой вырезанную из монокристалла пластинку кремния n -типа, на поверхности которой путем прогрева при температуре примерно равной 1200 0 C в парах BCl 3 сформирована тонкая пленка кремния р -типа. Фотоэлемент закреплен на оптической скамье, по которой передвигается источник света. Изменяя расстояние между поверхностью фотоэлемента и источником света, можно менять освещенность фотоэлемента. Значение освещенности E (l ), соответствующее расстоянию l между осветителем и фотоэлементом, определяется по градуировочной ривой (рисунок 5).

    Цель работы: ознакомление с вентильным фотоэлементом, исследование вольт-амперных характеристик его.

    Задача: снять семейство вольт-амперных характеристик при различных освещенностях, определить оптимальные нагрузочные сопротивления и оценить КПД фотоэлемента.

    Приборы и принадлежности: , кремниевый фотоэлемент, магазин сопротивлений, милливольтметр, миллиамперметр.

    ВВЕДЕНИЕ

    Вентильный фотоэффект заключается в возникновении фото-ЭДС в вентильном, т. е. выпрямляющем, контакте при его освещении. Наибольшее практическое применение имеет вентильный фотоэффект, наблюдаемый в р- n-переходе. Такой переход возникает обычно во внутренней области кристаллического полупроводника, где меняются тип легирующей примеси (с акцепторной на донорную) и связанный с этим тип проводимости (с дырочной на электронную).

    Если контакт между полупроводниками р - и n-типа отсутствует, то уровни Ферми на их энергетических схемах (рис. 1) расположены на разной высоте: в р-типа ближе к валентной зоне, в n-типа ближе к зоне проводимости (работа выхода из р-полупроводника А2 всегда превышает работу выхода из n-полупроводника А1).

    https://pandia.ru/text/78/022/images/image006_62.gif" width="12" height="221">Вольт-амперная характеристика неосвещенного р - n-перехода представлена на рис. 3 (кривая 2). Она описывается выражением где JS – ток насыщения неосвещенного р - n-перехода; k – постоянная Больцмана; е – заряд электрона; Т – температура; U – внешнее напряжение. Знак «» относится соответст-

    венно к прямому или обратному нап-

    равлению внешнего поля.

    Если освещать фотоэлемент со стороны р-области, то фотоны света, поглощаясь в тонком поверхностном слое полупроводника, будут передавать свою энергию электронам валентной зоны и переводить их в зону проводимости, тем самым образуя в полупроводнике свободные электроны и дырки (фотоэлектроны и фотодырки) в равных количествах. Образованные в р-области фотоэлектроны являются здесь неосновными носителями. Двигаясь по кристаллу, они частично рекомбинируют с дырками. Но если толщина р-области мала, то значительная часть их доходит до р - n-перехода и переходит в n-область полупроводника, образуя фототок Jф, текущий в обратном направлении. Фотодырки так же, как и собственные дырки, не могут проникнуть в n-область, так как для этого они должны преодолеть потенциальный барьер в области р - n-перехода. Таким образом, р - n-переход разделяет фотоэлектроны и фотодырки.

    Если цепь разомкнута, то фотоэлектроны, перешедшие в n-область, создают там избыточную по отношению к равновесной концентрацию электронов, тем самым заряжая эту часть полупроводника отрицательно. Фотодырки заряжают р-область положительно. Между обеими частями полупроводника возникает разность потенциалов, которую называют фото-ЭДС. Возникшая фото-ЭДС приложена к р - n-переходу в прямом (пропускном) направлении, поэтому высота потенциального барьера соответственно уменьшается. Это в свою очередь вызывает появление так называемого тока утечки Jу, текущего в прямом направлении. Величина фото-ЭДС растет до тех пор, пока возрастающий ток основных носителей не скомпенсирует фототок.

    Если замкнуть р - n-переход на нагрузочное сопротивление rн (рис. 4), по цепи пойдет ток J, который можно представить как сумму двух токов:


    J = Jф – Jу. (2)

    Ток утечки Jу рассчитывается по формуле (1) для неосвещенного р - n- перехода, когда к нему приложено внешнее напряжение Uн = J rн в прямом направлении:

    https://pandia.ru/text/78/022/images/image012_31.gif" width="25" height="28 src=">~ Ф. (3)

    В режиме холостого хода цепь разомкнута (rн = https://pandia.ru/text/78/022/images/image014_26.gif" width="147" height="57 src=">, (4)

    откуда следует, что

    https://pandia.ru/text/78/022/images/image013_28.gif" width="19" height="15 src=">). При изменении внешней нагрузки от 0 до получаем участок ав , который и представляет собой собственно вольт-амперную характеристику р - n-перехода в фотогальваническом режиме при постоянном световом потоке. Участок вс характеризует работу фотоэлемента при подаче на р - n-переход прямого внешнего напряжения, участок а d – обратного внешнего напряжения (фотодиодный режим работы).

    При изменении светового потока вольт-амперные характеристики смещаются, форма их изменяется. Семейство вольт-амперных характеристик вентильного фотоэлемента в фотогальваническом режиме при различных освещенностях представлено на рис. 5.

    https://pandia.ru/text/78/022/images/image017_20.gif" width="231" height="12">

    Прямые, проведенные из начала координат под углом α, определяемым величиной сопротивления нагрузки (ctg α = rн), пересекают характеристику в точках, абсциссы которых дают падение напряжения на нагрузке, а ординаты – ток во внешней цепи (U1 = J1 r1). Площадь, заштрихованная на рисунке, пропорциональна мощности Р1, выделяемой на нагрузке rн1:

    https://pandia.ru/text/78/022/images/image020_15.gif" width="136" height="52 src=">, (7)

    где https://pandia.ru/text/78/022/images/image022_14.gif" height="50">.gif" width="12">

    https://pandia.ru/text/78/022/images/image026_13.gif" width="21" height="12">
    https://pandia.ru/text/78/022/images/image031_11.gif" width="12" height="31"> кремния n-типа, вырезанную из монокристалла, на поверхности которой путем прогрева при температуре ~ 1200 0С в парах ВСl3 сформирована тонкая пленка 2 кремния р-типа. Контакт внешней цепи с р-областью осуществляется через металлическую полоску 3 , напыленную на ее поверхность. Для создания контакта 4 с n-областью часть наружной пленки сошлифовывается.

    ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

    Задание 1. Снятие вольт-амперной характеристики вентильного фотоэлемента

    1. Изучив данное методическое пособие, внимательно ознакомиться с установкой.

    2. Изменяя сопротивление rн от 10 до 900 Ом, при постоянной освещенности снять 8 – 10 значений напряжения и тока, (расстояние от источника света до фотоэлемента l = 5 см).

    3. Повторить выполнение п. 2 для l = 10 и 15 см.

    4. Построить семейство вольт-амперных характеристик.

    Задание 2. Исследование вольт-амперных характеристик вентильного фотоэлемента

    1. Для каждой освещенности из соответствующей вольт-амперной характеристики определить максимальную мощность фототока Рmax и для этого случая по формуле (7) рассчитать КПД фотоэлемента. Освещенность Е вычисляется через силу света Jл источника и расстояние l по формуле .

    2. Зная Рmax для всех освещенностей, рассчитать по формуле (6) оптимальные нагрузочные сопротивления rн. опт. Построить график rн. опт = f(E).

    3. Построить графики Jк. з = f(E) и Ux. x = f(E).

    КОНТРОЛЬНЫЕ ВОПРОСЫ

    1. В чем заключается явление внутреннего фотоэффекта?

    2. В чем состоит отличие полупроводника n-типа от полупроводника р-типа?

    3. Как достигается нужный тип проводимости полупроводника?

    4. Нарисуйте энергетическую схему полупроводников n - и р-типа.

    5. Объясните механизм возникновения контактной разности потенциалов р - n-перехода.

    6. Объясните механизм действия р - n-перехода как выпрямителя переменного тока.

    7. Как устроен вентильный фотоэлемент?

    8. Каково назначение вентильного фотоэлемента?

    9. Можно ли вентильный фотоэлемент использовать в качестве детектора ионизирующих излучений?

    10. Где находят применение вентильные фотоэлементы?

    11. Каков механизм возникновения фото-ЭДС вентильного фотоэлемента?

    12. Что такое уровень Ферми?

    13. Назовите несколько причин сравнительно низкого КПД вентильных фотоэлементов.

    14. Назовите преимущество вентильных фотоэлементов как источников электрической энергии перед другими, известными вам.

    15. Каковы трудности широкого использования вентильных фотоэлементов? Перспективы.

    СПИСОК ЛИТЕРАТУРЫ

    1. Трофимова физики. М.: Высш. шк., 19с.

    2. Лабораторный практикум по физике / Под ред. . М.: Высш. шк., 19с.

    ФОТОЭФФЕКТ ВЕНТИЛЬНЫЙ

    фотоэффект в запирающем слое, - возникновение под действием электромагнитного излучения электродвижущей силы (фотоэдс) в системе, состоящей из двух контактирующих разных ПП или из ПП и металла. Наибольший практич. интерес представляет Ф. в. в р - я-переходе и гетеропереходе. Ф. в. используют в фотоэлектрич. генераторах, в ПП фотодиодах, фототранзисторах и т. д.

    • - Б., при котором проходимость бронха сохраняется в фазе вдоха н полностью нарушается в фазе выдоха...

      Большой медицинский словарь

    • - разрядник, предназначенный для защиты изоляции электрооборудования от атм. и коммутац. перенапряжений; представляет собой ряд искровых промежутков, последовательно с к-рыми включены нелинейные резисторы...

      Большой энциклопедический политехнический словарь

    • - электропривод, в к-ром для питания двигателя и регулирования его угловой скорости используется преобразователь на управляемых электрич. вентилях...

      Большой энциклопедический политехнический словарь

    • - испускание электронов веществом под действием электромагнитного излучения...

      Энциклопедический словарь по металлургии

    • - устройство для преобразования электрического тока с помощью электронных или ионных вентилей электрических...
    • - Разрядник, предназначенный для защиты электрооборудования сетей переменного тока от различных перенапряжений...

      Большая Советская энциклопедия

    • - испускание электронов веществом под действием электромагнитного излучения. Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым...

      Большая Советская энциклопедия

    • - группа явлений, связанных с "освобождением" электронов твердого тела от внутриатомной связи под действием электромагнитного излучения...

      Современная энциклопедия

    • - электропривод, в котором регулирование режима двигателя производится с помощью управляемых вентильных преобразователей: выпрямителя, преобразователя частоты, регулятора постоянного...
    • - явление, связанное с освобождением электронов твердого тела под действием электромагнитного излучения. Различают:..1) внешний фотоэффект - испускание электронов под действием света, ?-излучения и др.;....

      Большой энциклопедический словарь

    • - ...
    • - ВЕ́НТИЛЬ, -я, м. ...

      Толковый словарь Ожегова

    • - ...

      Орфографический словарь-справочник

    • - в"...

      Русский орфографический словарь

    • - ...

      Формы слова

    • - прил., кол-во синонимов: 1 клапанный...

      Словарь синонимов

    "ФОТОЭФФЕКТ ВЕНТИЛЬНЫЙ" в книгах

    Вентильный электропривод

    Из книги Большая энциклопедия техники автора Коллектив авторов

    Вентильный электропривод Вентильный электропривод – это электропривод, питающий электродвигатель и регулирующий его угловую скорость в преобразователях на управляемых электрических вентилях. Данный электропривод питает асинхронные и синхронные двигатели

    Вентильный преобразователь

    Из книги Большая Советская Энциклопедия (ВЕ) автора БСЭ

    Разрядник вентильный

    Из книги Большая Советская Энциклопедия (РА) автора БСЭ

    Ядерный фотоэффект

    Из книги Большая Советская Энциклопедия (ЯД) автора БСЭ

    Фотоэффект

    БСЭ

    Фотоэффект внешний

    Из книги Большая Советская Энциклопедия (ФО) автора БСЭ

    Фотоэффект внутренний

    Из книги Большая Советская Энциклопедия (ФО) автора БСЭ

    Глава 20 Фотоэффект в энергетике

    Из книги Новые источники энергии автора Фролов Александр Владимирович

    Глава 20 Фотоэффект в энергетике Фотоэффектом называется испускание веществом электронов под действием электромагнитного излучения. В 1839 году Александр Беккерель наблюдал явление фотоэффекта в электролите. В 1873 году Виллоби Смит обнаружил, что селен является

    § 4.3 Фотоэффект

    автора

    § 4.3 Фотоэффект При такой ситуации естественно предположить, что источник энергии отрывающихся от металла электронов заключён всё же не в лучах, а в самом металле. Что касается лучей, они лишь освобождают её, служат своего рода запалом - ведь одной искры бывает довольно,

    § 4.4 Селективный фотоэффект

    Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

    § 4.4 Селективный фотоэффект Селективность фотоэлектрических явлений очень напоминает резонансные эффекты. Дело происходит так, как будто электроны в металле обладают собственным периодом колебаний, и по мере приближения частоты возбуждающего света к собственной

    § 4.5 Нелинейный фотоэффект

    Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

    § 4.5 Нелинейный фотоэффект Вот уже более пятнадцати лет развивается новое научно-техническое направление, связанное с умножением оптических частот (применяется также термин "генерация оптических гармоник": второй гармоники, третьей, четвёртой и т. д. - в зависимости от

    § 4.6 Обратный фотоэффект, фотоионизация и солнечные батареи

    Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

    Вентильная фотоЭДС - ЭДС, возникающая в результате пространственного разделения электронно-дырочных пар, генерируемых светом в полупроводнике электрическим полем n-р перехода, гетероперехода, приэлектродного барьера. При вентильном фотоэффекте электрическое поле к фотоэлементу не прикладывается, т. к. они сами являются генераторами фотоЭДС. Характерной особенностью фотоэлементов с вентильным фотоэффектом является наличие запирающего слоя между полупроводником и электродом, который вызывает выпрямляющее действие данного слоя (рис. 1.17).

    Слой полупроводника с вентильным фотоэффектом обладает не только сопротивлением, но и емкостью и является выпрямителем и источником ЭДС при его освещении светом. На рис. 1.17 пластинка Сu (4) является одним из электродов. Сверху она покрывается тонким слоем (2) закиси меди Сu 2 0 вследствие нагревания меди в воздухе при высокой температуре. Запирающий слой (3) образуется на границе Сu 2 0 и меди. Сверху наносится тонкий полупрозрачный слой золота (1). При освещении между электродами 1 и 4 возникает разность потенциалов.

    Рис. 1.17

    Если соединить эти электроды через гальванометр, то при падении света возникает фототок, направленный от меди к Сu 2 0. Фотопроводимость меднозакисных фотоэлементов вызвана движением дырок. Тонкий запирающий слой (d » 10 - 7 м) на границе металл - полупроводник вызывает запирающее действие фотоэлемента и возникновение фотоЭДС до 1 В. В этом случае лучистая энергия света непосредственно переходит в электрическую. КПД фотоэлемента ~2,5%.

    Эффект Комптона

    Явление Комптона состоит в увеличении длины волны рентгеновских лучей при их рассеянии на атомах вещества, которое сопровождается фотоэффектом. С точки зрения классической волновой теории длина волны рассеянного излучения должна равняться длине волны падающего.

    Схема опыта Комптона приведена на рис. 1.18, где S - источник рентгеновского излучения; D 1 и D 2 - диафрагмы, формирующие узкий пучок рентгеновских лучей; А - вещество, рассеивающее рентгеновские лучи, которые затем попадают на спектрограф С и фотопластинку Ф.

    Явление Комптона характеризуется следующими закономерностями:

    1. Зависит от атомного номера вещества. 2. При увеличении угла рассеяния интенсивность комптоновского рассеяния возрастает. 3. Смещение длины волны возрастает с увеличением угла рассеяния.

    4. При одинаковых углах рассеяния смещение длины волны одно и

    При взаимодействии рентгеновского фотона с электроном последний получает энергию (W) и импульс (р = mv) покидает атом (электрон отдачи), а энергия и импульс рассеянного фотона уменьшаются (рис. 1.19).

    Для нахождения изменения длины волны рассеянного фотона в эффекте Комптона применим закон сохранения импульса

    и закон сохранения энергии

    W ф + W 0 = W + ,

    где полная энергия частицы

    .

    Из закона сохранения импульса находим импульс частицы (электрона).

    Например, согласно рис. 1.19 (теорема косинусов)

    Учитывая релятивистский характер движения для фотона, имеем

    W ф = hn= р ф с.

    С учетом этого закон сохранения энергии представим в виде

    Решив совместно (6.18) и (6.19) и после возведения в квадрат получаем

    , (1.34)

    (1.35)

    Импульсы падающего и рассеянного фотонов; j - угол рассеяния;

    с - скорость света; h - постоянная Планка.

    Используя связь длины волны с частотой в виде:

    и