» » Метод резонанса в химии. Мезомерный эффект, или как рисовать резонансные (граничные) структуры

Метод резонанса в химии. Мезомерный эффект, или как рисовать резонансные (граничные) структуры

Химический резонанс

Теория резонанса - теория электронного строения химических соединений, в соответствие с которой распределение электронов в молекулах (в т.ч. сложных ионах или радикалах), является комбинацией (резонансом) канонических структур с различной конфигурацией двухэлектронных ковалентных связей . Резонансная волновая функция , описывающая электронную структуру молекулы, является линейной комбинацией волновых функций канонических структур .

Иными словами, молекулярная структура описывается не одной возможной структурной формулой, а сочетанием (резонансом) всех альтернативных структур.

Следствием резонанса канонических структур является стабилизация основного состояния молекулы, мерой такой резонансной стабилизации является энергия резонанса - разность между наблюдаемой энергией основного состояния молекулы и расчетной энергии основного состояния канонической структуры с минимальной энергией .

Резонансные структуры циклопентадиенид-иона

История

Идея резонанса был введена в квантовую механику Вернером Гейзенбергом в 1926 году при обсуждении квантовых состояний атома гелия . Он сравнил структуру атома гелия с классической системой резонирующего гармонического осциллятора .

Модель Гейзенберга была применена Лайнусом Полингом (1928 год) к описанию электронной структуры молекулярных структур. В рамках метода валентных схем Полинг успешно объяснил геометрию и физико-химические свойства целого ряда молекул через механизм делокализации электронной плотности π-связей.

Сходные идеи для описания электронной структуры ароматических соединений были предложены Кристофером Ингольдом. В 1926-1934 годах Ингольд заложил основы физической органической химии, развив альтернативную теорию электронных смещений (теорию мезомерии), призванную объяснить структуру молекул сложных органических соединений, не укладывающуюся в обычные валентные представления. Предложенный Ингольдом для обозначения явления делокализации электронной плотности термин «мезомеризм » (1938), используется преиущественно в немецкой и французской литературе, а английской и русской преобладает «резонанс ». Представления Ингольда о мезомерном эффекте стали важной составной частью теории резонанса. Благодаря немецкому химику Фрицу Арндту были введены, ставшие общепринятыми обозначения мезомерных структур при помощи двунаправленных стрелок.

В послевоенном СССР теория резонанса стала объектом гонения в рамках идеологических кампаний и была объявлена «идеалистической», чуждой диалектическому материализму - и поэтому неприемлемой для использования в науке и образовани:

«Теория резонанса», будучи идеалистической и агностической, противостоит материалистической теории Бутлерова, как несовместимая и непримиримая с ней;… сторонники «теории резонанса» игнорировали ее и извращали ее существо.

«Теория резонанса», будучи насквозь механистической. отрицает качественные, специфические особенности органического вещества и совершенно ложно пытается сводить закономерности органической химии к закономерностям квантовой механики…

…Мезомерийно-резонансная теория в органической химии представляет собою такое же проявление общей реакционной идеологии, как и вейсманизм-морганизм в биологии, как и современный «физический» идеализм, с которыми она тесно связана.

Кедров Б.М. Против "физического" идеализма в химической науке. Цит. по

Гонения на теорию резонанса получили негативную оценку в мировой научной среде. В одном из журналов Американского химического общества в обзоре, посвящённом положению в советской химической науке, в частности, отмечалось :

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Химический резонанс" в других словарях:

    В ЯМР смещение сигнала ЯМР в зависимости от химического состава вещества, обусловленное экранированием внешнего магнитного поля электронами атомов. При появлении внешнего магнитного поля возникает диамагнитный момент атомов, обусловленный… … Википедия

    Изображение мозга человека на медицинском ЯМР томографе Ядерный магнитный резонанс (ЯМР) резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν… … Википедия

    - (ЯМР) резонансное поглощение электромагнитной энергии веществом, обусловленное переориентацией магнитных моментов атомных ядер. ЯМР один из методов радиоспектроскопии (См. Радиоспектроскопия). Наблюдается в сильном постоянном магнитном… …

    Содержание … Википедия

    Наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии (См. Электронные теории в органической химии)). Н. х. важнейшая… … Большая советская энциклопедия

    Большая советская энциклопедия

    I Химия I. Предмет и структура химии Химия одна из отраслей естествознания, предметом изучения которой являются химические элементы (Атомы), образуемые ими простые и сложные вещества (молекулы (См. Молекула)), их превращения и… … Большая советская энциклопедия

    Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

    Минералы твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, довольно однородные кристаллические вещества с упорядоченной внутренней… … Энциклопедия Кольера

    Наука о методах определения химического состава веществ. Химический анализ буквально пронизывает всю нашу жизнь. Его методами проводят скрупулезную проверку лекарственных препаратов. В сельском хозяйстве с его помощью определяют кислотность почв… … Энциклопедия Кольера электронная книга


Если с индуктивным эффектом обычно проблем не бывает, то второй тип электронных эффектов гораздо труднее поддается освоению. Это очень плохо. Теория резонанса (мезомерия) была и остается одним из важнейших инструментов обсуждения структуры и реакционной способности органических соединений и заменить ее нечем. А как же квантовая наука?! Да, правда, в нашем веке стали легкодоступными квантово-химические расчеты, и теперь каждый исследователь или даже студент, потратив весьма немного времени и сил, может бесплатно раскочегарить на своем компьютере расчеты, уровню которых еще 20 лет назад позавидовали бы все нобелевские лауреаты. Увы, результаты расчетов не так просто использовать – они плохо поддаются качественному анализу и зрительно не очень понятны. Сидеть и смотреть на бесконечные столбики цифр и рассматривать запутанные и перегруженные картинки орбиталей и электронной плотности можно долго, но пользу из этого извлекают немногие. Старая добрая теория резонанса в этом смысле гораздо эффективнее – она быстро и довольно надежно дает именно качественный результат, позволяет видеть, как распределена электронная плотность в молекуле, найти реакционные центры, оценить устойчивость важных частиц, участвующих в реакциях. Поэтому без умения нарисовать резонансные структуры, оценить их вклад, и понять, на что влияет делокализация, никакой разговор об органической химии невозможен.

Есть ли разница между понятиями мезомерии и резонанса? Была когда-то, но уже давно не имеет значения – сейчас это интересно только историкам химии. Будем считать, что эти понятия взаимозаменимы, можно использовать какое-то одно или оба в любых пропорциях. Один нюанс есть – когда говорят не о делокализации в общем, а об электронном эффекте заместителя, предпочитают термин мезомерный эффект (и обозначают соответственно буквой M). Кроме того, еще используют и слово “сопряжение” (точнее, π-сопряжение).

И когда возникает эта мезомерия? Это понятие применимо только к π-электронам и только в том случае, если в молекуле есть хотя бы два атома с такими электронами, расположенные рядом. Атомов таких может быть сколько угодно, хоть миллион, и расположены они могут быть не только линейно, но и с любыми разветвлениями. Необходимо только одно – чтобы они были рядом, образовывали неразрывную последовательность. Если последовательность линейна, она называется “цепью сопряжения”. Если разветвлена, это усложняет дело, так как возникает не одна цепь сопряжения, а несколько (это называется кросс-сопряжение), но на этом этапе про это можно не думать, мы не будем внимательно рассматривать такие системы. Важно, что любой атом без π-электронов прерывает такую последовательность (цепь сопряжения), или разрывает ее на несколько независимых.

На каких атомах есть π-электроны?

  • а) на атомах, участвующих в кратной (двойной, тройной) связи – на каждом таком атоме один π-электрон;
  • б) на атомах неметаллов 5-7 групп (азот, кислород, и т.п.) в большинстве случаев, кроме атомов азота аммониевого типа и похожих на них так называемых ониевых атомах, у которых просто нет свободных неподеленных пар);
  • в) на атомах углерода с отрицательным зарядом (в карбанионах).

Кроме этого в сопряжении участвуют пустые π-орбитали в атомах с 6-ю валентными электронами (секстетных атомах): бора, углерода с положительным зарядом (в карбениевых ионах), а также аналогичных частицах с атомами азота, кислорода (это пока отложим в сторону). Договоримся пока не трогать элементы третьего и т.д. периодов, даже серу и фосфор , потому что для них нужно учитывать участие d-оболочек и не работает правило октета Льюиса. Корректно рисовать граничные структуры для молекул с участием этих элементов не так просто, но нам это, скорее всего, и не понадобится. Если понадобится, рассмотрим отдельно.

Поищем сопряженные фрагменты в реальных молекулах. Все просто – находим кратные связи, атомы с парами и секстетные атомы, находящиеся рядом друг с другом в любых (пока) комбинациях. Важно, что наблюдатель, идущий по цепи сопряжения, не должен наступать на атомы, не принадлежащие к этим трем типам. Как только встречаем такой атом, цепь заканчивается.

Теперь посмотрим на то, как это изображать. Изображать будем двумя способами – стрелками смещения электронной плотности и резонансными (граничными) структурами.

Тип 1. Находим в сопряженной системе донорные и акцепторные центры...


Донорные центры – это атомы с неподеленной парой. Акцепторные фрагменты – это секстетные атомы. Делокализацию всегда показывают от донора, но к акцептору в полном соответствии с их ролями. Если донор и акцептор оказались рядом, все просто. Стрелкой покажите смещение от пары к соседней связи. Это будет означать образование π-связывания между соседними атомами, и таким образом секстетный атом получит возможность заполнить пустую орбиталь и перестать быть секстетным. Это очень хорошо. Изображение граничных структур также дело немудреное. Слева рисуем исходную, потом специальную резонансную стрелку, потом структуру, в которой пара на доноре полностью перешла на образование полноценной π-связи. Реальная структура такого катиона будет гораздо ближе к правой граничной структуре, потому что заполнение секстета очень выгодно, а кислород при этом почти ничего не теряет, сохраняя восемь валентных электронов (пара переходит в связь, которая обслуживатся тоже двумя электронами).

Тип 2. Кроме донора и акцептора еще и кратные связи...

Здесь может быть два варианта. Первый – когда кратные связи вставлены между донором и акцептором. Тогда они образуют своеобразный удлинитель для системы, разобранной в Типе 1.

Если двойных связей не одна, а несколько, выстроенных в цепочку, то ситация усложняется не сильно. Стрелками показываем смещение плотности от пары, и последовательное смещение каждой двойной связи вплоть до заполнения секстета потребует дополнительных стрелок. Граничных структур по-прежнему две, и вновь вторая намного выгоднее и близко отражает реальную структуру катиона.

Случай, когда вместо обычных двойных связей бензольное кольцо, вполне вписывается в эту схему. Важно только рисовать бензольное кольцо не гайкой, а нормальной структурой Кекуле. С гайкой сопряжение изобразить не получится. Тогда мы сразу поймем две важные вещи: во-первых, что бензольное кольцо в делокализации работает как сопряженная система двойных связей и ни о какой ароматичности думать не нужно; во-вторых, что пара- и орто-расположение донора/акцептора сильно отличается от мета-расположения, в котором сопряжение отсутствует. На рисунках розовеньким напылением показаны пути сопряжения, и видно, что в орто-случае работает одна двойная связь, в пара-случае – две, а в мета-случае, как его ни нарисуй, путь сопряжения разрывается, и сопряжения нет.

Если попадаются не двойные, а тройные связи, то ничего не меняется. Нужно просто представить тройную связь как две взаимно перпендикулярные π-связи, и одну из них использовать, а вторую оставить в покое. Не пугайтесь – получается немного страшновато от обилия двойных связей в граничной структуре. Обратите внимание, что двойные связи на одном атоме углерода обозначают на прямой (так как этот атом углерода имеет sp-гибридизацию), и, чтобы не запутаться, обозначают эти атомы жирными точками.

Тип 3. В цепи сопряжения либо донор, либо акцептор (но не оба сразу), и кратные связи С=С или С≡С

В этих случаях кратная связь (или цепочка кратных связей) принимает на себя роль отсутствующего: если есть донор, то она (они) становятся акцептором, и наоборот. Это естественное следствие того довольно очевидного обстоятельства, что электронная плотность при сопряжении смещается в определенном направлении от донора к акцептору и никак иначе. Если связь одна, то все совсем просто. Особенно важным является случаи, когда донором является карбанион, а также когда акцептором является карбокатион. Обратите внимание, что в этих случаях граничные структуры одинаковы, из чего следует что реальная структура таких частиц (аллильного катиона и аниона ) находится ровно посредине между граничными структурами. Иными словами, в реальных аллильных катионах и анионах обе связи углерод-углерод совершенно одинаковы, а их порядок где-то посредине между одинарной и двойной. Заряд (что положительный, что отрицательный) поровну распределен на первом и третьем атомах углерода. Не рекомендую использовать довольно распространенную манеру изображать делокализацию пунктирной скобкой или полуторными пунктирными связями, потому что этот способ дает ложное представление от равномерной делокализации заряда по всем атомам углерода.

Если кратных связей больше, действуем по аналогии, добавляем стрелки, вовлекая каждую кратную связь в делокализацию. А вот граничных структур нужно рисовать не две, а столько, сколько есть кратных связей в цепи плюс исходную. Видим, что заряд делокализуется по нечетным атомам. Реальная структура будет где-то посредине.

Обобщим на донор – атом без заряда, но с парой. Стрелки будут такие же, как в случае аллильного карбаниона. Граничные структуры формально тоже, но они в этом случае неравноценны. Структуры с зарядами гораздо менее выгодны чем нейтральные. Реальная структура молекулы ближе с исходной, но картина делокализации позволяет понять, почему на дальнем атоме углерода возникает избыточная электронная плотность.

Делокализация в бензольном кольце опять требует представления с двойными связями, и рисуется вполне аналогично. так как связи три и все они участвуют, то граничных структур будет, помимо исходной, еще три, а заряд (плотность) размажется по орто и пара положениям.

Тип 4. В цепи сопряжения донор и кратные связи, некоторые из которых содержат гетероатом (С=O, C=N, N=O и т.п.)

Кратные связи с участием гетероатомов (напомню, что мы условились пока ограничиться элементами второго периода, то есть речь идет только о кислороде и азоте) похожи на кратные углерод-углеродные связи тем, что π-связь легко смещается от доного атома к другому, но отличаются тем, что смещение происходит только в одном направлении, что делает такие связи в подавляющем большинстве случаев только акцепторами. Двойные связи с азотом и кислородом встречаются в множестве важнейших функциональных групп (C=O в альдегидах, кетонах, кислотах, амидах, и т.п.; N=O в нитро-соединениях, и т.п.). Данный тип делокализации поэтому чрезвычайно важен, и мы будем часто с ним встречаться.

Итак, если есть донор и такая связь, то смещение плотности показать очень легко. Из двух граничных структур будет преобладать та, у которой заряд находится на более электроотрицательном атоме, впрочем, и роль второй структуры также всегда весьма существенна. Естественно, если случай симметричный, как тот, что показан на второй строчке, то обе структуры одинаковы и представлены поровну – реальная структура будет посредине точно так же, как в ранее рассмотренном случае аллильного аниона.

Если в молекуле или ионе есть еще и сопряженные углерод-углеродные связи, они будут скромно участвовать в общем смещении плотности. Такова же и роль бензольного кольца с орто- или пара-расположением донора и акцептора. Обратите внимание, что граничных структур всегда только две – они показывают два крайних положения для смещения плотности. Промежуточных структур (там, где плотность уже сместилась от донора на кратную связь, но дальше не прошла) рисовать не нужно. Вообще-то они есть и вполне законны, но их роль в делокализации пренебрежимо мала. Третий пример на представленной схеме показывает, как рисовать нитро-группу. Она поначалу пугает обилием зарядов, но если посмотреть на нее просто нак на двойную связь азот-кислород, то смещение рисуется точно так же, как и для любых других кратных связей с гетероатомами, а те заряды, которые там уже есть, нужно просто оставить в покое и не трогать.

И еще один распространенный вариант – донор один, а акцепторных кратных связей несколько (две, три). Строго говоря, в этом случае не одна цепь сопряжения, а две, три. Это увеличивает число граничных структур, и также может быть показано стрелками, хотя этот способ не вполне корректен, так как от одной донорной пары будет несколько стрелок. На этом примере хорошо видно, что граничные структуры – более универсальный способ, хотя и более громоздкий.

А что еще нужно знать про возможность сопряжения? Еще нужно представлять себе, как устроена молекула (частица). Для сопряжения необходимо, чтобы орбитали π-электронов были параллельны (коллинеарны, лежали бы в одной плоскоси), или составляли бы угол, сильно отличный от прямого. Это звучит совсем тухло – как это собственно узнать?! Не все так страшно, с действительно сложными случаями мы пока не встретимся. Но одна вещь вполне очевидна: если на одном атоме не одна, а две π-орбитали, то они взаимно строго перпендикулярны и не могут одновременно участвовать в одной цепи сопряжения. Поэтому не сопряжены двойные связи в 1,2-диенах (алленах), диоксиде углерода и похожих молекулах (кумуленах и гетерокумуленах); не сопряжены π-связи кольца и неподеленая пара в фенильном анионе, и т.п.

, теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой, а сочетанием (резонансом) всех альтернативных структур. Идея такого способа описания электронного строения принадлежит Л. Полингу (1928). Р. т. является развитием классич. теории хим. строения для молекул, ионов, радикалов, строение к-рых можно представить в виде неск. разл. структурных ф-л, отличающихся способом распределения электронных пар между атомными ядрами. Согласно Р. т., строение таких соед. является промежуточным между отдельными возможными классич. структурами, причем вклад каждой отдельной структуры можно учесть при помощи разл. модификаций квантовомех. метода валентных связей (см. Валентных связей метод).

Для соед. с сопряженными связями из всех возможных структур с разложением типами спаривания электронов кратных связей достаточно рассмотреть лишь структуры с неперекрещивающимися связями (канонич. структуры). Электронное строение бензола описывается резонансом пяти канонич. структур:

Волновая ф-ция молекулы бензола по Полингу представляет линейную комбинацию:

Y = 0,624(Y I + Y II) + 0,271(Y III + Y IV + Y V).

Откуда следует, что осн. вклад (примерно 80%) в волновую ф-цию вносят кекулевские структуры I и II. Их эквивалентность и эквивалентность структур III-V объясняют вырав-ненность всех углерод-углеродных связей в молекуле бензола и их промежуточный (примерно полуторный) характер между простой и двойной связями углерод-углерод. Это предсказание находится в полном соответствии с экспериментально найденными длиной связи С-С в бензоле (0,1397 нм) и св-вами симметрии его молекулы (группа симметрии D 6h).

Р. т. с успехом применяют для описания строения и св-в ионов и радикалов. Так, строение карбонат-иона представляют как резонанс (обозначается двусторонней стрелкой) трех структур, каждая из к-рых вносит одинаковый вклад в волновую ф-цию:

Поэтому ион обладает тригональной симметрией (группа симметрии V 3h ), и каждая связь С-О имеет на 1 / 3 характер двойной связи.

Строение аллильного радикала не соответствует ни одной из классич. структур VI и VII и должно описываться их резонансом:


Спектр ЭПР аллильного радикала свидетельствует о том, что неспаренный электрон не локализован ни на одной из концевых метиленовых групп, а распределен между ними так, что радикал имеет группу симметрии С 2h , причем энергетич. барьер вращения концевых метиленовых групп (63 кДж/моль) имеет промежуточный значение между величинами, характерными для барьеров вращения вокруг простой и двойной связи С-С.

В соед., включающих связи между атомами с существенно разл. электроотрицательностями, значит. вклад в волновую ф-цию вносят резонансные структуры ионного типа. Строение СО 2 в рамках Р. т. описывается резонансом трех структур:

Длина связи между атомами С и О в этой молекуле меньше, чем длина двойной связи С=О.

Поляризация связей в молекуле формамида, приводящая к потере мн. св-в, характерных для карбонильной группы, объясняется резонансом:

Резонанс структур ведет к стабилизации осн. состояния молекулы, иона или радикала. Мерой этой стабилизации служит энергия резонанса, к-рая тем больше, чем больше число возможных резонансных структур и чем больше число резонирующих низкоэнергетич. эквивалентных структур. Энергию резонанса можно рассчитать при помощи метода валентных связей или метода мол. орбиталей (см. Молекулярных орбиталей методы )как разность энергий осн. состояния молекулы и ее изолир. связей или осн. состояния молекулы и структуры, моделирующей одну из устойчивых резонансных форм.

По своей осн. идее Р. т. очень близка к теории мезомерии (см. Мезомерия ), однако носит более количеств. характер, ее символика вытекает непосредственно из классич. структурной теории, а квантовомех. метод валентных связей служит прямым продолжением Р. т. В силу этого Р. т. продолжает сохранять определенное значение как удобная и наглядная система структурных представлений.

Лит.: Паулинг Л., Природа химической связи, пер. с англ., М.-Л., 1947; Уэланд Дж., Теория резонанса и ее применение в органической химии, пер. с англ., М., 1948; Полинг Л., "Ж. Весе. Хим. об-ва им. Д. И. Менделеева", 1962 т. 7, № 4, с. 462-67. В. И. Минкин.

Полезные интернет ресурсы:

В сороковые годы наметился научный прорыв в области органической химии и химии высокомолекулярных соединений. Создаются качественно новые материалы. Идет процесс становления физики и химии полимеров, создается теория макромолекул. Научные достижения в этой области становятся одной из основ качественных преобразований в народном хозяйстве. И не случайно именно здесь идеологи наносят мощный упреждающий удар.

Предлогом послужила теория резонанса, выдвинутая в 1928 г. крупным ученым-химиком, лауреатом нобелевской премии Лайнусом Полингом. Согласно этой теории для молекул, строение которых может быть представлено в виде нескольких структурных формул, отличающихся способом распределения электронных пар между ядрами, реальное строение не соответствует ни одной из структур, а является промежуточной между ними. Вклад каждой структуры определяется ее природой и относительной устойчивостью. Теория резонанса (и близкая к ней теория мезомерии Ингольда) имела существенное значение как удобная систематизация структурных представлений. Эта теория сыграла важную роль в развитии химии, особенно органической. Фактически она выработала язык, на котором химики говорили несколько десятков лет.

Представление о степени наката и аргументации идеологов дают отрывки из статьи "Теория резонанса" в /35/:

"Исходя из субъективно-идеалистичсских соображений, приверженцы теории резонанса придумали для молекул многих химических соединений наборы формул-"состояний" или "структур", не отражающих объективной реальности. В соответствии с теорией резонанса подлинное состояние молекулы представляет собой якобы результат квантово-механического взаимодействия, "резонанса", "суперпозиции" или "наложения" этих фиктивных "состояний" или "структур".

… Теория резонанса, теснейшим образом связанная с идеалистическими принципами "дополнительности" Н. Бора и "суперпозиции" П. Дирака, представляет собой распространение "физического" идеализма на органическую химию и имеет одну и ту же с ним методологическую махистскую основу.

Другим методологическим пороком теории резонанса является её механицизм. В соответствии с этой теорией у органической молекулы отрицается наличие специфических качественных особенностей. Её свойства сводятся к простой сумме свойств составляющих её частей; качественные различия сводятся к чисто количественным различиям. Точнее, сложные химические процессы и взаимодействия, происходящие в органическом веществе, здесь сводятся к одним, более простым, чем химические формы, физическим формам движения материи – к электродинамическим и квантово-механическим явлениям. Развивая мысль о сведении химии к физике, известный физик-квантовик и "физический" идеалист Э. Шрёдингер в своей книге "Что такое жизнь с точки зрения физики?" даёт широкую систему такого механистического сведения высших форм движения материн к низшим. Биологические процессы, являющиеся основой жизни, он в соответствии с вейсманизмом-морганизмом сводит к генам, гены – к органическим молекулам, из которых они образованы, а органические молекулы – к квантово-механическим явлениям".

Интересны два момента. Во первых, кроме стандартных обвинений в идеализме здесь важнейшую роль играет тезис о специфичности и качественных особенностях форм движения, фактически налагающие запрет на использование физических методов в химии, физических и химических в биологии и т. п. Во-вторых, сделана попытка связать теорию резонанса с вейсманизмом-морганизмом, т. е. как бы заложить основу объединенного фронта борьбы с передовыми научными направлениями.

В печально известном "зеленом томе" имеется статья Б. М. Кедрова /37/, посвященная "теории резонанса". В ней живописуются те последствия, которые несет с собой эта "ужасная" теория. Приведем весьма показательные выводы этой статьи.

1. "Теория резонанса" является субъективно-идеалистической, ибо она превращает фиктивный образ в объект; подменяет объект математическим представлением, существующим лишь в голове ее сторонников; ставит объект – органическую молекулу – в зависимость от этого представления; приписывает этому представлению самостоятельное существование вне нашей головы; наделяет его способностыо двигаться, взаимодействовать, налагаться (суперпозировать) и резонировать.

2. "Теория резонанса" является агностической, ибо она в принципе отрицает возможность отражения единого объекта (органической молекулы) и его строения в виде единого структурного образа, единой структурной формулы; она отбрасывает такой единый образ единого объекта и заменяет его набором фиктивных "резонансных структур".

3. "Теория резонанса", будучи идеалистической и агностической, противостоит материалистической теории Бутлерова, как несовместимая и непримиримая с ней; поскольку теория Бутлерова в корне противоречит всякому идеализму и агностицизму в химии, сторонники "теории резонанса" игнорировали ее и извращали ее существо.

4. "Теория резонанса", будучи насквозь механистической. отрицает качественные, специфические особенности органического вещества и совершенно ложно пытается сводить закономерности органической химии к закономерностям квантовой механики; с этим также связано отрицание теории Бутлерова сторонниками "теории резонанса". поскольку теория Бутлерова, будучи по своему существу диалектической, глубоко раскрывает специфические закономерности органической химии, отрицаемые современными механистами.

5. По своей сущности с "теорией резонанса" Паулинга совпадает теория мезомерии Ингольда, которая слилась с первой в единую мезомерийно-резонансную теорию. Подобно тому, как буржуазные идеологи собрали воедино все реакционные течения в биологии, дабы они не выступали порознь, и слили их в единый фронт вейсманизма-морганизма, так они собрали воедино реакционные течения и в органической химии, образовав единый фронт сторонников Паулинга- Ингольда. Всякая попытка отделить теорию мезомерии от "теории резонанса" на том основании, что будто теория мезомерии может быть истолкована материалистически, является грубой ошибкой, помогающей на деле нашим идейным противникам.

6. Мезомерийно-резонансная теория в органической химии представляет собою такое же проявление общей реакционной идеологии, как и вейсманизм-морганизм в биологии, как и современный "физический" идеализм, с которыми она тесно связана.

7. Задача советских ученых состоит в том, чтобы решительно бороться против идеализма и механицизма в органической химии, против низкопоклонства перед модными буржуазными, реакционными течениями, против враждебных советской науке и нашему мировоззрению теорий, таких, как мезомерийно-резонансная теория…"

Определенную пикантность ситуации вокруг "теории резонанса" создавала явная надуманность обвинений с научной точки зрения. Это был просто приближенный модельный подход, не имевший никакого отношения к философии. Но была развязана шумная дискуссия. Вот что пишет о ней Л. А. Блюменфельд /38/:

"В ходе этой дискуссии выступили некоторые физики, утверждавшие, что теория резонанса не только идеалистична (это был основной мотив дискуссии), но и безграмотна, так как противоречит основам квантовой механики. В связи с этим мои учителя, Я. К. Сыркин и М. Е. Дяткина, против которых была главным образом направлена эта дискуссия, захватив меня с собой, пришли к Игорю Евгеньевичу Тамму, чтобы узнать его мнение по этому поводу. Пожалуй, самым важным здесь было то, что никаких колебаний-к кому именно из крупных физиков обратиться-у нас не было. Абсолютная научная добросовестность, полное отсутствие "физического снобизма", неподверженность влиянию каких бы то ни было конъюнктурных соображений и природная благожелательность-все это автоматически делало Тамма едва ли "не единственным возможным арбитром. Он сказал, что предлагаемый в теории резонанса способ описания ничему в квантовой механике не противоречит, никакого идеализма здесь нет и, по его мнению, вообще нет предмета для дискуссии. Впоследствии всем стала ясна его правота. Однако дискуссия, как известно, продолжалась. Нашлись люди, утверждавшие, будто теория резонанса – лженаука. Это отрицательно сказалось на развитии структурной химии…"

Действительно, никакого предмета для дискуссии нет, но есть задача нанести удар по специалистам высокомолекулярной химии. И ради этого Б. М. Кедров при рассмотрении теории резонанса сделал крупный шаг в истолковании В. И. Ленина /37/:

"Товарищи, уцепившиеся за слово "абстракция", поступили как догматики. Они сопоставили тот факт, что мнимые "структуры" теории мезомерии суть абстракции и даже плод абстракции, с тем, что сказано у Ленина о научной абстракции, и сделали вывод, что раз абстракции в науке необходимы, то значит допустимы всякие абстракции, в том числе и абстрактные понятия о фиктивных структурах теории мезомерии. Так буквоведски был решен ими этот вопрос, вопреки существу дела, вопреки прямым указаниям Ленина на вредность пустых и вздорных абстракций, на опасность превращения абстрактных понятий в идеализм. Именно потому, что тенденции превращения абстрактных понятий в идеализм с самого начала имелись и в теории мезомерии и в теории резонанса, обе эти теории слились в конце концов вместе".

Любопытно, что и идеализм бывает разный. Так в статье "Бутлеров" /32/ говорится; что советские химики опираются на теорию Бутлерова в своей борьбе против идеалистической теории резонанса. Но с другой стороны оказывается, что "в общих философских вопросах, не связанных с химией, Бутлеров был идеалистом, пропагандистом спиритизма". Впрочем никакие противоречия для идеологов роли не играют. В борьбе с передовой наукой все средства были хороши.