» » Технологические множество и его свойства. Теория производства

Технологические множество и его свойства. Теория производства

Продолжим изучение моделей сбалансированного роста экономики на более общем уровне и перейдем к близким к ним моделям экономического благосостояния. Последние, как и модели роста, относятся к нормативным моделям.

Говоря об экономике благосостояния, имеют в виду такое ее развитие, когда все потребители равномерно достигают максимума своей полезности. Однако на практике такая идеальная ситуация имеет место довольно редко, так как благосостояние одних достигается часто за счет ухудшения состояния других. Поэтому более реально говорить о таком уровне распределения благ, когда ни один потребитель не может увеличить свое благосостояние, не ущемляя при этом интересов других потребителей.

Если вдоль траектории равновесного роста ни один потребитель, как и ни один производитель, не может приобрести больше без дополнительных затрат (отсутствие прибыли в состоянии равновесия), то при развитии экономики по траектории такого «благосостояния» ни один потребитель не может стать богаче, не обедняя при этом другого.

Из предыдущего раздела следует, что учет временных факторов в математических моделях экономики помогает обнаружить вполне логичную связь экономических процессов с естественным ростом производственных и потребительских возможностей. В условиях линейных моделей при некоторых предположениях темп такого роста равен проценту капитала и соответствующий процесс расширения экономики характеризуется сбалансированным ростом интенсивностей выпуска всех продуктов и сбалансированным снижением их цен. В этом разделе сформулируем общую динамическую модель производства, охватывающую ранее рассмотренные линейные модели, как частные случаи, и изучим в ней вопросы сбалансированного роста.

Общность рассматриваемой здесь модели заключается в том, что производственный процесс описывается не посредством производственной функции вообще, и линейной производственной функции (как в моделях Леонтьева и Неймана) в частности, а с помощью так называемого технологического множества .

Технологическое множество (обозначим его символом ) - это множество таких преобразований экономики, когда производство продукции при затратах технологически возможно в том и только в том случае, когда . Пара называется производственным процессом , поэтому множество представляет собой множество всех производственных процессов, возможных при данной технологии. Например, в модели Леонтьева технологическое множество j -ой отрасли имеет вид где - валовый выпуск j -го товара, а - j -ый столбец технологической матрицы A . Поэтому технологическое множество в модели Леонтьева в целом есть а в модели Неймана -

В производственном процессе , вообще говоря, могут содержаться такие продукты, которые одновременно и затрачиваются, и выпускаются (например, горюче-смазочные материалы, мука, мясо и т.д.). В экономико-математических моделях для большей общности часто допускается, что каждый продукт из может и затрачиваться, и выпускаться (например, в моделях Леонтьева и Неймана). В этом случае векторы x и y имеют одинаковую размерность, и их соответствующие компоненты обозначают одни и те же продукты.

Пусть - затрачиваемый объем i -го продукта, а - его выпускаемый объем. Тогда разность называется чистым выпуском в процессе . Поэтому вместо производственного процесса часто рассматривают вектор чистого выпуска, характеризуя эту разность как поток (или интенсивность), т.е. величину чистого выпуска в единицу времени. При этом технологическое множество понимается как множество всевозможных чистых выпусков. а вектор называется процессом с потоком .

Перечислим некоторые свойства технологического множества, которые являются отражением фундаментальных законов производства.

Разные производственные процессы в можно сравнивать как по эффективности, так и по прибыльности.

Говорят, что процесс более эффективен, чем процесс , если , . Процесс называется эффективным , если в не содержатся более эффективные процессы, чем .

Пусть - вектор цен. Говорят, что процесс более прибыльный , чем процесс , если величина не меньше, чем величина .

Эти два варианта натуральной и стоимостной оценки процессов оказываются фактически эквивалентными.

Теорема 6.1. Пусть - технологическое множество. Тогда a) если при векторе цен процесс максимизирует прибыль на множестве , то является эффективным процессом; b) если выпукло и - эффективный в процесс, то существует такой вектор цен , что прибыль достигает максимума при

Определим структуру технологического множества для тех моделей, которые учитывают фактор времени. Рассмотрим период планирования с дискретными точками Пусть в год (т.е. в начале планового периода ) экономика характеризуется запасом товаров В этом случае говорят, что экономика находится в состоянии . К концу периода экономика достигает другого состояния , которое предопределено предыдущим состоянием. В этом случае говорят, что реализован производственный процесс где - заданное технологическое множество. Здесь вектор рассматривается как затраты, осуществляемые в начале периода , а - как соответствующий этим затратам выпуск, производимый с временным лагом в один год. На следующих этапах производства имеем и т.д. Таким путем осуществляется динамика развития экономики . Подобное движение экономики является самоподдерживающимся, так как продукты в системе воспроизводятся без какого-либо притока извне.

Конечная последовательность векторов называется допустимой траекторией экономики (описываемой технологическим множеством Z ) на интервале времени , если каждая пара двух ее последовательно идущих членов принадлежит множеству Z , т.е.

Обозначим через множество всех допустимых траекторий на интервале соответствующих начальному состоянию

Пусть Траектория называется более эффективной, чем , если Траектория называется эффективной траекторией , если в не содержится более эффективной траектории, чем . Траектория называется более прибыльной , чем , если

Особенности инфляционных процессов в современной России.

1. Понятие производства и ПФ. Производственное множество.

2. Задача максимизации прибыли

3. Равновесие производителя. Технический прогресс

4. Задача минимизации издержек.

5. Агрегирование в теории производства. Равновесие фирмы и отрасли в д/ср периоде

(самостоятельно) предложение конкурентных фирм, имеющих альтернативные цели

Производство – деятельность направленная на изготовление максимального количества материальных благ, зависит от количества используемых факторов производства, заданных технологическим аспектом производства.

Любой технологический процесс можно представить с помощью вектора чистых выпусков, который будем обозначать через y. Если согласно данной технологии фирма производит i-тый продукт, то i-тая координата вектора y будет положительна. Если же напротив, i-тый продукт затрачивается, то эта координата будет отрицательна. Если некоторый продукт не затрачивается и не выпускается согласно данной технологии, то соответствующая координата будет равна 0.

Множество всех технологически доступных для данной фирмы векторов чистых выпусков будем называть производственным множеством фирмы и обозначать Y.

Свойства производственных множеств:

1. Производственное множество не пусто, т.е. фирме доступен хотя бы один технологический процесс.

2.Производственное множество замкнуто.

3. Отсутствие «рога изобилия»: если y 0 и y ∊Y, то y=0. Нельзя произвести что-то не затратив ничего (нет y<0, т.е. ресурсов).

4. Возможность бездействия (ликвидации): 0∊Y. в реальности могут существовать невозвратные издержки.

5. Свобода расходования: y∊Y и y` y, то y`∊Y. Производственному множеству принадлежат не только оптимальные, но и технологии с меньшими выпусками/затратами ресурсов.

6. необратимость. Если y∊Y и y 0, то –y Y. Если из 2 единиц первого блага можно произвести 1 второго, то обратный процесс не возможен.

7. Выпуклость: если y`∊Y, то αy + (1-α)y` ∊ Y для всех α∊. Строгая выпуклость: для всех α∊(0,1). Свойство 7 позволяет комбинируя технологии, получить другие доступные технологии.

8. Отдача от масштаба:

Если в процентном соотношении объем использованных факторов изменился на ∆ N , а соответствующее изменение выпуска составило ∆Q , то имеют место следующие ситуации:

- ∆ N = ∆Q имеет место пропорциональная отдача (рост количества факторов повлек соответствующий рост выпуска)

- ∆ N < ∆Q имеет место возрастающая отдача (положительный эффект масштаба) – т.е. выпуск увеличился в большей пропорции, чем увеличилось количество затраченных факторов


- ∆ N > ∆Q имеет место убывающая отдача (отрицательный эффект масштаба) – т.е. увеличение затрат приводит к меньшему в процентном выражении росту выпуска

Эффект масштаба актуален в долгосрочном периоде. Если увеличение масштаба производства не приводит к изменению производительности труда, мы имеем дело с неизменной отдачей от масштаба. Убывающая отдача от масштаба сопровождается снижением производительности труда, возрастающая -ее повышением.

В случае, если множество товаров, которые производятся, отлично от множества ресурсов, которые используются, и производиться только один товар, то производственное множество может быть описано с помощью производственной функции.

Производственная функция (ПФ) – отражает зависимость между максимальным выпуском и определенным сочетании факторов (труда и капитала) и при данном уровне технологического развития общества.

Q=f(f1,f2,f3,…fn)

где Q - выпуск фирмы за определенный промежуток времени;

fi - количество i-го ресурса, использованного в производстве продукции;

Как правило, выделяют три фактора производства: труд, капитал и материалы. Мы ограничимся анализом двух факторов: труда (L) и капитала (К), тогда производственная функция принимает вид: Q =f(K, L).

Виды ПФ могут различаться в зависимости от характера технологии, и могут быть представлены в трех видах:

Линейная ПФ вида y = ax1 + bx2 – характеризуется постоянной отдачей от масштаба.

ПФ Леонтьева – в которой ресурсы дополняют друг друга, их комбинация определяется технологией и факторы производства являются не взаимозаменяемыми.

ПФ Кобба-Дугласа – функция, в которой используемые факторы производства обладают свойством взаимозаменяемости. Общий вид функции:

Где А - технологический коэффициент, α - коэффициент эластичности по труду, а β - коэффициент эластичности по капиталу.

Если сумма показателей степени (α + β) равна единице, то функция Кобба-Дугласа является линейно однородной, то есть она демонстрирует постоянную отдачу при изменении масштабов производства.

Впервые производственная функция была рассчитана в 1920-е годы для обрабатывающей промышленности США, в виде равенства

Для ПФ Кобба-Дугласа справедливо:

1. Поскольку а < 1 и b < 1, предельный продукт каждого фактора меньше среднего продукта (МРК < АРК и MPL < APL).

2. Поскольку вторые производные производственной функции по труду и по капиталу отрицательны, можно утверждать, что данная функция характеризуется убывающим предельным продуктом как труда, так и капитала.

3. При снижении величины MRTSL K постепенно убывает. Это означает, что изокванты производственной функции имеют стандартную форму: это - гладкие изокванты с отрицательным наклоном, выпуклые к началу координат.

4. Для данной функции характерна постоянная (равная 1) эластичность замещения.

5. Функция Кобба-Дугласа может характеризовать любой тип отдачи от масштаба, в зависимости от значений параметров а и Ь

6. Рассматриваемая функция может служить для описания различных типов технического прогресса.

7 Степенными параметрами функции являются коэффициенты эластичности выпуска по капиталу (а) и по труду (Ь), так что уравнение для темпа роста выпуска (8.20) для функции Кобба-Дугласа принимает вид GQ = Gz + aGK + bGL. Параметр а, таким образом, характеризует как бы «вклад» капитала в увеличение выпуска, а параметр b - «вклад» труда.

ПФ основана на ряде «особенностей производства». Они касаются эффекта выпуска в трех случаях: (1) пропорциональное увеличение всех затрат, (2) изменение структура затрат при постоянном выпуске, (3) увеличение одного фактора производства при остальных неизменных. случай (3) относиться к краткосрочному периоду.

Производственная функция с одним переменным фактором имеет вид:

Мы видим, что наиболее эффективное изменение переменного фактора X наблюдается на отрезке от точки А до точки Б. Здесь предельный продукт (МР), достигнув своего максимального значения, начинает уменьшаться, средний продукт (АР) еще увеличивается, общий продукт (ТР) получает наибольший прирост.

Закон убывающей отдачи (закон убывающего предельного продукта) – определяет ситуацию, при которой достижение определенных объемов производства приводит к уменьшению выхода готовой продукции на дополнительно введенную единицу ресурса.

Как правило, данный объем может быть произведен посредством различных способов производства. Это связано с тем, что факторы производства в определенной степени взаимозаменяемы. Можно провести изокванты, соответствующие всем способам производства, необходимым для выпуска в данном объеме. В результате мы получаем карту изоквант, которая характеризует зависимость между всеми возможными комбинациями ресурсов и размерами выпуска и, следовательно, является графической иллюстрацией производственной функции.

Изокванта (линия равного выпуска - isoquant)– кривая, отражающая все комбинации факторов производства, обеспечивающих одинаковый выпуск продукции.

Совокупность изоквант, каждая из которых показывает максимальный выпуск продукции, достигаемый при использовании определенных сочетаний ресурсов, называется картой изоквант (isoquant map). Чем дальше расположена изокванта от начала координат, тем больше ресурсов задействовано в расположенных на ней способах производства и тем больше размеры выпуска, которые характеризуются данной изоквантой (Q3> Q2> Q1).

Изокванта и ее форма отражает зависимость, заданную ПФ. В долгосрочном периоде существует определенная взаимная дополняемость (комплектарность) факторов производства, однако без уменьшения объема выпуска вероятна и определенная взаимозаменяемость данных факторов производства. Так, для выпуска блага могут быть использованы различные комбинации ресурсов; можно произвести это благо при использовании меньшего объема капитала и большего объема затрат труда, и наоборот. В первом случае производство считается технически эффективным в сравнении со вторым случаем. Однако существует предел того, насколько труд может быть заменен большим объемом капитала, чтобы не сократилось производство. С другой стороны, имеется предел применения ручного труда без использования машин. Мы будем рассмотривать изокванту в зоне технического замещения.

Уровень взаимозаменяемости факторов отражает показатель предельной нормы технического замещения . – пропорция, в которой один фактор может быть заменен на другой при сохранении прежнего объема выпуска; отражает наклон изокванты.

MRTS = - ∆K / ∆ L = МР L / МР K

Чтобы при изменении количества используемых факторов производства выпуск оставался неизменным, количества труда и капитала должны изменяться в разных направлениях. Если количество капитала сокращается (АК< 0), то количество труда должно увеличиваться (AL > 0). Между тем предельная норма технического замещения представляет собой просто пропорцию, в которой один фактор производства может быть замещен другим, и, как таковая, есть величина всегда положительная.

Рассмотрим экономику с l благами. Для конкретной фирмы естественно рассматривать часть из этих товаров как факторы производства и часть - как выпускаемую продукцию. Следует оговориться, что такое деление довольно условно, так как фирма обладает достаточной свободой в выборе ассортимента производимой продукции и структуры затрат. При описании технологии будем различить выпуск и затраты, представляя последние как выпуск со знаком минус. Для удобства представления технологии продукцию, которая и не затрачивается и не выпускается фирмой, будем относить к ее выпуску, причем объем производства этой продукции считаем равным 0. В принципе не исключена ситуация, в которой продукт, производимый фирмой, также потребляется ею в процессе производства. В этом случае мы будем рассматривать только чистый выпуск данного продукта, т. е. его выпуск минус затраты.

Пусть число факторов производства равно n, а число видов выпускаемой продукции равно m, так что l = m + n. Обозначим вектор затрат (по абсолютной величине) через r Rn + , а объемы выпусков через y Rm + . Вектор (−r, yo ) будем называть вектором чистых выпусков . Совокупность всех технологически допустимых векторов чистых выпусков y = (−r, yo ) составляет технологическое множество Y . Таким образом, в рассматриваемом случае любое технологическое множество - это подмножество Rn − × Rm + .

Такое описание производства носит общий характер. При этом можно не придерживаться жесткого деления благ на продукты и факторы производства: одно и то же благо может при одной технологии затрачиваться, а при другой - производится. В этом случае Y Rl .

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.

1. Непустота

Технологическое множество Y непусто.

Это свойство означает принципиальную возможность осуществления производственной деятельности.

2. Замкнутость

Технологическое множество Y замкнуто.

Это свойство скорее техническое; оно означает, что технологическое множество содержит свою границу, и предел любой последовательности технологически допустимых векторов чистого выпуска также является технологически допустимым вектором чистых выпусков.

3. Свобода расходования:

если y Y и y0 6 y, то y0 Y.

Это свойство можно интерпретировать как наличие возможности производить тот же самый объем выпуска, но посредством больших затрат, или меньший выпуск при тех же затратах.

4. Отсутствие «рога изобилия» (“no free lunch”)

если y Y и y > 0, то y = 0.

Это свойство означает, что для производства продукции в положительном количестве необходимы затраты в ненулевом объеме.

Рис. 4.1. Технологическое множество с возрастающей отдачей от масштаба.

5. Невозрастающая отдача от масштаба:

если y Y и y0 = λy, где 0 < λ < 1, тогда y0 Y.

Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба:

если y Y и y0 = λy, где λ > 1, тогда y0 Y.

В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е.

если y Y и y0 = λy0 , тогда y0 Y λ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0).

В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

Рис. 4.2. Выпуклое технологическое множество с убывающей отдачей от масштаба

Свойство выпуклости означает возможность «смешивать» технологии в любой пропорции.

7. Необратимость

если y Y и y 6= 0, то (−y) / Y.

Пусть из килограмма стали можно произвести 5 подшипников. Необратимость означает, что невозможно произвести из 5-ти подшипников килограмм стали.

8. Аддитивность.

если y Y и y0 Y , то y + y0 Y.

Свойство аддитивности означает возможность комбинировать технологии.

9. Допустимость бездеятельности:

Теорема 44:

1) Из невозрастающей отдачи от масштаба и аддитивности технологического множества следует его выпуклость.

2) Из выпуклости технологического множества и допустимости бездеятельности следует невозрастающая отдача от масштаба. (Обратное не всегда верно: при невозрастающей отдаче технология может быть невыпуклой, см. Рис. 4.3 .)

3) Технологическое множество обладает свойствами аддитивности и невозрастающей

отдачи от масштаба тогда и только тогда, когда оно - выпуклый конус.

Рис. 4.3. Невыпуклое технологическое множество с невозрастающей отдачей от масштаба.

Не все допустимые технологии в равной степени важны с экономической точки зрения. Среди допустимых особо выделяются эффективные технологии . Допустимую технологию y принято называть эффективной, если не существует другой (отличной от нее) допустимой технологии y0 , такой что y0 > y. Очевидно, что такое определение эффективности неявно подразумевает, что все блага являются в определенном смысле желательными. Эффективные технологии составляют эффективную границу технологического множества. При определенных условиях оказывается возможным использовать в анализе эффективную границу вместо всего технологического множества. При этом важно, чтобы для любой допустимой технологии y нашлась эффективная технология y0 , такая что y0 > y. Для того, чтобы это условие было выполнено, требуется, чтобы технологическое множество было замкнутым, и чтобы в пределах технологического множества невозможно было увеличивать до бесконечности выпуск одного блага, не уменьшая при этом выпуск других благ. Можно показать, что если технологическое

Рис. 4.4. Эффективная граница технологического множества

множество обладает свойством свободы расходования, то эффективная граница однозначно задает соответствующее технологическое множество.

Начальные курсы и курсы промежуточной сложности, при описании поведения производителя, опираются на представление его производственного множества посредством производственной функции. Уместен вопрос, при каких условиях на производственное множество такое представление возможно. Хотя можно дать более широкое определение производственной функции, однако здесь и далее мы будем говорить только об «однопродуктовых» технологиях, т. е. m = 1.

Пусть R - проекция технологического множества Y на пространство векторов затрат, т. е.

R = { r Rn | yo R: (−r, yo ) Y } .

Определение 37:

Функция f(·) : R 7→R называется производственной функцией , представляющей технологию Y , если при каждом r R величина f(r) является значением следующей задачи:

yo → max

(−r, yo ) Y.

Заметим, что любая точка эффективной границы технологического множества имеет вид (−r, f(r)). Обратное верно, если f(r) является возрастающей функцией. В этом случае yo = f(r) является уравнением эффективной границы.

Следующая теорема дает условия, при которых технологическое множество может быть представлено??? производственной функцией.

Теорема 45:

Пусть для технологического множества Y R × (−R) для любого r R множество

F (r) = { yo | (−r, yo ) Y }

замкнуто и ограничено сверху. Тогда Y может быть представлено производственной функцией.

Замечание: Выполнение условий данного утверждения можно гарантировать, например, если множество Y замкнуто и обладает свойствами невозрастающей отдачи от масштаба и отсутствия рога изобилия.

Теорема 46:

Пусть множество Y замкнуто и обладает свойствами невозрастающей отдачи от масштаба и отсутствия рога изобилия. Тогда для любого r R множество

F (r) = { yo | (−r, yo ) Y }

замкнуто и ограничено сверху.

Доказательство: Замкнутость множеств F (r) непосредственно следует из замкнутости Y . Покажем, что F (r) ограничены сверху. Пусть это не так и при некотором r R суще-

ствует неограниченно возрастающая последовательность {yn }, такая что yn F (r). Тогда вследствие невозрастающей отдачи от масштаба (−r/yn , 1) Y . Поэтому (вследствие замкнутости), (0, 1) Y , что противоречит отсутствию рога изобилия.

Отметим также, что если технологическое множество Y удовлетворяет гипотезе свободного расходования, и существует представляющая его производственная функция f(·), то множество Y описывается следующим соотношением:

Y = { (−r, yo ) | yo 6 f(r), r R } .

Установим теперь некоторые взаимосвязи между свойствами технологического множества и представляющей его производственной функции.

Теорема 47:

Пусть технологическое множество Y таково, что для всех r R определена производственная функция f(·). Тогда верно следующее.

1) Если множество Y выпукло, то функция f(·) вогнута.

2) Если множество Y удовлетворяет гипотезе свободного расходования, то верно и обратное, т. е. если функция f(·) вогнута, то множество Y выпукло.

3) Если Y выпукло, то f(·) непрерывна на внутренности множества R.

4) Если множество Y обладает свойством свободы расходования, то функция f(·) не убывает.

5) Если Y обладает свойством отсутствия рога изобилия, то f(0) 6 0.

6) Если множество Y обладает свойством допустимости бездеятельности, то f(0) > 0.

Доказательство: (1) Пусть r0 , r00 R. Тогда (−r0 , f(r0 )) Y и (−r00 , f(r00 )) Y , и

(−αr0 − (1 − α)r00 , αf(r0 ) + (1 − α)f(r00 )) Y α ,

поскольку множество Y выпукло. Тогда по определению производственной функции

αf(r0 ) + (1 − α)f(r00 ) 6 f(αr0 + (1 − α)r00 ),

что означает вогнутость f(·).

(2) Поскольку множество Y обладает свойством свободного расходования, то множество Y (с точностью до знака вектора затрат) совпадает с ее подграфиком. А подграфик вогнутой функции - выпуклое множество.

(3) Доказываемый факт следует из того, что вогнутая функция непрерывна во внутренно-

сти ее области определения.

(4) Пусть r 00 > r0 (r0 , r00 R). Поскольку (−r0 , f(r0 )) Y , то по свойству свободы расходования (−r00 , f(r0 )) Y . Отсюда, по определению производственной функции, f(r00 ) > f(r0 ), то есть f(·) не убывает.

(5) Неравенство f(0) > 0 противоречит предположению об отсутствии рога изобилия. Значит, f(0) 6 0.

(6) По предположению о допустимости бездеятельности (0, 0) Y . Значит, по определению

В предположении о существовании производственной функции свойства технологии можно описывать непосредственно в терминах этой функции. Покажем это на примере так называемой эластичности масштаба.

Пусть производственная функция дифференцируема. В точке r, где f(r) > 0, определим

локальную эластичность масштаба e(r) как:

Если в некоторой точке e(r) равна 1, то считают, что в этой точке постоянная отдача от масштаба , если больше 1 - то возрастающая отдача , меньше - убывающая отдача от масштаба . Вышеприведенное определение можно переписать в следующем виде:

P ∂f(r) e(r) = i ∂r i r i .

Теорема 48:

Пусть технологическое множество Y описывается производственной функцией f(·) и

в точке r выполнено e(r) > 0. Тогда верно следующее:

1) Если технологическое множество Y обладает свойством убывающей отдачи от масштаба, то e(r) 6 1.

2) Если технологическое множество Y обладает свойством возрастающей отдачи от масштаба, то e(r) > 1.

3) Если Y обладает свойством постоянной отдачи от масштаба, то e(r) = 1.

Доказательство: (1) Рассмотрим последовательность {λn } (0 < λn < 1), такую что λn → 1. Тогда (−λn r, λn f(r)) Y , откуда следует, что f(λn r) > λn f(r). Перепишем это неравенство в виде:

f(λn r) − f(r)

Переходя к пределу, имеем

λn − 1

∂ri

ri 6 f(r).

Таким образом, e(r) 6 1.

Свойства (2) и (3) доказываются аналогично.

Технологические множества Y можно задавать в виде неявных производственных функций g(·). По определению, функция g(·) называется неявной производственной функцией, если технология y принадлежит технологическому множеству Y тогда и только тогда, когда g(y) >

Заметим, что такую функцию можно найти всегда. Например, подходит функция такая, что g(y) = 1 при y Y и g(y) = −1 при y / Y . Заметим, однако, что данная функция не является дифференцируемой. Вообще говоря, не каждое технологическое множество можно описать одной дифференцируемой неявной производственной функцией, причем такие технологические множества не являются чем-то исключительным. В частности, технологические множества, рассматриваемые в начальных курсах микроэкономики, часто бывают такими, что для их описания нужно два (или больше) неравенства с дифференцируемыми функциями, поскольку требуется учитывать дополнительные ограничения неотрицательности факторов производства. Чтобы учитывать такие ограничения, можно использовать векторные неявные

Описание технологического множества однопродуктового элемента, приведенное в предыдущем параграфе, является простейшим. Учет дополнительных свойств технологии элемента приводит к необходимости дополнить его рядом черт. Некоторые из них мы рассмотрим в этом параграфе. Конечно, приводимые рассмотрения не исчерпывают всех имеющихся в этом направлении возможностей.  

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.  

Установим теперь некоторые взаимосвязи между свойствами технологического множества и представляющей его производственной функции.  

Ответ на вопрос зависит от свойств технологического множества У и от множества цен Р, при которых наблюдается предложение.  

Рассмотрим частный случай, когда Р = М++. В этом случае У и У могут не совпадать, поскольку наш метод построения У порождает множества, удовлетворяющее свойству свободы расходования, а технологическое множество У может не удовлетворять свойству свободы расходования (как на Рис. 24.1 и 24.2).  

Проверьте, что эта функция удовлетворяет свойствам функции прибыли . Восстановите по функции прибыли соответствующее ей технологическое множество.  

Номинальные значения этих свойств заложены в конструкции изделия и технологии его изготовления. Их соблюдение в процессе производства осложняется множеством факторов, которые должны быть выявлены и по возможности нейтрализованы. Для этого группа контроля протекания технологических процессов проводит специальное исследование по установлению перечня факторов, значимости каждого из них, связи между ними, характера проявления (случайные или определенные), времени и места действия. В ходе такого исследования на первом этапе изучают состояние вопроса на основании накопленного производственного опыта, анализа технической документации, научных работ и экспериментов. На втором этапе формулируют мероприятия (способы воздействия на выявленные факторы). При выполнении мероприятий осуществляют контроль результатов и корректировку управляющих воздействий на факторы.  

Отметим первое важное свойство множества 7/ - его полноту. Это свойство состоит в том, что в Ti содержатся технологические операции , достаточные для построения любой ТСП для некоторого класса объектов.  

Применяемая в этой отрасли технология изменяет первоначальный состав и структуру исходных сырья и материалов, вследствие чего образуются новые химические соединения, отличающиеся от них физико-химическими и потребительскими свойствами. Технологические процессы отдельных производств весьма разнообразны. Это определяется тем, что химические методы позволяют получать множество продуктов из одного исходного материала, а также использовать разные виды и источники сырья для производства одного и того же продукта.  

Как известно, синтетические полимерные соединения можно в зависимости от их происхождения, условий синтеза и физико-химических свойств подразделить на множество классов и групп. Однако для синтетических смол , применяемых в качестве связующих в армированных материалах, наиболее важным будет классификация по их технологическим и техническим свойствам (табл. 13).  

Совокупность, порядок и характеристики технологических операций составляют технологический процесс , направленный на качественное изменение обрабатываемой среды, ее формы, строения и потребительских свойств. Это наиболее общее содержание понятия "технология" и будем подразумевать его при дальнейшем рассмотрении функций инновационного менеджмента . Кроме того, каждую из множества технологий можно считать производственной, так как любая из них предназначена для производства нового качества исходной среды или материала.  

Теория активных систем (ТАС) - раздел теории управления социально-экономическими системами (зародившийся в стенах Института автоматики и телемеханики и развиваемый в значительной степени его сотрудниками), изучающий свойства механизмов их функционирования, обусловленные проявлениями активности участников системы. Основным методом исследования является математическое (теоретико-игровое) и имитационное моделирование . За тридцать лет своего развития в ТАС были разработаны, исследованы и внедрены множество эффективных механизмов управления . Соответствующие модели и методы находят применение при решении широкого круга задач управления в экономике и обществе - от управления технологическими процессами до принятия решений на уровне регионов и стран.  

Рассмотренные в предыдущем параграфе методы представления технологических множеств производственных элементов характеризуют их свойства, но не задают описание в явном виде. Для однойродуктовых производственных элементов явное описание технологического множества можно задать, используя понятие производственной функции . В 1.2 мы уже касались этого понятия и его использования, в этом параграфе рассмотрение этих вопросов будет продолжено.  

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Сущность издержек производства, их классификация. Основные направления снижения издержек производства. Экономическая сущность и функции прибыли. Операционные и внереализационны расходы. Изучение взаимосвязи издержек производства и прибыли предприятия.

    курсовая работа , добавлен 24.05.2014

    Предмет и функции экономтеории. Товар и его свойства. Принципы предельной полезности. Теория денег К. Маркса. Понятие ликвидности, издержек и дохода фирмы. Виды и характерные черты конкуренции. Модель совокупного спроса и предложения. Налоги, их функции.

    шпаргалка , добавлен 11.01.2011

    Предмет экономической теории, структура и функции. Экономические законы и их классификация. Трудовая теория стоимости. Товар и его свойства. Двойственный характер труда, воплощенного в товаре. Величина стоимости товара. Закон стоимости и его функции.

    шпаргалка , добавлен 22.10.2009

    Проблемы издержек производства как предмет исследования ученых-экономистов. Сущность издержек производства и их виды. Роль прибыли в условиях развития предпринимательства. Сущность и функции прибыли, ее виды. Рентабельность предприятия и ее показатели.

    курсовая работа , добавлен 28.11.2012

    Сущность и значение экономического роста. Типы и способы измерения экономического роста. Основные свойства функции Кобба-Дугласа. Показатели и модели экономического роста. Факторы, сдерживающие экономический рост. Производная функция и ее свойства.

    курсовая работа , добавлен 26.06.2012

    Сущность и основные функции прибыли. Экономическая эффективность модернизации технологического оборудования и использование инновационных технологий при ремонте дорожного покрытия автомобильных дорог. Резервы повышения прибыли в строительной организации.

    дипломная работа , добавлен 04.07.2013

    Сущность прибыли в экономической науке: понятие, виды, формы, методы планирования. Сущность метода прямого счета, совмещенного расчета. Основные пути увеличения прибыли на предприятиях России в современных условиях. Связь между оплатой труда и прибылью.

    курсовая работа , добавлен 18.12.2017