» » История развития эвм поколения вычислительных машин. История создания и развития ЭВМ

История развития эвм поколения вычислительных машин. История создания и развития ЭВМ

Изучив эту тему, вы узнаете:

Как развивались счетно-решающие средства до создания ЭВМ;
- что такое элементная база и как ее изменение влияло на создание новых типов ЭВМ;
- как развивалась компьютерная техника от поколения к поколению.

Счетно-решающие средства до появления ЭВМ

История вычислений уходит своими корнями в глубь веков так же, как и история развития человечества. Накопление запасов, дележ добычи, обмен - все эти действия связаны с вычислениями. Для подсчетов люди использовали собственные пальцы, камешки, палочки, узелки и пр.

Потребность в поиске решений все более и более сложных задач и, как следствие, все более сложных и длительных вычислений поставила человека перед необходимостью искать способы, изобретать приспособления, которые смогли бы ему в этом помочь. Исторически сложилось так, что в разных странах появились свои денежные единицы, меры веса, длины, объема, расстояния и т. д. Для перевода из одной системы мёр в другую требовались вычисления, которые обычно могли производить лишь специально обученные люди, досконально знавшие всю последовательность действий. Их нередко приглашали даже из других стран. И совершенно естественно возникла потребность в изобретении устройств, помогающих счету. Так постепенно стали появляться механические помощники. До наших дней дошли свидетельства о многих таких изобретениях, навсегда вошедших в историю техники.

Одним из первых устройств (V-IV века до н. э.), облегчавших вычисления, можно считать специальное приспособление, названное впоследствии абаком (рисунок 24.1). Первоначально это была доска, посыпанная тонким слоем мелкого песка или порошка из голубой глины. На ней заостренной палочкой можно было писать буквы, цифры. Впоследствии абак был усовершенствован и вычисления на нем уже проводились путем перемещения костей и камешков в продольных углублениях, а сами доски начали изготавливать из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. В Греции абак существовал еще в V веке до н. э., у японцев этот прибор назывался «серобян», у китайцев - «суан-пан».

Рис. 24.1. Абак

В Древней Руси при счете применялось устройство, похожее на абак, и называлось оно «русский щот». В XVII веке этот прибор уже имел вид привычных русских счетов, которые можно встретить и в наши днй.

В начале XVII столетия, когда математика стала играть ключевую роль в науке, все острее ощущалась необходимость в изобретении счетной машины. К этому времени относится создание молодым французским математиком и физиком Блезом Паскалем первой счетной машины (рисунок 24.2, а), названной Пас- калиной, которая выполняла сложение и вычитание.

Рис. 24.2. Счетные машины XVII века: а) Паскалина, б) машина Лейбница

В 1670-1680 годах немецкий математик Готфрид Лейбниц сконструировал счетную машину (рисунок 24.2, б), которая выполняла все четыре арифметических действия.

В течение следующих двухсот лет было изобретено и построено еще несколько подобных счетных устройств, которые из-за ряда недостатков не получили широкого распространения.

Лишь в 1878 году русский ученый П. Чебышев сконструировал счетную машину, выполнявшую сложение и вычитание многозначных чисел. Наиболее широкое распространение в то время получил арифмометр, сконструированный петербургским инженером Однером в 1874 году. Конструкция прибора оказалась весьма удачной, так как позволяла довольно быстро выполнить все четыре арифметических действия.

В 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр - «Феликс» (рисунок 24.3). Эти счетные устройства применялись несколько десятилетий и были основным техническим средством, облегчающим труд людей, связанных с обработкой больших объемов числовой информации.

Рис. 24.3. Арифмометр «Феликс»

Важным событием XIX века было изобретение английского математика Чарлза Беббиджа, который вошел в историю как изобретатель первой вычислительной машины - прообраза современных компьютеров. В 1812 году он начал работать над так называемой «разностной» машиной. Предшествующие вычислительные машины Паскаля и Леибница выполняли только арифметические действия. Беббидж же стремился сконструировать машину, которая выполняла бы определенную программу, проводила бы расчет числового значения заданной функции. В качестве основного элемента разностной машины Беббидж использовал зубчатое колесо для запоминания одного разряда десятичного числа. В результате он смог оперировать 18-разрядными числами. К 1822 году он построил небольшую действующую модель и рассчитал на ней таблицу квадратов. 

Совершенствуя разностную машину, Беббидж приступил в 1833 году к разработке аналитической машины (рисунок 24.4). Она должна была отличаться от разностной машины большей скоростью и более простой конструкцией. Согласно проекту, новую машину предполагалось приводить в действие силой пара.

Аналитическая машина была задумана как чисто механический аппарат с тремя основными блоками. Первый блок - устройство для хранения чисел на регистрах из зубчатых колес и система, которая передает эти числа от одного узла к другому (в современной терминологии - это память). Второй блок - устройство, позволяющее выполнять арифметические операции. Беббидж назвал его «мельницей». Третий блок предназначался для управления последовательностью действий машины. В конструкцию аналитической машины входило также устройство для ввода исходных данных и печати полученных результатов.

Предполагалось, что машина будет действовать по программе, которая задавала бы последовательность выполнения операций и передачи чисел из памяти в мельницу и обратно. Программы, в свою очередь, должны были кодироваться и переноситься на перфокарты. В то время подобные карты уже использовались для автоматического управления ткацкими станками. Тогда же математик леди Ада Лавлейс - дочь английского поэта лорда Байрона - разрабатывает первые программы для машины Беббиджа. Она заложила многие идеи и ввела ряд понятий и терминов, которые используются и по сей день.

Рис. 24.4. Аналитическая машина Беббиджа

К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован. Тем не менее его работы имели важное значение; многие последующие изобретатели воспользовались идеями, заложенными в основу придуманных им устройств. 

Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888 году устройства, названного табулятором (рисунок 24.5), в котором информация, нанесенная на перфокарты, расшифровывалась с помощью электрического тока. Это устройство позволило обработать данные переписи населения всего за 3 года вместо затрачиваемых ранее восьми лет. В 1924 году Холлерит основал фирму IBM для серийного выпуска табуляторов.

Рис. 24.5. Табулятор

Огромное влияние на развитие вычислительной техники оказали теоретические разработки математиков: англичанина А. Тьюринга и работавшего независимо от него американца Э. Поста. «Машина Тьюринга (Поста)» - прообраз программируемого компьютера. Эти ученые показали принципиальную возможность решения автоматами любой проблемы при условии, что ее можно представить в виде алгоритма, ориентированного на выполняемые машиной операции.

С момента возникновения идеи Беббиджа о создании аналитической машины до ее реального внедрения в жизнь прошло более полутора столетий. Почему же столь большим оказался разрыв во времени между рождением идеи и ее техническим воплощением? Это обусловлено тем, что при создании любого устройства, в том числе и компьютера, очень важным фактором является выбор элементной базы, то есть тех деталей, из которых собирается вся система.

Первое поколение ЭВМ

Появление электронно-вакуумной лампы позволило ученым претворить в жизнь идею создания вычислительной машины. Она появилась в 1946 году в США и получила название ЭНИАК (ENIAC - Electronic Numerical Integrator and Calculator, «электронный численный интегратор и калькулятор» - рисунок 24.6). Это событие ознаменовало начало пути, по которому пошло развитие электронно-вычислительных машин (ЭВМ). 

Рис 24.6. Первая ЭВМ ЭНИАК

Дальнейшее совершенствование ЭВМ определялось развитием электроники, появлением новых элементов и принципов действий, то есть улучшением и расширением элементной базы. В настоящее время насчитывается уже несколько поколений ЭВМ. Под поколением ЭВМ понимают все типы и модели электронно-вычислительных машин, разработанные различными конструкторскими коллективами, но построенные на одних и тех же научных и технических принципах. Смена поколений обусловливалась появлением новых элементов, изготовленных с применением принципиально иных технологий.

Первое поколение (1946 - середина 50-х годов). Элементной базой служили электронно-вакуумные лампы, устанавливаемые на специальных шасси, а также резисторы и конденсаторы. Элементы соединяли проводами навесным монтажом. В ЭВМ ЭНИАК было 20 тыс. электронных ламп, из которых ежемесячно заменялось 2000. За одну секунду машина выполняла 300 операций умножения или же 5000 сложений многоразрядных чисел.

Выдающийся математик Джон фон Нейман и его коллеги изложили в своем отчете основные принципы логической структуры ЭВМ нового типа, которые позже были реализованы в проекте ЭДВАК (1950 г.). В отчете утверждалось, что ЭВМ должна создаваться на электронной основе и работать в двоичной системе счисления. В ее состав должны входить следующие устройства: арифметическое, центральное управляющее, запоминающее, для ввода данных и вывода результатов. Ученые также сформулировали два принципа работы: принцип программного управления с последовательным выполнением команд и принцип хранимой программы. Конструкция большинства ЭВМ последующих поколений, где были реализованы эти принципы, получила название «фон-неймановской архитектуры». 

Первая отечественная ЭВМ была создана в 1951 году под руководством академика С. А. Лебедева, и называлась она МЭСМ (малая электронная счетная машина). Затем в эксплуатацию ввели БЭСМ-2 (большую электронную счетную машину). Самой мощной ЭВМ 50-х годов в Европе была советская электронно- вычислительная машина М-20 с быстродействием 20 тыс. оп/с и объемом оперативной памяти 4000 машинных слов.

МЭСМ (малая электронная счетная машина)

С этого времени начался бурный расцвет отечественной вычислительной техники, и к концу 60-х годов в нашей стране успешно функционировала лучшая по производительности (1 млн оп/с) ЭВМ того времени - БЭСМ-6, в которой были реализованы многие принципы работы последующих поколений компьютеров.

БЭСМ-6 (большая электронная счетная машина)

С появлением новых моделей ЭВМ произошли изменения и в названии этой сферы деятельности. Ранее любую технику, используемую для вычислений, обобщенно называли «счетно-ре- шающими приборами и устройствами». Теперь же все, что имеет отношение к ЭВМ, именуют вычислительной техникой.

Перечислим характерные черты ЭВМ первого поколения.

♦ Элементная база: электронно-вакуумные лампы, резисторы, конденсаторы. Соединение элементов: навесной монтаж проводами.
♦ Габариты: ЭВМ выполнена в виде громадных шкафов и занимает специальный машинный зал.
♦ Быстродействие: 10-20 тыс. оп/с.
♦ Эксплуатация слишком сложна из-за частого выхода из строя электронно-вакуумных ламп. Существует опасность перегрева ЭВМ.
♦ Программирование: трудоемкий процесс в машинных кодах. При этом необходимо знать все команды машины, их двоичное представление, архитектуру ЭВМ. Этим в основном были заняты математики-программисты, которые непосредственно и работали за ее пультом управления. Обслуживание ЭВМ требовало от персонала высокого профессионализма. 

Второе поколение ЭВМ

Второе поколение приходится на период от конца 50-х до конца 60-х годов .

К этому времени был изобретен транзистор, который пришел на смену электронным лампам. Это позволило заменить элементную базу ЭВМ на полупроводниковые элементы (транзисторы, диоды), а также резисторы и конденсаторы более совершенной конструкции (рисунок 24.7). Один транзистор заменял 40 электронных ламп, работал с большей скоростью, был дешевле и надежнее. Средний срок его службы в 1000 раз превосходил продолжительность работы электронных ламп.

Изменилась и технология соединения элементов. Появились первые печатные платы (см. рис. 24.7) - пластины из изоляционного материала, например гетинакса, на которые по специальной технологии фотомонтажа наносился токо- проводящий материал. Для крепления элементной базы на печатной плате имелись специальные гнезда.

Рис. 24.7. Транзисторы, диоды, резисторы, конденсаторы и печатные платы

Такая формальная замена одного типа элементов на другой существенно повлияла на все характеристики ЭВМ: габариты, надежность, производительность, условия эксплуатации, стиль программирования и работы на машине. Изменился технологический процесс изготовления ЭВМ.

Рис. 24.8. ЭВМ второго поколения

Перечислим характерные черты ЭВМ второго поколения (рисунок 24.8).
- Элементная база : полупроводниковые элементы. Соединение элементов: печатные платы и навесной монтаж.
- Габариты : ЭВМ выполнены в виде однотипных стоек, чуть выше человеческого роста. Для их размещения требуется специально оборудованный машинный зал, в котором под полом прокладываются кабели, соединяющие между собой многочисленные автономные устройства.
- Производительность : от сотен тысяч до 1 млн оп/с.
- Эксплуатация : упростилась. Появились вычислительные центры с большим штатом обслуживающего персонала, где устанавливалось обычно несколько ЭВМ. Так возникло понятие централизованной обработки информации на компьютерах. При выходе из строя нескольких элементов производилась замена целиком всей платы, а не каждого элемента в отдельности, как в ЭВМ предыдущего поколения.
- Программирование : существенно изменилось, так как стало выполняться преимущественно на алгоритмических языках. Программисты уже не работали в зале, а отдавали свои программы на перфокартах или магнитных лентах специально обученным операторам. Решение задач производилось в пакетном (мультипрограммном) режиме, то есть все программы вводились в ЭВМ подряд друг за другом, и их обработка велась по мере освобождения соответствующих устройств. Результаты решения распечатывались на специальной перфорированной по краям бумаге.
- Произошли изменения как в структуре ЭВМ, так и в принципе ее организации . Жесткий принцип управления заменился микропрограммным. Для реализации принципа программируемости необходимо наличие в компьютере постоянной памяти, в ячейках которой всегда присутствуют коды, соответствующие различным комбинациям управляющих сигналов. Каждая такая комбинация позволяет выполнить элементарную операцию, то есть подключить определенные электрические схемы. 
- Введен принцип разделения времени , который обеспечил совмещение во времени работы разных устройств, например одновременно с процессором работает устройство ввода-вывода с магнитной ленты.

Третье поколение ЭВМ

Этот период продолжается с конца 60-х до конца 70-х годов. Подобно тому как изобретение транзисторов привело к созданию компьютеров второго поколения, появление интегральных схем ознаменовало новый этап в развитии вычислительной техники - рождение машин третьего поколения.

В 1958 году Джон Килби впервые создал опытную интегральную схему. Такие схемы могут содержать десятки, сотни и даже тысячи транзисторов и других элементов, которые физически неразделимы. Интегральная схема (рисунок 24.9) выполняет те же функции, что и аналогичная ей схема на элементной базе ЭВМ второго поколения, но при этом она имеет существенно меньшие размеры и более высокую степень надежности.

Рис. 24.9. Интегральные схемы Первой ЭВМ, выполненной на интегральных схемах, была IBM-360 фирмы IBM. Она положила начало большой серии моделей, название которых начиналось с IBM, а далее следовал номер, который увеличивался по мере совершенствования моделей этой серии. То есть чем больше был номер, тем большие возможности предоставлялись пользователю.

Аналогичные ЭВМ стали выпускать и в странах СЭВ (Совета экономической взаимопомощи): СССР, Болгарии, Венгрии, Чехословакии, ГДР, Польше. Это были совместные разработки, причем каждая страна специализировалась на определенных устройствах. Выпускались два семейства ЭВМ:
- большие - ЕС ЭВМ (единая система), например ЕС-1022, ЕС-1035, ЕС-1065; 
- малые - СМ ЭВМ (система малых), например СМ-2, СМ-3, СМ-4.

ЕС ЭВМ (единая система) ЕС-1035

СМ ЭВМ (система малых) СМ-3

В то время любой вычислительный центр оснащался одной-двумя моделями ЕС ЭВМ (рисунок 24.10). Представителей емейства СМ ЭВМ, составляющих класс мини-ЭВМ, можно было довольно часто встретить в лабораториях, на производстве, нa технологических линиях, на испытательных стендах. Особенюсть этого класса ЭВМ состояла в том, что все они могли работать в реальном масштабе времени, то есть ориентируясь на консретную задачу.

Рис. 24.10. ЭВМ третьего поколения

Приведем характерные черты ЭВМ третьего поколения.
- Элементная база : интегральные схемы, которые вставляются в специальные гнезда на печатной плате.
- Габариты : внешнее оформление ЕС ЭВМ схоже с ЭВМ второго поколения. Для их размещения также требуется машинный зал. А малые ЭВМ - это в основном две стойки приблизительно в полтора человеческих роста и дисплей. Они не нуждались, как ЕС ЭВМ, в специально оборудованном помещении.
- Производительность : от сотен тысяч до миллионов операций в секунду.
- Эксплуатация : несколько изменилась. Более оперативно производится ремонт обычных неисправностей, но из-за большой сложности системной организации требуется штат высококвалифицированных специалистов. Большую роль играет системный программист.
- Технология программирования и решения задач : такая же, как на предыдущем этапе, хотя несколько изменился характер взаимодействия с ЭВМ. Во многих вычислительных центрах появились дисплейные залы, где каждый программист в определенное время мог подсоединиться к ЭВМ в режиме разделения времени. Как и прежде, основным оставался режим пакетной обработки задач.
- Произошли изменения в структуре ЭВМ . Наряду с микропрограммным способом управления используются принципы модульности и магистральности. Принцип модульности проявляется в построении компьютера на основе набора модулей - конструктивно и функционально законченных электронных блоков в стандартном исполнении. Под магист- ральностью понимается способ связи между модулями компьютера, то есть все входные и выходные устройства соединены одними и теми же проводами (шинами). Это прообраз современной системной шины.
- Увеличились объемы памяти . Магнитный барабан постепенно вытесняется магнитными дисками, выполненными в виде автономных пакетов. Появились дисплеи, графопостроители.

Четвертое поколение ЭВМ

Этот период оказался самым длительным - от конца 70-х годов по настоящее время. Он характеризуется всевозможными новациями, приводящими к существенным изменениям. Однако кардинальных, революционных перемен, позволяющих говорить о смене этого поколения ЭВМ, пока не произошло. Хотя, если сравнивать ЭВМ, например, начала 80-х годов и сегодняшние, то очевидно существенное различие.

Следует особо отметить одну из самых значительных идей, воплощенных в компьютере на данном этапе: использование для вычислений одновременно нескольких процессоров (мультипроцессорная обработка). Также претерпела изменение и структура компьютера.

Новые технологии создания интегральных схем позволили разработать в конце 70-х - начале 80-х годов ЭВМ четвертого поколения на больших интегральйых схемах (БИС), степень интеграции которых составляет десятки и сотни тысяч элементов на одном кристалле. Наиболее крупным сдвигом в электронно-вычислительной технике, связанным с применением БИС, стало создание микропроцессоров. Сейчас этот период расценивается как революция в электронной промышленности. Первый микропроцессор был создан фирмой Intel в 1971 году. На одном кристалле удалось сформировать минимальный по составу аппаратуры процессор, содержащий 2250 транзисторов.

С появлением микропроцессора связано одно из важнейших событий в истории вычислительной техники - создание и применение персональных ЭВМ (рисунок 24.11), что даже повлияло на терминологию. Постепенно прочно укоренившийся термин «ЭВМ» был вытеснен ставшим уже привычным словом «компьютер», а вычислительная техника стала называться компьютерной.

Рис. 24.11. Персональный компьютер

Начало широкой продажи персональных ЭВМ связано с именами С. Джобса и В. Возняка, основателей фирмы «Эпл компьютер» (Apple Computer), которая с 1977 года наладила выпуск персональных компьютеров Apple. В компьютерах этого типа за основу был взят принцип создания «дружественной» обстановки работы человека на ЭВМ, когда при создании программного обеспечения одним из основных требований стало обеспечение удобной работы пользователя. ЭВМ повернулась лицом к человеку. Дальнейшее ее совершенствование шло с учетом удобства работы пользователя. Если раньше при эксплуатации ЭВМ был реализован принцип централизованной обработки информации, когда пользователи концентрировались вокруг одной ЭВМ, то с появлением персональных компьютеров произошло обратное движение - децентрализация, когда один пользователь может компьютерами. работать с несколькими

С 1982 года фирма IBM приступила к выпуску модели персонального компьютера, ставшего эталоном на долгие времена. IBM выпустила документацию по аппаратуре и программные спецификации, что позволило другим фирмам разрабатывать как аппаратное, так и программное обеспечение. Таким образом, появились семейства (клоны) «двойников» персональных компьютеров IBM. 

В 1984 году фирмой IBM был разработан персональный компьютер на базе микропроцессора 80286 фирмы Intel с шиной архитектуры промышленного стандарта - ISA (Industry Standart Architecture). С этого времени началась жесткая конкуренция между несколькими корпорациями, производящими персональные компьютеры. Один тип процессора сменял другой, что зачастую требовало дополнительной существенной модернизации, а подчас и полной замены компьютеров. Гонка в поиске все более и более совершенных технических характеристик всех устройств компьютера продолжается и по сей день. Каждый год требуется проводить коренную модернизацию существующего компьютера.

Общее свойство семейства IBM PC - совместимость программного обеспечения снизу вверх и принцип открытой архитектуры, предусматривающий возможность дополнения имеющихся аппаратных средств без изъятия старых или их модификацию без замены всего компьютера.

Современные ЭВМ превосходят компьютеры предыдущих поколений компактностью, огромными возможностями и доступностью для разных категорий пользователей.

Компьютеры четвертого поколения развиваются в двух направлениях, о которых будет рассказано в последующих темах этого раздела. Первое направление - создание многопроцессорных вычислительных систем. Второе - изготовление дешевых персональных компьютеров как в настольном, так и в переносном исполнении, а на их основе - компьютерных сетей.

Контрольные вопросы и задания

1. Расскажите об истории развития счетно-решающих устройств до появления ЭВМ.

2. Что такое поколение ЭВМ и чем вызывается смена поколений?

3. Расскажите о первом поколении ЭВМ.

4. Расскажите о втором поколении ЭВМ.

5. Расскажите о третьем поколении ЭВМ.

6. Расскажите о четвертом поколении ЭВМ.

7. Когда и почему название «ЭВМ» стало постепенно заменяться термином «компьютер»?

8. Чем прославился математик Джон фон Нейман? 

Перспективы развития компьютерных систем

Изучив эту тему, вы узнаете:

Каковы основные тенденции развития компьютеров;
- каковы причины, обусловливающие эти тенденции.




Зная функциональные возможности компьютеров, можно поразмышлять над перспективами их развития. Это не слишком благодарное занятие, особенно в отношении компьютерной техники, так как ни в какой другой области не происходит таких существенных изменений в столь короткие отрезки времени. Тем не менее суть развития компьютерной техники состоит в следующем: сначала перед людьми открывается некая сравнительно новая область использования компьютеров, но для реализации этих идей нужны некоторые новые, технологически обеспеченные возможности компьютеров. Как только необходимые технологии разработаны и внедрены, сразу становятся очевидными иные перспективные области применения компьютеров и т. д.

Например, компания Fujitsu разработала универсального робота-носильщика. В фойе отеля робот приветствует гостей хриплым баритоном. Уточнив номер комнаты, робот берет тяжелые чемоданы в обе «руки» или выкатывает тележку и начинает движение в сторону лифта, затем нажимает кнопку вызова лифта, поднимается на этаж и провожает гостей в номер. Электронная карта отеля, восемь камер и ультразвуковые сенсоры позволяют роботу преодолевать любые препятствия. Правое и левое колеса вращаются независимо, поэтому движение по наклонным и неровным поверхностям дается легко. Используя систему обработки трехмерных изображений, робот может брать предметы и протягивать их гостям. Робот чутко воспринимает голосовые инструкции, подключен к Интернету. Справки об отеле можно получить на его цветном сенсорном экране. Ночью робот патрулирует коридоры отеля.

Так, например, в Массачусетсском технологическом институте (США) демонстрировались модели одежды со встроенными в них компьютерами и электронными устройствами. Сегодня новое поветрие названо «кибер- модой». Кибер-брошь, украшающая платье на этой иллюстрации, не просто аксессуар - это электронное устройство, вспыхивающее в такт сердцебиению его обладателя.

Можно предполагать, что в будущем появятся сотни активных компьютерных устройств, отслеживающих наше состояние и местоположение, легко воспринимающих нашу информацию и управляющих бытовыми приборами. Они не будут находиться в одной общей «оболочке». Они будут повсюду. Перспективы развития в отношении подобных компьютерных устройств: они станут намного более миниатюрными и будут иметь низкую стоимость.

Рассмотрим перспективы и тенденции развития компьютерной техники, обеспечивающей информационное обслуживание и управление. Каждый компьютер не только умеет безошибочно и быстро считать, но и представляет собой вместительное хранилище информации. В настоящее время все шире используется наиболее специфическая функция компьютеров - информационная, и именно это является одной из причин наступающей «всеобщей информатизации». Обычно информацию подготавливают на компьютере, затем печатают и уже в таком виде распространяют.

Однако уже в начале XXI века ожидается смена основной информационной среды - большую часть информации люди станут получать не по традиционным каналам связи - радио, телевидение, печать, а через компьютерные сети.

Изменение цели использования компьютеров наблюдается уже сегодня. Прежде компьютеры служили исключительно для выполнения различных научно-технических и экономических расчетов, и работали на них пользователи с общей компьютерной подготовкой и программисты.

Благодаря появлению телекоммуникаций кардинально изменяется область применения компьютеров пользователями. Потребность в компьютерных теле- коммуникациях постоянно расширяется. Все больше людей обращается к Интернету, чтобы узнать расписание движения поездов или последние новости из Думы, познакомиться с научной статьей коллеги, сделать выбор, где провести свободный вечер, и т. п. Информация подобного рода нужна каждому в любой момент и в любом месте.

В настоящее время разрабатывается новая концепция развития сети Интернет - это создание семантической паутины (англ. Semantic web). Она является надстройкой над существующей Всемирной паутиной и призвана сделать размещенную в сети информацию более понятной для компьютеров. С 1999 года проект семантической паутины развивается под эгидой Консорциума Всемирной паутины.

В настоящее время компьютеры принимают довольно ограниченное участие в формировании и обработке информации в Интернете. Функции компьютеров в основном сводятся к хранению, отображению и поиску информации. Это обусловлено тем, что большая часть информации в Интернете находится в текстовой форме, а компьютеры не могут воспринять и осмыслить смысловую информацию. Создание информации, ее оценку, классификацию и актуализацию - все это по-прежнему выполняет человек.

Встает вопрос - как же заставить компьютеры понимать смысл размещенной в сети информации и научить компьютеры пользоваться ею? Если компьютер пока нельзя научить понимать человеческий язык, то нужно создать язык, который был бы понятен компьютеру. В идеальном варианте вся информация в Интернете должна размещаться на двух языках: на языке, понятном человеку, и на языке, понятном компьютеру. Для создания понятного компьютеру описания сетевого ресурса в семантической паутине создан формат RDF (англ. Resource Description Framework). Он предназначен для хранения метаданных (метаданные - это данные о данных) и не предназначен для прочтения и использования человеком. Описания в формате RDF должны прикрепляться к каждому сетевому ресурсу и обрабатываться компьютером автоматически.

Семантическая паутина открывает доступ к четко структурированной информации для любых приложений, независимо от платформы и языков программирования. Программы смогут сами находить нужные ресурсы, обрабатывать информацию, обобщать данные, выявлять логические связи, делать выводы и даже принимать решения на основе этих выводов. При широком распространении и грамотном внедрении семантическая паутина может вызвать революцию в Интернете.

Семантическая паутина - это концепция сети, в которой каждый информационный ресурс на человеческом языке должен быть снабжен описанием, понятным компьютеру.

Компьютер должен быть полностью мобильным и снабжен радиомодемом для входа в компьютерную сеть. В перспективе портативные компьютеры должны стать более миниатюрными при быстродействии, сравнимом с производительностью современных суперЭВМ. Они должны иметь плоский дисплей с хорошей разрешающей способностью. Их внешние запоминающие устройства - магнитные диски - при небольших размерах будут иметь емкость более 100 Гбайт. Чтобы с компьютером можно было общаться на естественном языке, он будет широко оснащен средствами мультимедиа, в первую очередь, аудио- и видеосредствами.

Для обеспечения качественного и повсеместного обмена информацией между компьютерами будут использоваться принципиально новые способы связи:

♦ инфракрасные каналы в пределах прямой видимости;
♦ телевизионные каналы;
♦ беспроводная технология высокоскоростной цифровой связи.

Это позволит строить системы сверхскоростных информационных магистралей, связывающих воедино все существующие системы. 

Сферы применения ЭВМ все расширяются, и каждая из них обусловливает новую тенденцию развития компьютерной техники. В перспективе все вычислительные комплексы и системы от суперЭВМ до персонального компьютера станут составляющими единой компьютерной сети. А при такой сложной распределенной структуре должна быть обеспечена практически неограниченная пропускная способность и скорость передачи информации.

Современные полупроводниковые компьютеры скоро исчерпают свой потенциал, и даже при условии перехода к трехмерной архитектуре микросхем их быстродействие будет ограничено значением 1015 операций в секунду. Поиски новых путей совершенствования компьютеров ведутся во многих направлениях. Существует несколько возможных альтернатив замены современных компьютеров - квантовые компьютеры, нейрокомпьютеры и оптические компьютеры. При разработке «компьютеров будущего» используется широкий спектр научных дисциплин: молекулярная электроника, молекулярная биология, робототехника, квантовая механика, органическая химия и др. Рассмотрим основные особенности этих компьютеров.

Оптический компьютер. В оптических компьютерах носителем информации является световой поток. Применение оптического излучения в качестве носителя информации имеет ряд преимуществ по сравнению с электрическими сигналами:

♦ скорость распространения светового сигнала выше скорости электрического;
♦ световые потоки, в отличие от электрических, могут пересекаться друг с другом;
♦ световые потоки могут передаваться по свободному пространству;
♦ возможность создания параллельных архитектур.

Создание большего количества параллельных архитектур, по сравнению с традиционными электронными компьютерами, является основным достоинством оптических компьютеров, оно позволяет преодолеть ограничения по быстродействию и параллельной обработке информации.  Оптические технологии важны не только для создания оптических компьютеров, но также и для оптических коммуникаций и сети Интернет.

Нейрокомпьютер . Для решения некоторых задач требуется создание эффективной системы искусственного интеллекта, которая могла бы обрабатывать информацию, не затрачивая много вычислительных ресурсов. И прекрасным аналогом для решения такой проблемы может стать мозг и нервная система живых организмов, которые позволяют эффективно обрабатывать сенсорную информацию. Мозг человека состоит из 10 миллиардов нервных клеток - нейронов. Аналогично должен быть построен и нейрокомпьютер, который моделирует функции нейронов.

Появление нейрокомпьютеров, часто называемых биокомпьютерами, во многом связывают с развитием нанотехнологий, которыми активно занимаются ученые многих стран. Нейрокомпьютеры предполагается строить на базе нейрочипов (искусственных нейронах) и нейроноподобных связях, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Поэтому для решения задач разного типа требуется нейронная сеть разной топологии (разновидностей соединения нейрочипов). Один искусственный нейрон может использоваться в работе нескольких алгоритмов обработки информации в сети, и каждый алгоритм реализуется при помощи некоторого количества искусственных нейронов. Нейронная сеть (перцептрон) может обучаться распознаванию образов.

Перспективность создания нейрокомпьютеров состоит в том, что искусственные структуры, имеющие свойства мозга и нервной системы, имеют ряд важных особенностей: параллельность обработки информации, способность к обучению, способность к автоматической классификации, высокая надежность, ассоциативность.

Квантовый компьютер . В основе работы квантового компьютера лежат законы квантовой механики. Квантовая механика позволяет установить способ описания и законы движения микрочастиц (атомов, молекул, атомных ядер) и их систем. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Физический принцип действия квантового компьютера основан на изменении энергии атома. Она имеет дискретный ряд значений EQ, EI,... Еп, называемый энергетическим спектром атома. Излучение и поглощение атомом электромагнитной энергии происходит отдельными порциями - квантами, или фотонами. При поглощении фотона энергия атома увеличивается и осуществляется переход с нижнего на верхний уровень, при излучении фотона совершается обратный переход вниз.

Поэтому в качестве основной единицы квантового компьютера введено понятие «кубит» (qubit, Quantum Bit) по аналогии с традиционным компьютером, где используется понятие «бит». Известно, что бит имеет лишь два состояния - 0 и 1, тогда как состояний кубита значительно больше. Поэтому для описания состояния квантовой системы было введено понятие волновой функции в виде вектора с большим числом значений.

Для квантовых компьютеров так же, как и для классических, введены элементарные квантовые логические операции: дизъюнкция, конъюнкция и отрицание, с помощью которых будет организована вся логика квантового компьютера. При создании квантового компьютера основное внимание уделяется вопросам управления кубитами при помощи вынужденного излучения и недопущении спонтанного излучения, которое нарушит работу всей квантовой системы.

Можно предположить, что объединение квантовых, оптических и нейронных компьютеров даст миру мощную гибридную вычислительную систему. Такую систему от обычной будут отличать огромная производительность (ориентировочно 1051), за счет параллелизма выполнения операций, а также возможности эффективной обработки и управления сенсорной информацией. Для производства «компьютеров будущего» будут необходимы значительные экономические затраты, в несколько десятки раз превышающие затраты на производство современных полупроводниковых компьютеров. 

В таблице 28.1 представлены общие тенденции изменения характеристик компьютерной техники с учетом основных областей использования как современных компьютеров, так и перспективных.

Таблица 28.1. Тенденции изменения характеристик компьютеров


Контрольные вопросы и задания

1. Какова зависимость между целью использования ЭВМ и развитием компьютерной техники?

2. Приведите примеры перспективного использования компьютеров.

3. На что ориентированы перспективные компьютерные системы?

4. Как вы представляете будущее компьютерной техники?

5. На какие значения технических параметров компьютеров можно ориентироваться в недалеком будущем?

6. Каково назначение семантической паутины?

7. Почему ведутся разработки компьютеров на различных принципах действий?

8. В чем состоит основная идея создания оптического компьютера?

9. В чем состоит основная идея создания нейрокомпьютера?

10. В чем состоит основная идея создания квантового компьютера?

Первое поколение ЭВМ

Первое поколение ЭВМ создавалось на электронных лампах в период с 1944 по 1954 гг.

Электронная лампа – это прибор, работа которого осуществляется за счет изменения потока электронов, двигающихся в вакууме от катода к аноду.

Движение электронов происходит за счет термоэлектронной эмиссии – испускания электронов с поверхности нагретых металлов. Дело в том, что металлы обладают большой концентрацией свободных электронов, обладающих различной энергией, а, следовательно, и скоростями движения. По мере нагревания металла энергия электронов возрастает, и некоторые из них преодолевают потенциальный барьер на границе металла.

Принцип работы электронной лампы следующий. Если на вход лампы подается логическая единица (например, напряжение 2 Вольта), то на выходе с лампы мы получим либо логический ноль (напряжение менее 1В), или логическую единицу (2В). Логическую единицу получим, если управляющее напряжение отсутствует, так как ток беспрепятственно пройдет от катода к аноду. Если же на сетку подать отрицательное напряжение, то электроны, идущие от катода к аноду, будут отталкиваться от сетки, и, в результате, ток протекать не будет, и на выходе с лампы будет логический ноль. Используя этот принцип, строились все логические элементы ламповых ЭВМ.

В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током, а анодом – небольшой металлический цилиндр. При подаче напряжения на катода под действием термоэлектронной эмиссии с катода начнут исходить электроны, которые в свою очередь будут приниматься анодом.

Применение электронных ламп резко повысило вычислительные возможности ЭВМ, что способствовало быстрому переходу от первых автоматических релейных вычислительных машин к ламповым ЭВМ первого поколения.

Однако, не обошлось без проблем. Использование электронных ламп омрачала их низкая надежность, высокое энергопотребление и большие габариты. Первые ЭВМ были поистине гигантских размеров и занимали несколько комнат в научно-исследовательских институтах. Обслуживание таких ЭВМ было крайне сложным и трудоемким, постоянно выходили из строя лампы, происходили сбои при вводе данных, и возникало множество других проблем. Не менее сложными и дорогостоящими приходилось делать и системы питания (нужно было прокладывать специальные силовые шины для обеспечения питания ЭВМ и делать сложную разводку, чтобы подвести кабели ко всем элементам), и системы охлаждения (лампы сильно грелись, от чего еще чаще выходили из строя).

Несмотря на это, конструкция ЭВМ быстро развивалась, скорость вычисления достигала нескольких тысяч операций в секунду, емкость ОЗУ – порядка 2048 машинных слов. В ЭВМ первого поколения программа уже хранилась в памяти, и использовалась параллельная обработка разрядов машинных слов.

Создаваемые ЭВМ, в основном, были универсальными и использовались для решения научно-технических задач. Со временем производство ЭВМ становится серийным, и они начинают использоваться в коммерческих целях.

В этот же период происходит становление архитектуры Фон-неймановского типа, и многие постулаты, нашедшие свое применение в ЭВМ первого поколения, остаются популярными и по сей день.

Основные критерии разработки ЭВМ, сформулированные Фон-Нейманом в 1946 году, перечислены ниже:

1. ЭВМ должны работать в двоичной системе счисления;

2. все действия, выполняемые ЭВМ, должны быть представлены в виде программы, состоящей из последовательного набора команд. Каждая команда должна содержать код операции, адреса операндов и набор служебных признаков;

3. команды должны храниться в памяти ЭВМ в двоичном коде, так как это позволяет:

а) сохранять промежуточные результаты вычислений, константы и другие числа в том же запоминающем устройстве, где размещается программа;

б) двоичная запись команд позволяет производить операции над величинами, которыми они закодированы;

в) появляется возможность передачи управления на различные участки программы, в зависимости от результатов вычислений;

4. память должна иметь иерархичную организацию, так как скорость работы запоминающих устройств значительно отстает от быстродействия логических схем;

5. арифметические операции должны выполняться на основе схем, выполняющих только операции сложения, а создание специальных устройств – нецелесообразно;

6. для увеличения быстродействия необходимо использовать параллельную организацию вычислительного процесса, т.е. операции над словами будут производиться одновременно во всех разрядах слова.

Стоит отметить, что ЭВМ первого поколения создавались не с нуля. В то время уже были наработки в области построения электронных схем, например, в радиолокации и других смежных областях науки и техники. Однако, наиболее серьезные вопросы были связаны с разработкой запоминающих устройств. Ранее они практически не были востребованы, поэтому какого-либо серьезного опыта в их разработки накоплено не было. Следовательно, каждый прорыв в разработке запоминающих устройств приводил к серьезному шагу вперед в конструировании ЭВМ, так как разработка быстродействующей и емкой памяти – это неотъемлемое условие разработки мощной и быстродействующей ЭВМ.

Первые ЭВМ использовали в качестве запоминающего устройства – статические триггеры на ламповых триодах. Однако, получить запоминающее устройство на электронных лампах приемлемой емкости требовало неимоверных затрат. Для запоминания одного двоичного разряда требовалось два триода, при этом для сохранения информации они должны были непрерывно потреблять энергию. Это, в свою очередь, приводило к серьезным выделениям тепла и катастрофическому снижению надежности. В результате, запоминающее устройство было крайне громоздким, дорогим и ненадежным.

В 1944 году начал разрабатываться новый тип запоминающих устройств, основанный на использовании ультразвуковых ртутных линий задержки. Идея была заимствована из устройства уменьшения помех от неподвижных предметов и земли, разработанного для радаров во время Второй Мировой Войны.

Чтобы убрать неподвижные объекты с экрана радара отражённый сигнал разделяли на два, один из которых посылался непосредственно на экран радара, а второй задерживался. При одновременном выводе на экран нормального и запаздывающего сигналов любое появлявшееся из-за задержки и обратной полярности совпадение стиралось, оставляя только подвижные объекты.

Задержка сигнала осуществлялась с помощью линий задержки - наполненных ртутью трубок с пьезокристаллическим преобразователем на концах. Сигналы от радарного усилителя посылались на пьезокристалл в одном конце трубки, и тот, получая импульс, генерировал небольшое колебание ртути. Колебание быстро передавалось на другой конец трубки, где другой пьезокристалл его инвертировал и передавал на экран.

Ртуть использовалась, потому что её удельное акустическое сопротивление почти равно акустическому сопротивлению пьезокристаллов. Это минимизировало энергетические потери, происходящие при передаче сигнала от кристалла к ртути и обратно.

Для использования в качестве памяти, ртутные линии задержки были несколько доработаны. На принимающем конце трубки был установлен повторитель, который посылал входной сигнал обратно на вход линии задержки, таким образом, импульс, посланный в систему хранения данных, продолжал циркулировать в линии задержки, а, следовательно, сохранялся бит информации до тех пор, пока было электропитание.

Каждая линия задержки сохраняла не один импульс (бит данных), а целый набор импульсов, количество которых определялось скоростью прохождения импульса через ртутную линию задержки (1450 м/с), длительностью импульсов, интервалом между ними и длинной трубки.

Впервые такое устройство хранения данных было использовано в английской ЭВМ – ЭДСАК, вышедшей в свет в 1949 году.

Память на ртутных линиях задержки была огромным шагом вперед, по сравнению с памятью на ламповых триодах, и привела к скачку в развитии вычислительной техники. Однако, она обладала рядом серьезных недостатков:

1. линии задержки требовали строгой синхронизации с устройством считывания данных. Импульсы должны были поступать на приёмник именно в тот момент, когда компьютер был готов считать их;

2. для минимизации энергетических потерь, происходящих при передаче сигнала в линии задержки, ртуть надо содержать при температуре в 40°C, так как при этой температуре ртути удается достигнуть максимального согласования акустических сопротивлений ртути и пьезокристаллов. Это тяжелая и некомфортная работа;

3. изменение температуры ртути также приводило к уменьшению скорости прохождения звука. Приходилось поддерживать температуру в строго заданных рамках, либо регулировать тактовую частоту компьютера, подстраиваясь под скорость распространения звука в ртути при текущей температуре;

4. сигнал мог отражаться от стенок и концов трубки. Приходилось применять серьезные методы для устранения отражений и тщательно настраивать положение пьезокристаллов;

5. скорость работы памяти на ртутных линиях задержки была невелика и ограничивалась скоростью звука в ртути. В результате, она была слишком медленной и значительно отставала от вычислительных возможностей ЭВМ, что сдерживало их развитие. В результате, скорость ЭВМ с памятью на ультразвуковых ртутных линиях задержки составляла несколько тысяч операций в секунду;

6. ртуть – чрезвычайно токсичный и дорогой материал, применение которого связано с необходимостью соблюдения жестких норм безопасности.

Поэтому требовалась новая, более быстрая память для продолжения развития ЭВМ. Вскоре, после создания первой ЭВМ на ультразвуковых ртутных линиях задержки, начались работы по исследованию нового типа памяти, использующего электронно-лучевые трубки, представляющие собой модификацию осциллографических трубок.

Впервые, способ хранения данных с помощью электронно-лучевых трубок был разработан в 1946 году Фредериком Уильямсом. Изобретение Уильямсона могло сохранять всего один бит и работало следующим образом.

С помощью электронно-лучевой трубки пучок электронов фокусировался на участке пластины, покрытой специальным веществом. В результате, этот участок под действием вторичной эмиссии испускал электроны и приобретал положительный заряд, который сохранялся доли секунды, даже после отключения луча. Если через короткие интервалы времени повторять бомбардировку электронами, то заряд участка можно сохранять столько, сколько потребуется.

Если же луч, не отключая, чуть передвинуть на соседний участок, то электроны, испущенные соседним участком, будут поглощены первым участком, и он примет нейтральный заряд.

Таким образом, в ячейку, состоящую из двух смежных участков, можно быстро записывать 1 бит информации. Ячейка без заряда – 1, ячейка с положительным зарядом – 0.

Для считывания сохраненного бита информации, с противоположной стороны пластины прикреплялись электроды, измеряющие величину изменения заряда ячейки, а сама ячейка подвергалась повторному воздействию лучом электронов. В результате, независимо от первоначального состояния, она получала положительный заряд. Если ячейка уже имела положительный заряд, то изменение ее заряда было меньше, чем, если бы она имела нейтральный заряд. Анализируя величину изменения заряда, определяли значение сохраненного в этой ячейке бита.


Однако, процесс считывания данных уничтожал информацию, сохраненную в ячейке, поэтому после операции чтения приходилось повторно записывать данные. В этом процесс работы с памятью на электронно-лучевых трубках был очень похож на работу с современной динамической памятью.

Первый компьютер с такой памятью появился летом 1948 года и позволял сохранять до тридцати двух тридцати двух разрядных двоичных слов.

Со временем память на электронно-лучевых трубках была заменена памятью с магнитными сердечниками. Этот тип памяти был разработан Дж. Форрестером и У. Папяном, и введен в эксплуатацию в 1953 году.

Память на магнитных сердечниках хранила данные в виде направления намагниченности небольших ферритовых колец. Каждое кольцо сохраняло 1 бит информации, а вся память представляла собой прямоугольную матрицу.

В простейшем случае устройство памяти было следующим.

Вдоль строк матрицы через кольца пропускались провода возбуждения (на рисунке они выделены зеленым цветом). Аналогичные провода пропускались через кольца вдоль столбцов матрицы (синий цвет).

Ток, проходящий через эти провода, устанавливал направление намагниченности колец. Причем, сила тока была такова, что один провод не мог изменить направление намагниченности, а, следовательно, направление намагниченности изменялось только в кольце, находящемся на пересечении красного и синего провода. Это было необходимо, так как на каждый провод возбуждения было нанизано несколько десятков ферритовых колец, а изменять состояние нужно было только в одном кольце.

Если в выбранном кольце изменять состояние намагниченности не требовалось, то подавали ток в провод запрета (красный цвет) в направлении, противоположном току в проводах возбуждения. В результате, сумма токов была недостаточной для изменения намагниченности кольца.

Таким образом, в каждом колечке могли храниться 1 или 0, в зависимости от направления намагниченности.

Для считывания данных с выбранного ферритового кольца, на него по проводам возбуждения подавались такие импульсы тока, что их сумма приводила к намагниченности кольца в определенном направлении, независимо от первоначального намагничивания.

При изменении намагниченности кольца в проводе считывания возникал индукционный ток. Измеряя его, можно было определить, насколько изменилось направление намагниченности в кольце, а, следовательно, узнать хранимое им значение.

Как видите, процесс считывания уничтожал данные (также, как и в современной динамической памяти), поэтому после считывания было необходимо заново записать данные.

Вскоре, этот тип памяти стал доминирующим, вытеснив электронно-лучевые трубки и ультразвуковые ртутные линии задержки. Это дало еще один скачок в производительности ЭВМ.

Дальнейшее развитие и совершенствование ЭВМ позволило им прочно занять свою нишу в области науки и техники.

К числу передовых ЭВМ первого поколения можно отнести:

ENIAC - первый широкомасштабный электронный цифровой компьютер, созданный в 1946 году по заказу армии США в лаборатории баллистических исследований для расчётов таблиц стрельбы. В эксплуатацию введен 14 февраля 1946 года;

EDVAC - одна из первых электронных вычислительных машин, разработанная в лаборатории баллистических исследований армии США, представленная публике в 1949 году;

EDSAC - электронная вычислительная машина, созданная в 1949 году в Кембриджском Университете (Великобритания) группой во главе с Морисом Уилксом;

UNIVAC - универсальный автоматический компьютер, созданный в 1951 году Д. Моучли и Дж. Преспер Эккерт;

IAS - ЭВМ Института Перспективных Исследований, разработанная под руководством Дж. Неймана в 1952 году;

Whirlwind – ЭВМ, созданная в Массачусетском Технологическом Университете в марте 1951 года;

МЭСМ - Малая Электронная Счетная Машина – первая отечественная ЭВМ, созданная в 1950 году С.А. Лебедевым;

БЭСМ - Большая Электронная Счетная Машина, разработанная Институтом Точной Механики и Вычислительной Техники Академии наук СССР.

Все эти и многие другие вычислительные машины первого поколения подготовили надежную стартовую площадку для победного марша ЭВМ по всему миру.

Стоит отметить, что не было резкого перехода от ЭВМ первого поколения на электронных лампах к ЭВМ второго поколения на транзисторах. Электронные лампы постепенно заменялись, вытесняясь твердотельными транзисторами. В первую очередь, были вытеснены электронные лампы из устройств хранения данных, а затем постепенно они вытеснялись из арифметико-логических устройств.

Слева, схематично изображен переход от чисто ламповых ЭВМ к ЭВМ второго поколения.

За время существования ламповых ЭВМ их структура, изображенная на рисунке ниже, не претерпела серьезных изменений. Переход ко второму поколению ЭВМ также не внес существенных изменений в их структурное построение. В основном, изменилась только элементная база. Серьезные изменения структуры построения ЭВМ начались ближе к третьему поколению ЭВМ, когда начали появляться первые интегральные схемы.

С помощью устройства ввода данных (УВв), в ЭВМ вводились программы и исходные данные к ним. Введенная информация целиком или полностью запоминалась в оперативном запоминающим устройстве (ОЗУ). Затем, при необходимости, она заносилась во внешнее запоминающее устройство (ВЗУ), откуда по мере надобности могла подгружаться в ОЗУ.

После ввода данных или считывания их из ВЗУ, программная информация, команда за командой, считывалась из ОЗУ и передавалась в устройство управления (УУ).

Устройство управления дешифрировало команду, определяло адреса операндов и номер следующей команды, которую нужно было считать из ОЗУ. Затем, путем принудительной координации всех элементов ЭВМ, УУ организовывало исполнение команды и запрашивало следующую. Цепи сигналов управления показаны на рисунке штриховыми линиями.

Арифметико-логическое устройство (АЛУ) выполняло арифметические и логические операции над данными. Основной частью АЛУ является вычислительное ядро, в состав которого входят сумматоры, счетчики, регистры, логические преобразователи и др.

Промежуточные результаты, полученные после выполнения отдельных команд, сохранялись в ОЗУ. Результаты, полученные после выполнения всей программы вычисления, передавались на устройство вывода (УВыв). В качестве УВыв использовались: экран дисплея, принтер, графопостроитель и т.д.

Как видно из приведенной выше структурной схемы, ЭВМ первого поколения имели сильную централизацию. Устройство управления отвечало не только за выполнение команд, но и контролировало работу устройств ввода и вывода данных, пересылку данных между запоминающими устройствами и другие функции ЭВМ. Также были жестко стандартизированы форматы команд, данных и циклов выполнения операций.

Все это позволяло несколько упростить аппаратуру ЭВМ, ужасно сложную, громоздкую и без изысков организации вычислительного процесса, но значительно сдерживало рост их производительности.

Первая ЭВМ на электронных лампах была создана в США и называлась ЭНИАК. Она оказала существенное влияние на направление развития вычислительной техники. Вскоре, за примером США последовали и многие другие промышленно-развитые страны (Великобритания, Швейцария, СССР и др.), уделявшие развитию вычислительной техники в послевоенный период много внимания.

Однако, наибольшее значение в развитии вычислительной техники оказали исследования, проводимые в США, СССР и Великобритании. В других же странах, например во Франции, ФРГ, Японии, ЭВМ, относящиеся к первому поколению, не получили серьезного развития. В частности, для ФРГ, Испании и Японии даже трудно отделить рамки перехода от ЭВМ первого поколения к ЭВМ второго поколения, так как, наряду с первыми ламповыми ЭВМ, в конце пятидесятых годов начинали создаваться и первые ЭВМ на полупроводниковой основе.

Список используемой литературы

1. История развития вычислительной техники. Ланина Э.П. ИрГТУ, Иркутск – 2001 г.

2. Развитие вычислительной техники. Апокин И.А. М., "Наука", 1974 г.

3. Курс физики. Трофимова Т.И. Москва "Высшая школа", 2001 г.

На первоначальном этапе своего развития сфера разработки компьютеров в СССР шла в ногу с мировыми тенденциями. О история развития советских ЭВМ до 1980-го года и пойдёт речь в этой статье.

Предыстория ЭВМ

В современной разговорной – да и научной тоже – речи выражение «электронная вычислительная машина» повсеместно изменено на слово «компьютер». Это не совсем верно теоретически – компьютерные вычисления могут быть основаны не на использовании электронных приспособлений. Однако исторически сложилось, что ЭВМ стали основным инструментом для проведения операций с большими объёмами численных данных. А поскольку над их совершенствованием работали исключительно математики, все типы информации стали кодироваться численными «шифрами», и удобные для их обработки ЭВМ из научно-военной экзотики превратились в универсальную широко распространённую технику.

Инженерная база для создания электронных вычислительных машин была заложена в Германии в годы Второй мировой войны. Там прототипы современных компьютеров использовались для шифрования. В Британии в те же годы совместными усилиями шпионов и учёных была спроектирована аналогичная машина для расшифровки – Colossus. Формально ни немецкие, ни британские аппараты электронными вычислительными машинами считаться не могут, скорее электронно-механическими – операциям отвечали переключения реле и вращение роторов-шестерёнок.

После завершения войны разработки нацистов попали в руки Советского Союза и, в основном, США. Сложившееся в то время научное сообщество отличалось сильной зависимостью от «своих» государств, но что важнее – высоким уровнем проницательности и трудолюбия. Ведущие специалисты сразу нескольких областей заинтересовались возможностями электронно-вычислительной техники. А правительства согласились, что устройства для быстрых, точных и сложных вычислений – это перспективно, и выделили средства на соответствующие исследования. В США до и во время войны велись свои кибернетические разработки – непрограммируемый, но полностью электронный (без механической компоненты) компьютер Атанасова-Берри (ABC), а также электромеханический, но программируемый под разные задачи ЭНИАК. Их модернизация с учётом трудов европейских (немецких и британских) учёных привела к появлению первых «настоящих» ЭВМ. В это же время (в 1947-м году) в Киеве был организован Институт электротехники АН УССР, во главе которого встал Сергей Лебедев, инженер-электротехник и родоначальник советской информатики. В один год с появлением института Лебедев открывает под его крышей лабораторию моделирования и вычислительной техники, в которой в последующие несколько десятилетий разрабатываются лучшие ЭВМ Союза.


ЭНИАК

Принципы первого поколения ЭВМ

В 40-х годах известный математик Джон фон Нейман пришёл к выводу, что вычислительные машины, в которых программы задаются буквально вручную, переключением рычагов и проводов, чрезмерно сложны для практического использования. Он создаёт концепцию, по которой исполняемые коды хранятся в памяти так же, как и обрабатываемые данные. Отделение процессорной части от накопителя данных и принципиально одинаковый подход к хранению программ и информации стали краеугольными камнями архитектуры фон Неймана. Эта компьютерная архитектура до сих пор является самой распространённой. Именно от первых устройств, построенных на архитектуре фон Неймана, отсчитываются поколения ЭВМ.

Одновременно с формулировкой постулатов архитектуры фон Неймана в электротехнике начинается массовое применение вакуумных ламп. На тот момент только они позволяют в полной мере реализовать автоматизацию вычислений, предлагаемую новой архитектурой, поскольку время реакции электронных ламп чрезвычайно мало. Однако каждая лампа требовала для работы отдельного питающего провода, кроме того, физический процесс, на котором основано функционирование вакуумных ламп – термоэлектронная эмиссия – накладывал ограничения на их миниатюризацию. Как следствие, ЭВМ первого поколения потребляли сотни киловатт энергии и занимали десятки кубометров пространства.

В 1948-м году Сергей Лебедев, занимавшийся на своём директорском посту не только административной работой, но и научной, подал в АН СССР докладную записку. В ней говорилось о необходимости в кратчайшие сроки разработать свою электронную вычислительную машину, и ради практического использования, и ради научного прогресса. Разработки этой машины велись полностью с нуля – об экспериментах западных коллег Лебедев и его сотрудники информации не имели. За два года машина была спроектирована и смонтирована – для этих целей под Киевом, в Феофании, институту отвели здание, ранее принадлежавшее монастырю. В 1950-м ЭВМ, названная (МЭСМ), произвела первые вычисления – нахождение корней дифференциального уравнения. В 1951-м году инспекция академии наук, возглавляемая Келдышем, приняла МЭСМ в эксплуатацию. МЭСМ состояла из 6000 вакуумных ламп, выполняла 3000 операций в секунду, потребляла чуть меньше 25 кВт энергии и занимала 60 квадратных метров. Имела сложную трёхадресную систему команд и считывала данные не только с перфокарт, но и с магнитных лент.

Пока Лебедев строил свою машину в Киеве, в Москве образовалась своя группа электротехников. Электротехник Исаак Брук и изобретатель Башир Рамеев, оба – сотрудники Энергетического института им. Кржижановского, ещё в 1948-м подали в патентное бюро заявку на регистрацию проекта собственной ЭВМ. К 1950-му году Рамеева поставили во главе особой лаборатории, где буквально за год была собрана М-1– ЭВМ значительно менее мощная, чем МЭСМ (выполнялось всего 20 операций в секунду), но зато и меньшая по размерам (около 5 метров квадратных). 730 ламп потребляли 8 кВт энергии.


В отличие от МЭСМ, которая использовалась главным образом в военных и промышленных целях, вычислительное время серии «М» отводилось и учёным-ядерщикам, и организаторам экспериментального шахматного турнира между ЭВМ. В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп – всего лишь вдвое. Этого удалось достичь активным использованием управляющих полупроводниковых диодов. Энергопотребление увеличилось до 29 кВт, площадь – до 22 квадратных метров. Несмотря на явную успешность проекта, в массовое производство ЭВМ не запустили – этот приз ушёл ещё одному кибернетическому творению, созданному при поддержке Рамеева – «Стреле».

ЭВМ «Стрела» создавалась в Москве, под руководством Юрия Базилевского. Первый образец устройства завершили к 1953-му году. Как и М-1, «Стрела» использовала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). «Стрела» оказалась наиболее удачным из этих трёх проектов, поскольку её сумели запустить в серию – за сборку взялся Московский завод счётно-аналитических машин. За три года (1953-1956) было выпущено семь «Стрел», которые затем отправились в МГУ, в вычислительные центры АН СССР и нескольких министерств.

Во многих смыслах «Стрела» была хуже, чем М-2. Она выполняла те же 2000 операций в секунду, но при этом использовалось 6200 ламп и больше 60 тысяч диодов, что в сумме давало 300 квадратных метров занимаемой площади и порядка 150 кВт энергопотребления. М-2 подвели сроки: её предшественница хорошей производительностью не отличалась, а к моменту ввода в эксплуатацию доведенной до ума версии «Стрелы» уже были отданы в производство.

М-3 вновь была «урезанным» вариантом – ЭВМ выполняла 30 операций в секунду, состояла из 774-х ламп и потребляла 10 кВт энергии. Зато и занимала эта машина только 3 кв.м., благодаря чему пошла в серийное производство (было собрано 16 ЭВМ). В 1960-м году М-3 модифицировали, производительность довели до 1000 операций в секунду. На базе М-3 в Ереване и Минске разрабатывались новые ЭВМ «Арагац», «Раздан», «Минск». Эти «окраинные» проекты, шедшие параллельно с ведущими московскими и киевскими программами, добились серьёзных результатов уже позже, после перехода на транзисторные технологии.


В 1950-м году Лебедева перевели в Москву, в Институт точной механики и вычислительной техники. Там за два года была спроектирована ЭВМ, прообразом которой в своё время считалась МЭСМ. Новую машину назвали БЭСМ – Большая электронная счётная машина. Этот проект положил начало самой успешной серии советских компьютеров.

Доработанная ещё за три года БЭСМ отличалась великолепным по тем временам быстродействием – до 10 тысяч операций в минуту. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» – её изначально предполагалось предоставлять учёным и инженерам для проведения их расчётов.

БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч, оперативная память, после испытаний ЭЛТ, ртутных трубок, была реализована на ферритовых сердечниках (на следующие 20 лет этот тип ОЗУ стал ведущим). Выпуск начался в 1958-м году, и за четыре года с конвейеров завода им. Володарского сошло 67 таких ЭВМ. С БЭСМ-2 началась разработка военных компьютеров, руководивших системами ПВО – М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения – 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.


С 1955-го года Рамеев «передислоцировался» в Пензу для разработки ещё одной ЭВМ, более дешёвой и массовой «Урал-1». Состоящая из тысячи ламп и потребляющая до 10 кВт энергии, эта ЭВМ занимала порядка ста квадратных метров и стоила куда дешевле мощных БЭСМ. «Урал-1» выпускался до 1961-го года, всего было произведено 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру, в частности, в центре управления полётами космодрома «Байконур». «Урал 2-4» также являлись ЭВМ на электронных лампах, но уже использовали ферритовую оперативную память, выполняли по несколько тысяч операций в секунду и занимали 200-400 квадратных метров.

В МГУ разрабатывали собственную ЭВМ – «Сетунь». Она также пошла в массовое производство – на Казанском заводе вычислительных машин было выпущено 46 таких ЭВМ. Их спроектировал математик Соболев совместно с конструктором Николаем Брусенцовым. «Сетунь» – ЭВМ на троичной логике; в 1959-м году, за несколько лет до массового перехода на транзисторные компьютеры, эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4500 операций в секунду и потребляла 2,5 кВт электричества. Для этого использовались ферритодиодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954-м году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1. «Сетуни» благополучно функционировали в различных учреждениях СССР, но будущее было за ЭВМ взаимно совместимыми, а значит – основанными на одной и той же, двоичной логике. Тем более что мир получил транзисторы, убравшие вакуумные лампы из электротехнических лабораторий.


ЭВМ первого поколения США

Серийное производство ЭВМ в США началось раньше, чем в СССР – в 1951-м году. Это был UNIVAC I, коммерческий компьютер, созданный скорее для обработки статистических данных. Его производительность была примерно такой же, что и у советских разработок: использовалось 5200 вакуумных ламп, выполнялось 1900 операций в секунду, потреблялось 125 кВт энергии.

Зато научные и военные компьютеры отличались куда большей мощностью (и размерами). Разработка ЭВМ Whirlwind началась ещё до Второй мировой, причём её назначением было ни много ни мало – подготовка пилотов на авиационных симуляторах. Естественно, в первой половине 20-го века это было нереальной задачей, поэтому война прошла, а Whirlwind так и не построили. Но затем началась холодная война, и разработчики из Массачусетского технологического института предложили вернуться к грандиозной идее.

В 1953-м году (тогда же, когда в свет вышли М-2 и «Стрелы») Whirlwind был завершён. Этот компьютер выполнял 75000 операций в секунду и состоял из 50 тысяч вакуумных ламп. Потребление энергии достигало нескольких мегаватт. В процессе создания ЭВМ были разработаны ферритовые накопители данных, оперативная память на электронно-лучевых трубках и нечто вроде примитивного графического интерфейса. На практике от Whirlwind так и не было проку – его модернизировали под перехват самолётов-бомбардировщиков, а на момент сдачи в эксплуатацию воздушное пространство уже перешло под власть межконтинентальных ракет.

Бесполезность Whirlwind для военных не поставила крест на подобных ЭВМ. Создатели компьютера передали основные наработки компании IBM. В 1954-м году на их основе был спроектирован IBM 701 – первый серийный компьютер этой корпорации, на тридцать лет обеспечивший ей лидерство на рынке вычислительной техники. Его характеристики были полностью аналогичны Whirlwind. Таким образом, быстродействие у американских компьютеров было выше, чем у советских, да и многие конструктивные решения были найдены раньше. Правда, это касалось скорее использования физических процессов и явлений – архитектурно ЭВМ Союза зачастую были совершеннее. Возможно, потому, что Лебедев и его последователи разрабатывали принципы построения ЭВМ практически с нуля, опираясь не на старые идеи, а на последние достижения математической науки. Однако обилие нескоординированных проектов не позволило СССР создать свою IBM 701 – удачные особенности архитектур были рассредоточены по разным моделям, и таким же распылением отличалось финансирование.


Принципы второго поколения ЭВМ

ЭВМ на вакуумных лампах отличались сложностью программирования, большими габаритами, высоким энергопотреблением. При этом ломались машины часто, ремонт их требовал участия профессиональных электротехников, а правильность исполнения команд серьёзно зависела от исправности аппаратной части. Узнать, вызвана ошибка неправильным подключением какого-то элемента или «опечаткой» программиста было крайне тяжёлой задачей.

В 1947-м году в лаборатории Белла, обеспечившей США в 20-м веке добрую половину передовых технологических решений, Бардин, Браттейн и Шокли изобрели биполярный полупроводниковый транзистор. 15 ноября 1948 года в журнале «Вестник информации» А.В. Красилов опубликовал статью «Кристаллический триод». Это была первая публикация в СССР о транзисторах. был создан независимо от работы американских учёных.

Кроме пониженного энергопотребления и большей скорости реакции, транзисторы выгодно отличались от вакуумных ламп своими долговечностью и на порядок меньшими габаритами. Это позволяло создавать вычислительные блоки промышленными методами (конвейерная сборка ЭВМ на вакуумных лампах представлялась маловероятной из-за их размеров и хрупкости). Заодно решалась проблема динамического конфигурирования компьютера – небольшие периферийные устройства легко было отключать и заменять другими, что в случае с массивными ламповыми компонентами не являлось возможным. Себестоимость транзистора была выше, чем себестоимость вакуумной лампы, однако при массовом производстве транзисторные компьютеры окупались значительно быстрее.

Переход на транзисторные вычисления в советской кибернетике прошёл плавно – не было создано никаких новых КБ или серий, просто старые БЭСМы и «Уралы» перевели на новую технологию.

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров – вычислительного и контроллера периферийных устройств – имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500000 операций в секунду для основного процессора и 37000 – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с ЭВМ работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 квадратных метров. Её проектирование началось в 1961-м, а завершилось в 1964-м году.

Уже после 5Э92б разработчики занялись универсальной транзисторной ЭВМ – БЭСМами. БЭСМ-3 осталась макетом, БЭСМ-4 дошла до серийного производства и была выпущена в количестве 30 машин. Она выполняла до 40 операций в секунду и являлась «подопытным образцом» для создания новых языков программирования, пригодившихся с появлением БЭСМ-6.


За всю историю советской вычислительной техники БЭСМ-6 считается самой триумфальной. На момент своего создания в 1965-м году эта ЭВМ была передовой не столько по аппаратным характеристикам, сколько по управляемости. Она имела развитую систему самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами (по телефонным и телеграфным каналам), возможность конвейерной обработки 14 процессорных команд. Производительность системы достигала миллиона операций в секунду. Имелась поддержка виртуальной памяти, кеша команд, чтения и записи данных. В 1975-м году БЭСМ-6 обрабатывала траектории полёта космических аппаратов, участвовавших в проекте «Союз-Аполлон». Выпуск ЭВМ продолжался до 1987-го года, а эксплуатация – до 1995-го.

С 1964-го года на полупроводники перешли и «Уралы». Но к тому времени монополия этих ЭВМ уже прошла – почти в каждом регионе производили свои компьютеры. Среди них были украинские управляющие ЭВМ «Днепр», выполняющие до 20000 операций в секунду и потребляющие всего 4 кВт, ленинградские УМ-1, тоже управляющие, и требующие всего 0,2 кВт электричества при производительности 5000 операций в секунду, белорусские «Мински», «Весна» и «Снег», ереванские «Наири» и многие другие. Особого внимания заслуживают разработанные в киевском Институте кибернетики ЭВМ «МИР» и «МИР-2».


Эти инженерные ЭВМ стали выпускаться серийно в 1965-м году. В известном смысле глава Института кибернетики, академик Глушков, опередил Стива Джобса и Стива Возняка с их пользовательскими интерфейсами. «МИР» представлял собой ЭВМ с подключенной к ней электрической печатной машинкой; задавать команды процессору можно было на человекочитаемом языке программирования АЛМИР-65 (для «МИР-2» использовался язык высокого уровня АНАЛИТИК). Команды задавались как латинскими, так и кириллическими символами, поддерживались режимы редактирования и отладки. Вывод информации предусматривался в текстовом, табличном и графическом видах. Производительность «МИРа» составляла 2000 операций в секунду, для «МИР-2» этот показатель достигал 12000 операций в секунду, потребление энергии составляло несколько киловатт.

ЭВМ второго поколения США

В США электронные вычислительные машины продолжала разрабатывать IBM. Впрочем, у этой корпорации был и конкурент – небольшая компания Control Data Corporation и её разработчик Сеймур Крэй. Крэй одним из первых брал на вооружение новые технологии – сперва транзисторы, а затем и интегральные схемы. Он же собрал первые в мире суперкомпьютеры (в частности, самый быстрый на момент своего создания CDC 1604, который долго и безуспешно пытался приобрести СССР) и первым стал применять активное охлаждение процессоров.

Транзисторный CDC 1604 появился на рынке в 1960-м году. Он был основан на германиевых транзисторах, выполнял больше операций, чем БЭСМ-6, но имел худшую управляемость. Однако уже в 1964-м (за год до появления БЭСМ-6) Крэй разработал CDC 6600 – суперкомпьютер, отличавшийся революционной архитектурой. Центральный процессор на кремниевых транзисторах выполнял лишь простейшие команды, всё «преобразование» данных переходило в ведомство десяти дополнительных микропроцессоров. Для его охлаждения Крэй применял циркулирующий в трубках фреон. В итоге CDC 6600 стал рекордсменом по быстродействию, обогнав IBM Stretch в три раза. Справедливости ради, «соревнования» БЭСМ-6 и CDC 6600 никогда не проводилось, а сравнение по числу выполняемых операций на том уровне развития техники уже не имело смысла – слишком многое зависело от архитектуры и системы управления.


Принципы третьего поколения ЭВМ

Появление вакуумных ламп ускорило выполнение операций и позволило воплотить в жизнь идеи фон Неймана. Создание транзисторов решило «габаритную проблему» и позволило снизить энергопотребление. Однако оставалась проблема качества сборки – отдельные транзисторы буквально припаивались друг к другу, а это было плохо и с точки зрения механической надёжности, и с точки зрения электроизоляции. В начале 50-х годов инженерами высказывались идеи интеграции отдельных электронных компонентов, но только к 60-м появились первые опытные образцы интегральных микросхем.

Вычислительные кристаллы стали не собирать, а выращивать на специальных подложках. Электронные компоненты, выполняющие различные задачи, стали соединять при помощи металлизации алюминием, а роль изолятора была отведена p-n-переходу в самих транзисторах. Интегральные микросхемы стали плодом интеграции же трудов как минимум четырёх инженеров – Килби, Леговеца, Нойса и Эрни.

Поначалу микросхемы проектировались по тем же принципам, по которым осуществлялась «маршрутизация» сигналов внутри ламповых ЭВМ. Затем инженеры стали применять так называемую транзисторно-транзисторную логику (ТТЛ), более полно использовавшую физические преимущества новых решений.

Немаловажным было обеспечение совместимости, аппаратной и программной, различных ЭВМ. Особенно много внимания уделялось совместимости моделей одних и тех же серий – до межкорпоративного и тем более межгосударственного сотрудничества ещё было далеко.

Советская промышленность была в полной мере обеспечена ЭВМ, однако многообразие проектов и серий начинало создавать проблемы. По сути, универсальная программируемость компьютеров ограничивалась их аппаратной несовместимостью – у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Кроме того, серийность производства ЭВМ была весьма условной – компьютерами обеспечивались лишь крупнейшие вычислительные центры. В то же время, отрыв американских инженеров увеличивался – в 60-х годах в Калифорнии уже уверенно выделялась Кремниевая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968-м году была принята директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически – путь копирования по определению являлся дорогой отстающих. Однако другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого было выполнение программы «Ряд» – разработки унифицированной серии ЭВМ, подобных S/360. Результатом работы центра стало появление ЕС ЭВМ в 1971-м году. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование ЭВМ начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.


Разработка ЕС ЭВМ велась совместно со специалистами из дружественных стран, в частности, ГДР. Однако попытки догнать США в сфере разработки компьютеров завершились крахом в 1980-х годах. Причиной фиаско послужил как экономический и идеологический спад СССР, так и появление концепции персональных компьютеров. К переходу на индивидуальные ЭВМ кибернетика Союза была не готова ни технически, ни идейно.

Которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.

Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно - на подходе. Что именно под термином "поколение ЭВМ" понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?

Предыстория появления ЭВМ

История развития ЭВМ 5 поколений интересна и увлекательна. Но прежде чем изучить ее, полезно будет узнать факты, касающиеся того, какие технологические решения предшествовали разработке ЭВМ.

Люди всегда стремились к совершенствованию процедур, связанных с подсчетами, вычислениями. Историками установлено, что инструменты для работы с цифрами, имеющие механическую природу, были изобретены еще в Древнем Египте и других государствах античности. В средние века европейские изобретатели могли конструировать механизмы, с помощью которых, в частности, могла вычисляться периодичность лунных приливов.

Прообразом современных ЭВМ некоторые эксперты считают изобретенную в начале 19 века обладавшую функциями программирования вычислений. В конце 19-начале 20 века появились устройства, в которых стала использоваться электроника. В основном они задействовались в индустрии телефонной и радиосвязи.

В 1915 году переехавший в США немецкий эмигрант основал компанию IBM, впоследствии ставшую одним из самых узнаваемых брендов IT-индустрии. В числе самых сенсационных изобретений Германа Холлерита стали перфокарты, в течение десятилетий выполнявшие функцию основного при пользовании вычислительной техникой. К концу 30-х годов появились технологии, позволившие говорить о начале компьютерной эпохи в развитии человеческой цивилизации. Появились первые ЭВМ, который впоследствии стали классифицироваться как принадлежащие к "первому поколению".

Признаки ЭВМ

Ключевым принципиальным критерием отнесения вычислительного устройства к категории ЭВМ, или компьютера, эксперты называют программируемость. Этим соответствующего типа машины, в частности, отличаются от калькуляторов, какими бы мощными последние ни являлись. Даже если речь идет о программировании на очень низком уровне, когда используются "нули и единицы" - критерий в силе. Соответственно, как только были изобретены машины, быть может, по внешним признакам сильно схожие с калькуляторами, но которые можно было программировать - их стали именовать компьютерами.

Под термином "поколение ЭВМ" понимают, как правило, принадлежность компьютера к конкретной технологической формации. То есть, той базе аппаратных решений, на основе которой ЭВМ работает. При этом, исходя из критериев, предлагаемых IT-экспертами, деление компьютеров на поколения далеко не условное (хотя, конечно, есть и переходные формы компьютеров, которые сложно однозначно отнести к какой-либо конкретной категории).

Завершив теоретический экскурс, мы можем начать изучать поколения ЭВМ. Таблица, что ниже, поможет нам ориентироваться в периодизации каждого.

Поколение

Вторая половина 70 - начало 90-х

90-е - наше время

В разработке

Далее мы рассмотрим технологические особенности компьютеров для каждой категории. Нами будет определена характеристика поколений ЭВМ. Таблица, что мы сейчас составили, будет дополнена другими, в которых будут соотнесены соответствующие категории и технологические параметры.

Отметим важный нюанс - нижеследующие рассуждения касаются, главным образом, эволюции компьютеров, которые сегодня принято относить к персональным. Есть совершенно иные классы ЭВМ - военные, промышленные. Есть так называемые "суперкомпьютеры". Их появление и развитие - отдельная тема.

Первые ЭВМ

В 1938 году германский инженер Конрад Цузе конструирует устройство, названное Z1, а в 42-м выпускает его усовершенствованную версию - Z2. В 1943 году свою изобретают англичане и называют ее "Колосс". Некоторые эксперты склонны считать английскую и немецкие машины первыми ЭВМ. В 1944-м на базе разведданных из Германии вычислительную машину создают также и американцы. Разработанная в США ЭВМ получила название "Марк I".

В 1946 году американские инженеры делают небольшую революцию в области конструирования вычислительной техники, создав ламповый компьютер ЭНИАК, в 1000 раз более производительный, чем "Марк I". Следующей известной американской разработкой стала созданная в 1951 году ЭВМ, названная УНИАК. Ее основная особенность в том, что она первой из ЭВМ стала использоваться как коммерческий продукт.

К тому моменту, к слову, свой компьютер уже успели изобрести советские инженеры, работающие в Академии наук Украины. Наша разработка получила название МЭСМ. Ее производительность, по оценке экспертов, была самой высокой среди ЭВМ, собранных в Европе.

Технологические особенности первого поколения ЭВМ

Собственно, исходя из каких критерий определяется первое поколение развития ЭВМ? Таковым IT-специалисты считают, прежде всего, компонентную базу в виде вакуумных ламп. Машины первого поколения к тому же обладали рядом характерных внешних признаков - огромный размер, очень большое энергопотребление.

Вычислительная их мощность также была относительно скромна, она составляла несколько тысяч герц. Вместе с тем ЭВМ первого поколения содержали многое, что есть в современных компьютерах. В частности, это машинный код, позволяющий программировать команды, а также запись данных в память (с помощью перфокарт и электростатических трубок).

ЭВМ первого поколения требовали высочайшей квалификации человека, их использующего. Требовалось не только владение профильными навыками (выражающимися в работе с перфокартами, знании машинного кода и т.д.), но, как правило, также и инженерные знания в области электроники.

В ЭВМ первого поколения, как мы уже сказали, уже была Правда, ее объем был исключительно скромным, он выражался в сотнях, в лучшем случае - в тысячах байт. Первые модули ОЗУ для ЭВМ с трудом можно было классифицировать как электронный компонент. Они представляли собой наполненные ртутью емкости в виде трубок. Кристаллы памяти фиксировались на определенных их участках, и тем самым данные сохранялись. Однако достаточно скоро после изобретения первых ЭВМ появилась более совершенная память на базе ферритовых сердечников.

Второе поколение ЭВМ

Какова дальнейшая история развития ЭВМ? Поколения ЭВМ стали развиваться далее. В 60-х годах получают распространение компьютеры, использующие уже не только вакуумные лампы, но также и полупроводники. Значительно повысилась тактовая частота микросхем - обычным делом считался показатель в 100 тыс. герц и выше. Появились первые магнитные диски как альтернатива перфокартам. В 1964 году компания IBM выпустила уникальный продукт - отдельный компьютерный монитор с достаточно приличными характеристиками - 12-дюймовой диагональю, разрешением 1024 на 1024 точек, а также частотой развертки в 40 Гц.

Поколение номер три

Чем примечательно третье поколение ЭВМ? Прежде всего, переводом компьютеров с ламп и полупроводников на интегральные схемы, которые, не считая ЭВМ, стали использоваться во множестве других электронных устройств.

Впервые возможности интегральных схем были показаны миру стараниями инженера Джека Килби и компании Texas Instruments в 1959 году. Джек создал небольшую конструкцию, выполненную на пластинке из металла германия, которая, как предполагалось, заменит собой сложные полупроводниковые конструкции. В свою очередь, компания Texas Instruments создала компьютер, собранный на базе подобных пластинок. Самое примечательное, что он был в 150 раз меньше, чем аналогичной производительности полупроводниковая ЭВМ. Технология интегральных схем получила дальнейшее развитие. Большую роль в этом сыграли исследования Роберта Нойса.

Эти аппаратные компоненты позволили, прежде всего, значительно уменьшить габариты ЭВМ. В результате произошло существенное повышение производительности компьютеров. Третье поколение ЭВМ характеризовалось выпуском ЭВМ с тактовой частотой, выражаемой уже в мегагерцах. Уменьшилось также и энергопотребление компьютеров.

Стали более совершенными технологии записи данных и обработки их в модулях ОЗУ. Что касается оперативной памяти, ферритовые элементы стали более емкими, технологически совершенными. Появились сначала прототипы, а затем и первые версии дискет, используемые как внешний носитель данных. В архитектуре ПК появилась кэш-память.Стандартной средой взаимодействия пользователя и компьютера стало окно дисплея.

Происходило дальнейшее совершенствование программных компонентов. Появились полноценные операционные системы, стало разрабатываться самое разнообразное были внедрены концепции многозадачности в работу ЭВМ. В рамках ЭВМ третьего поколения появляются такие программы, как а также ПО для автоматизации проектных работ. Появляется все больше языков программирования и сред, в рамках которых осуществляется создание ПО.

Особенности четвертого поколения

Четвертое поколение ЭВМ характеризуется появлением относящихся к классу больших, а также так называемых сверхбольших. В архитектуре ПК появилась ведущая микросхема - процессор. ЭВМ по своей конфигурации стали ближе к рядовым гражданам. Пользование ими стало возможным при минимальной квалификационной подготовке, в то время как работа с ЭВМ предыдущих поколений требовала профессиональных навыков. Модули ОЗУ стали выпускаться не на основе ферритовых элементов, а на базе CMOS-микросхем. К четвертому поколению ЭВМ принято относить и Apple, собранный в 1976 году Стивом Джобсом и Стефаном Возняком. Многие IT-эксперты считают, что Apple - первый в мире персональный компьютер.

Четвертое поколение ЭВМ также совпало с началом популяризации Интернета. В этот же период появился самый известный сегодня бренд софт-индустрии - Microsoft. Возникли первые версии операционных систем, которые мы знаем сегодня - Windows, MacOS. Компьютеры стали активно распространяться по всему миру.

Пятое поколение

Период расцвета четвертого поколения компьютеров - середина-конец 80-х годов. Но уже в начале 90-х на рынке IT-технологий начали происходить процессы, позволившие начать отсчет новому поколению ЭВМ. Речь идет о значительных шагах вперед, прежде всего, в инженерно-технических наработках, связанных с процессорами. Появились микросхемы с архитектурой, относимой к типу параллельно-векторной.

Пятое поколение ЭВМ - это невероятные темпы роста производительности машин из года в год. Если в начале 90-х тактовая частота микропроцессоров в несколько десятков мегагерц считалась хорошим показателем, то к началу 2000-х никто не удивлялся гигагерцам. Компьютеры, которыми мы пользуемся сейчас, как полагают IT-эксперты, - это также пятое поколение ЭВМ. То есть, технологический задел начала 90-х актуален до сих пор.

ПК, относящиеся к пятому поколению, стали не просто вычислительными машинами, а полноценными мультимедийными инструментами. На них стало возможно монтировать фильмы, работать с изображениями, записывать и обрабатывать звук, создавать инженерные проекты, запускать реалистичные 3D-игры.

Характеристики шестого поколения

В обозримом будущем, считают аналитики, мы вправе ожидать, что появится 6 поколение ЭВМ. Оно будет характеризоваться использованием нейронных элементов в архитектуре микросхем, использованием процессоров в рамках распределенной сети.

Производительность компьютеров в следующем поколении будет измеряться, вероятно, уже не в гигагерцах, а в принципиально иного типа единицах исчисления.

Сравнение характеристик

Мы изучили поколения ЭВМ. Таблица ниже позволит нам ориентироваться в соотнесении компьютеров, принадлежащих к той или иной категории, и технологической базы, на которой основано их функционирование. Зависимости следующие:

Поколение

Технологическая база

Вакуумные лампы

Полупроводники

Интегральные схемы

Большие и сверхбольшие схемы

Параллельно-векторные технологии

Нейронные принципы

Полезной может оказаться также визуализация соотнесения производительности и конкретного поколения ЭВМ. Таблица, которую мы сейчас составим, отразит и эту закономерность. Берем за основу такой параметр как тактовая частота.

Поколение

Тактовая частота выполнения операций

Несколько килогерц

Сотни КГц

Мегагерцы

Десятки МГц

Сотни МГц, Гигагерцы

Критерии измерения прорабатываются

Таким образом, мы визуализировали ключевые технологические особенности для каждого поколения ЭВМ. Таблица, любая из представленных нами, поможет нам соотносить соответствующие параметры и конкретную категорию компьютеров применительно к тому или иному этапу развития вычислительной техники.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

План

Введение

1. Появление ЭВМ

2. Первое поколение ЭВМ

3. Второе поколение ЭВМ

4. Третье поколение ЭВМ

5. Четвертое поколение ЭВМ

6. Пятое поколение ЭВМ

7. Современные персональные компьютеры

Заключение

Список литературы

Введение

Еще не так давно, всего три десятка лет назад, ЭВМ представляла собой целый комплекс огромных шкафов, занимавших несколько больших помещений. А всего и делала-то, что довольно быстро считала. Нужна была буйная фантазия журналистов, чтобы увидеть в этих гигантских арифмометрах думающие агрегаты, и даже пугать людей тем, что ЭВМ вот-вот станут разумнее человека.

Неудивительно, что люди верили всяким вымыслам относительно нового технического чуда. И когда один язвительный кибернетик сам сочинил туманно-загадочные стихи, а потом выдал их за сочинение машины, то ему поверили.

Что же говорить о современных компьютерах, компактных, быстродействующих, оснащённых руками - манипуляторами, экранами дисплеев, печатающими, рисующими и чертящими устройствами, анализаторами образов, звуков, синтезаторами речи и другими органами!

Семейство компьютеров - электронных технических приспособлений для переработки информации - довольно велико и разнообразно. Вообще же на сегодняшний день все знания человечества можно разместить на специальных носителях машинной информации, которые легко разместятся в одной небольшой комнате.

История развития ЭВМ, как считают, некоторые весьма коротка начало двадцатого века и далее. На мой взгляд, человечество тысячелетия шло к тому, чтобы облегчить механическую работу по переработке информации. В этом ему помогало два противоположных качества: лень и стремление к совершенству. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно.

Цель реферата - рассмотреть историю развития электронно-вычислительных машин.

1. Появление ЭВМ

История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство - абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 году Блез Паскаль сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 году француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.

Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 году английским математиком Чарльзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера. Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 году изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц.

Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

2. Первое поколение ЭВМ

Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспе-чением. Первое поколение (1945-1954) - ЭВМ на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.

Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Он был первым электронным цифровым компьютером общего назначения. UNIVAC, работа по созданию которого началась в 1946 году и завершилась в 1951-м, имел время сложения 120 мкс, умножения -1800 мкс и деления - 3600 мкс. UNIVAC мог сохранять 1000 слов, 12000 цифр со временем доступа до 400 мкс максимально. Магнитная лента несла 120000 слов и 1440000 цифр. Ввод/вывод осуществлялся с магнитной ленты, перфокарт и перфоратора. Его первый экземпляр был передан в Бюро переписи населения США.

Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм.

Машины этого поколения: « ENIAC », «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал», «Урал-2», «Минск-1», «Минск-12», «М-20» и др. Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Их быстродействие не превышало 2--3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.

3. Второе поколение ЭВМ

ЭВМ 2-го поколения были разработаны в 1950-60 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Второе отличие этих машин - это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др.

Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и опера-тивной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

4. Третье поколение ЭВМ

Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независи-мо друг от друга, оперативно взаимодействовать с машиной.

В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM.

Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника -- 100/25», «Электроника -- 79», «СМ-3», «СМ-4» и др.

Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры.

Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов.

В 1969 г. зародилась первая глобальная компьютерная сеть и одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

5. Четвертое поколение ЭВМ

К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрировано до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени).
Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

2-ое направление -- дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ).

Начиная с этого поколения ЭВМ стали называть компьютерами.

6 . Пятое поколение ЭВМ

Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире.

7 . Современные персональные компьютеры

Современные персональные компьютеры (ПК) в соответствии с принятой классификацией надо отнести к ЭВМ четвертого поколения. Но с учетом быстро развивающегося программного обеспечения, многие авторы публикаций относят их к 5-му поколению.

Персональные компьютеры появились на рубеже 60-70-х годов. Американская фирма Intel разработала первый 4-разрядный микропроцессор (МП) 4004 для калькулятора. Он содержал около тысячи транзисторов и мог выполнять 8000 операций в секунду. Вскоре была выпущена 8-битная версия данного МП, получившая название 8008. Оба МП всерьез восприняты не были, поскольку рассчитывались для конкретных применений. Они относятся к МП первого поколения.

В конце 1973 г. Intel разработала однокристальный 8-разрядный МП 8080, рассчитанный для многоцелевых применений. Он был сразу замечен компьютерной промышленностью и быстро стал "стандартным". Одни фирмы начали выпускать МП 8080 по лицензиям, другие - предложили его улучшенные варианты.

12 августа 1981 года IBM представила свой ПК, который был спроектирован не хуже, чем изделия тогдашних лидеров рынка - Commodore PET, Atari, Radio Shack и Apple. Весной 1983 г. фирма IBM выпускает модель PC XT с жестким диском, а также объявляет о создании нового поколения микропроцессоров - 80286. Новый компьютер IBM PC AT (Advanced Technologies), построенный на основе МП 80286, быстро завоевал весь мир.

Тактовые частоты современных ПК превышают 3 ГГц, объемы ОЗУ до 4 ГБ. Емкость накопителей на жестких дисках выросла до 500 ГБ. Современные технологии позволяют на ПК прослушивать и записывать высококачественные аудио-файлы. Применение DVD приводов обеспечивает просмотр современных фильмов. Широкое распространение получили сегодня переносные ПК - nootbook, карманные ПК (КПК) и мобильные ПК - смартфоны, объединяющие функции ПК и телефона.

Заключение

Завершая работу над рефератом можно прийти к выводу, что электронно-вычислительные машины в развитии информатики играют особую роль. Собственно само существование информатики как научного направления невозможно представить без вычислительной техники. Появление вычислительных машин, их быстрое развитие и массовое внедрение в различные сферы человеческой деятельности вызвали к жизни научно-техническое направление, которое называется вычислительной техникой.

ЭВМ появились, когда возникла острейшая необходимость в очень трудоемких и точных расчетах, особенно в таких областях науки и техники, как: атомная физика и теория динамик полета и управления летательными аппаратами, в исследовании аэродинамики больших скоростей. Уровень прогресса здесь во многом зависел от возможностей выполнения сложных расчетов.

ЭВМ в своем развитии прошли несколько поколений.

Список литературы

1. Ичбиа Д., Кнеппер С. Сотворение Microsoft. / Пер.Мовшовича Д.Я. - Ростов-на-Дону: Феникс, 1999.

2. Караменс В.В., Григ Н.Р. Компьютер: прошлое, настоящее, будущее. - М., 2005.

3. Минасян У.К. История техники. - М., 2000.

4. Паулин К. Малый толковый словарь по вычислительной технике. - М., 1995.

5. Печерский Ю.Н. Этюды о компьютерах. - Кишинев: Штиинца, 1999.

6. Фигурнов В.Э. IBM PC для пользователя. - М., 2002.

Подобные документы

    Первые в истории человечества счетные приспособления. Первые механические счетные устройства. Появление и развитие электронных калькуляторов. Легендарные гарвардские "Марк" и "ENIAC" - первые в мире компьютеры. Краткая характеристика всех поколений ЭВМ.

    презентация , добавлен 22.12.2010

    Тонкие клиенты, работающие в терминальном режиме. Примеры тонких клиентов. Карманные персональные компьютеры: понятие, история развития. Эволюция дисплеев. Поколение клавиатурников. PALM и предшественники. Операционные системы на карманных компьютерах.

    реферат , добавлен 22.09.2012

    Механические счетные машины. Идеи Бэббиджа. Предыстория возникновения. Электромеханические счетные машины. Машины Фон-Неймановского типа. Развитие ЭВМ в СССР. Компьютеры с хранимой в памяти программой. Появление персональных компьютеров.

    реферат , добавлен 28.12.2004

    Краткая характеристика четырех основных поколений ЭВМ. Появление и сущность термина "компьютер". Описание основных представителей компьютеров разных поколений. Интенсивные разработки ЭВМ V поколения. Сущность современного персонального компьютера.

    презентация , добавлен 18.10.2010

    История появления и развития первых вычислительных машин. Изучение характеристик электронно-вычислительной машины. Архитектура и классификация современных компьютеров. Особенности устройства персональных компьютеров, основные параметры микропроцессора.

    курсовая работа , добавлен 29.11.2016

    Этапы информационного развития общества. Эпохи каменного века, ручной и механизированной письменности, индустриализации и автоматизации в развитии вычислительной техники. Автоматическое выполнение операций. Поколения ЭВМ, персональные компьютеры.

    творческая работа , добавлен 22.12.2009

    Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат , добавлен 01.04.2014

    История развития вычислительных машин. История развития IBM. Первые электронно-вычислительные машины. IBM-совместимые компьютеры. Как из яблока сделать макинтош. История создания первого персонального компьютера "Макинтош" (Macintosh).

    реферат , добавлен 09.10.2006

    Программирование - это искусство получения ответов от машины. История развития программирования. Что могут ЭВМ. История развитие ЭВМ. Достижения компьютерной техники: универсальные настольные ПК, блокнотные компьютеры, карманные ПК, компьютеры-телефоны.

    реферат , добавлен 02.06.2008

    Естественно-научные аспекты информатики. Проблемы изучения и представления информационных задач. Построение современных информационных технологий. Роль вычислительных средств в информатике и их развитие. Персональные компьютеры и поколения ЭВМ.