» » Вселенная - реферат. Вселенная Сообщение на тему изучение вселенной

Вселенная - реферат. Вселенная Сообщение на тему изучение вселенной

Реферат на тему: «Строение и эволюция вселенной»

  1. Строение вселенной
  2. Модели вселенной
  3. Наша Галактика
  4. Другие Галактики
  5. Вчерашний день метагалактики
  6. Метагалактика
  7. История развития взглядов о строении Вселенной
  8. Эволюция вселенной
  9. Модели строения и развития вселенной
  10. Теории, на основании которых созданы современные представления о эволюции вселенной
  11. Возраст вселенной
  12. Вселенная и жизнь
  13. Условия жизни
  14. Пояс жизни
  15. Таинственный Марс
  16. Изучение вселенной

Мир, Земля, Космос, Вселенная…

Тысячелетиями пытливое человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за пределы микромира в макромир.

Величественная картина небесного купола, усеянного мириадами звезд, с незапамятных звезд волновала ум и воображение ученых, поэтов, каждого живущего на Земле и зачарованного любующегося торжественной и чудной картиной, по выражению Лермонтова.

Что есть Земля, Луна, Солнце, звезды? Где начало и где конец Вселенной, как долго она существует, из чего состоит и где границы ее познания?

В своем реферате я изложила всё то, что известно на сегодняшний день науке о строении и эволюции Вселенной.

Изучение Вселенной, даже только известной нам её части является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Вселенная бесконечна во времени и пространстве. Каждая частичка вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная бесконечна и вечна так, как она является вечно самодвижущейся материей.

Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений в-ва звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука так или иначе изучает Вселенную, точнее, тем или иначе её стороны. Химия изучает мир молекул, физика – мир атомов и элементарных частиц, биология – явления живой природы. Но существует научная дисциплина, объектом исследования которой служит сама вселенная или «Вселенная как целое». Это особая отрасль астрономии так называемая космология. Космология – учение о Вселенной в целом, включающая в себя теорию всей охваченной астрономическими наблюдениями области, как части Вселенной, кстати не следует смешивать понятия Вселенной в целом и «наблюдаемой» (видимой) Вселенной. Во II случае речь идет речь идет лишь о той ограниченной области пространства, которая доступна современным методам научных исследований. С развитием кибернетики в различных областях научных исследованиях приобрели большую популярность методики моделирования. Сущность этого метода состоит в том, что вместо того или иного реального объекта изучается его модель, более или менее точно повторяющая оригинал или его наиболее важные и существенные особенности. Модель не обязательно вещественная копия объекта. Построение приближенных моделей различных явлений помогает нам всё глубже познавать окружающий мир. Так, например, на протяжении длительного времени астрономы занимались изучением однородной и изотронной (воображаемой) Вселенной, в которой все физические явления протекают одинаковым образом и все законы остаются неизменными для любых областей и в любых направлениях. Изучались так же модели, в которых к этим двум условиям добавлялось третье, - неизменность картины мира. Это означает, что в какую бы эпоху мы не созерцали мир, он всегда должен выглядеть в общих чертах одинаково. Эти во многом условные и схематические модели помогли осветить некоторые важные стороны окружающего нас мира. Но! Как бы сложна ни была та или иная теоретическая модель, какие бы многообразные факты она ни учитывала, любая модель – это еще не само явление, а только более или менее точная его копия, так сказать образ реального мира. Поэтому все результаты полученные с помощью моделей Вселенной, необходимо обязательно проверить путем сравнения с реальностью. Нельзя отождествлять само явление с моделью. Нельзя без тщательной проверки, приписывать природе те свойства которыми обладает модель. Ни одна из моделей не может претендовать на роль точного «слепка» Вселенной. Это говорит о необходимости углубленной разработки моделей неоднородной и неизотронной Вселенной.

Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система. В составе которой, как рядовая звезда находится наше Солнце, называется Галактикой.

Число звезд в галактике порядка 1012 (триллиона). Млечный путь, светлая серебристая полоса звезд опоясывает всё небо, составляя основную часть нашей Галактики. Млечный путь наиболее ярок в созвездии Стрельца, где находятся самые мощные облака звезд. Наименее ярок он в противоположной части неба. Из этого нетрудно вывести заключение, что солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Чем дальше от плоскости Млечного Пути, тем меньше там слабых звезд и тем менее далеко в этих направлениях тянется звездная система. В общем наша Галактика занимает пространство, напоминающее линзу или чечевицу, если смотреть на нее сбоку. Размеры Галактики были намечены по расположению звезд, которые видны на больших расстояниях. Это цефиды и горячие гиганты. Диаметр Галактики примерно равен 3000 пк (Парсек (пк) – расстояние, с которым большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1”. 1 Парсек = 3,26 светового года = 206265 а.е. = 3*1013 км.) или 100000 световых лет (световой год – расстояние пройденное светом в течении года), но четкой границы у нее нет, потому что звездная плотность постепенно сходит на нет.

В центре галактики расположено ядро диаметром 1000-2000 пк – гигантское уплотненное скопление звезд. Оно находится от нас на расстоянии почти 10000 пк (30000 световых лет) в направлении созвездия Стрельца, но почти целиком скрыто плотной завесой облаков, что препятствует визуальным и фотографическим обычным наблюдениям этого интереснейшего объекта Галактики. В состав ядра входит много красных гигантов и короткопериодических цефид.

Звезды верхней части главной последовательности а особенно сверхгиганты и классические цефиды, составляют более молодые население. Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Масса нашей галактики оценивается сейчас разными способами, равна 2*1011 масс Солнца (масса Солнца равна 2*1030 кг.) причем 1/1000 ее заключена в межзвездном газе и пыли. Масса Галактики в Андромеде почти такова же, а масса Галактики в Треугольнике оценивается в 20 раз мменьше. Поперечник нашей галактики составляет 100000 световых лет. Путем кропотливой работы московский астрономом В.В. Кукарин в 1944 г. нашел указания на спиральную структуру галактики, причем оказалось, что мы живем между двумя спиральными ветвями, бедном звездами.

В некоторых местах на небе в телескоп, а кое где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.

Существует два вида звездных скоплений: рассеянные (рис.) и шаровые (рис.).

Рассеяные скопления состоят обычно из десятков или сотен звезд главной последовательности и сверхгигантов со слабой концентрацией к центру.

Шаровые же скопления состоят обычно из десятков или сотен звезд главной последовательности и красных гигантов. Иногда они содержат короткопериодические цефеиды. Размер рассеянных скоплений – несколько парсек. Пример их скопления Глады и Плеяды в созвездии Тельца. Размер шаровых скоплений с сильной концентрацией звезд к центру – десяток парсек. Известно более 100 шаровых и сотни рассеянных скоплений, но в Галактике последних должно быть десятки тысяч.

Кроме звезд в состав Галктики входит еще рассеянная материя, черезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Оно образует туманности. Туманности бывают диффузными (клочковатой формы (рис.))и планетарными (рис.). Светлые они от того, что их освещают близлежащие звезды. Пример: газопылевая туманность в созвездии Ориона и темная пылевая туманность Конская голова.

Расстояние до туманности в созвездии Ориона равно 500 пк, диаметр центральной части туманности – 6 пк, масса приблизительно в 100 раз больше массы Солнца.

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Внешний вид галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Эдвин Пауэлла Хаббл (1889-1953), выдающийся американский астроном – наблюдатель, избрал самый простой метод классификации галактик по внешнему виду, и нужно сказать, что хотя в последствии другими выдающимися исследователями были внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по прежнему остаётся основой классификации галактик.

Хаббл предложил разделить все галактики на 3 вида:

Эллиптические – обозначаемые Е (elliptical);

Спиральные (Spiral);

Неправильные – обозначаемые (irregular).

Эллиптические галактики (рис.) внешне невыразительные. Они имеют вид гладких эллипсов или кругов с постепенным круговым уменьшением яркости от центра к периферии. Ни каких дополнительных частей у них нет, потому что Эллиптические галактики состоят из второго типа звездного населения. Они построены из звезд красных и желтых гигантов, красных и желтых карликов и некоторого количества белых звезд не очень высокой светлости. Отсутствуют бело-голубые сверхгиганты и гиганты, группировки которых можно наблюдать в виде ярких сгустков, придающих структурность системе, нет пылевой материи которая, в тех галактиках где она имеется, создаёт темные полосы, оттеняющие форму звездной системы.

Внешне эллиптические галактики отличаются друг от друга в основном одной чертой – большим или меньшим сжатием (NGG и 636, NGC 4406, NGC 3115 и др.)

С несколько однообразными эллиптическими галактиками контрастируют спиральные галактики (рис.) являющиеся может быть даже самыми живописными объектами во Вселенной. У эллиптических галактик внешний вид говорит о статичности, стационарности Спиральные ралактики наоборот являют собой пример динамики формы. Их красивые ветви, выходящие из центрального ядра и как бы теряющие очертания за пределами галактики, указывает на мощное стремительное движение. Поражает также многообразие форм и рисунков ветвей. Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающимися сходным симметричным образом и теряющая в противоположных областях периферии, галактики. Однако известны примеры большего, чем двух числа спиральных ветвей в галактике. В других случаях спирали две, но они неравны – одна значительно более развита чем вторая. Примеры спиральных галактик: М31, NGC 3898, NGC 1302, NGC 6384, NGC 1232 и др.

Перечисленные мною до сих пор типы галактик характеризовались симметричностью форм определенным характером рисунка. Но встречаются большое число галактик неправильной формы (рис.). Без какой-либо закономерности структурного строения. Хаббл дал им обозначение от английского слова irregular – неправильные.

Неправильная форма у галактики может быть, в следствии того, что она не успела принять правильной формы из-за малой плотности в ней материи или из-за молодого возраста. Есть и другая возможность: галактика может стать неправильной в следствии искажения формы в результате взаимодействия с другой галактикой. По видимому эти оба случая встречаются среди неправильных галактик и может быть с этим связанно разделение неправильных галактик на 2 подтипа.

Подтип II характеризуется сравнительно высокой поверхностью, яркостью и сложностью неправильной структуры (NGM 25744, NGC 5204). Французский астроном Вакулер в некоторых галактиках этого подтипа, например Магелановых облаках, обнаружил признаки спиральной разрушенной структуры.

Неправильные галактики другого подтипа обозначаемого III, отличаются очень низкой поверхностью и яркостью. Эта черта выделяет их из среды галактик всех других типов. В то же время она препятствует обнаружению этих галактик, вследствие чего удалось выявить только несколько галактик подтипа III расположенных сравнительно близко (галактика в созвездии Льва.).

Только 3 галактики можно наблюдать невооруженным глазом, Большое Магеланово облако, Малое Магеланово облако и туманность Андромеды. В таблицы приведены данные о десяти ярчайших галактиках неба. (БМО, ММО – Большое Магеланов облако и Малое Магеланово облако.).

Не вращающаяся звездная система по истечении некоторого срока должна принять форму шара. Такой вывод следует из теоретических исследований. Он подтверждается на примере шаровых скоплений, которые вращаются и имеют шарообразную форму.

Если же звездная система сплюснута, то это означает, что она вращается. Следовательно, должны вращаться и эллиптические галактики, за исключением тех, из них, которые шарообразны, не имеют сжатия. Вращение происходит вокруг оси, которая перпендикулярна главной плоскости симметрии. Галактика сжата вдоль оси своего вращения. Впервые вращение галактик обнаружил в 1914 г. американский астроном Слайфер.

Особый интерес представляют галактики с резко повышенной светимостью. Их принято называть радиогалактиками. Наиболее выдающаяся галактика Лебедьl. Это слабая двойная галактика с чрезвычайно тесно расположенными друг к другу компонентами, являющимися мощнейшим дискретным источником. Объекты подобные галактике Лебедьl безусловно очень редки в метагалактике, но Лебедьl не единственный объект подобного рода во Вселенной. Они должны находиться на громадном расстоянии друг от друга (более 200Мпс).

Поток проходящего от них радиоизлучения в виду большого расстояния слабее, чем от источника Лебедьl.

Несколько ярких галактик, входящих в каталог NGC, также отнести к разряду радиогалактик, потому что их радиоизлучение аналогично сильное хотя оно значительно уступает по энергии световому. Из этих галактик NGC 1273, NGC 5128, NGC 4782 и NGC 6186 являются двойными. Одиночные NGC 2623 и NGC 4486.

Когда английские и австралийские астрономы, применив интерференционный метод в 1963 г. определили с большой точностью положения значительного числа дискретных источников радиоизлучения, они одновременно определили и другие угловые размеры некоторого числа радиоисточников. Диаметры большинства из них исчислялись минутами или десятками секунд дуги, но у 5 источников, а именно у 3С48, 3С147, 3С196, 3С273 и 3С286, размеры оказались меньше секунды дуги.

Но поток их радиоизлучения не уступали потки радиоизлучения других фирм дискретных источников, превосходящих их по площади излучения в десятки тысяч раз. Эти звездоподобные источники радиоизлучения были названы квадрами. Сейчас их открыто более 1000. Блеск квадра не остается постоянным. Массы квадров достигают миллиона солнечных масс. Итсочник энергии квадров до сих пор не ясен. Есть предположения, что квадры – это исключительно активные ядра очень далеких галактик.

Теоретическое моделирование имеет важное значение так же и для выяснения прошлого и будущего наблюдаемой Вселенной. В 1922 г. А.А. Фридман занялся разработкой оригинальной теоретической модели Вселенной. Он предположил, что средняя плотность не является постоянно, а меняется с течением времени. Фридман пришел к выводу, что любая достаточно большая часть Вселенной, равномерно заполняемая материя не может находится в состоянии равновесия: она должна либо расширяться, либо сжиматься. Еще в 1917 г. В.М. Слайдер обнаружил «красное смещение» спектральных линий в спектрах далёких галактик. Подобное смещение наблюдается тогда, когда источник света удаляется от наблюдателя. В 1929 г. Э. Хаббл объяснил это явление взаимным разбеганием этих звездных систем. Явление «красного смещения» наблюдается в спектрах почти всех галактик, кроме ближайших (нескольких). И чем дальше от нас галактика, тем больше сдвиг линий в её спектре, т.е. все звездные системы удаляются от нас с огромными скоростями в сотни, тысячи десятки тысяч километров в секунду, более далекие галактики обладают и большими скоростями. А после того, как эффект «красного смещения» был обнаружен и в радиодиапазоне, то не осталось, никаких сомнений в том, что наблюдаемая Вселенная расширяется. В настоящее время известны галактики, удаляющиеся от нас со скоростью 0,46 скорости света. А сверхзвезды и квадры – 0,85 скорости света. Но почему они движутся, расширяются? На галактики постоянно действует какая-то сила. В отдаленном прошлом материя в нашей области Вселенной находилась в сверхплонтом состоянии. Затем произошел «взрыв», в результате которого и началось расширение. Чтобы выяснить дальнейшую судьбу метагалактики, необходимо оценить среднюю плотность межзвездного газа. Если она выше 10 протонов на 1м3, то общее гравитационное поле метагалактики достаточно велико, чтобы постепенно остановить расширение. И оно смещается сжатием.

Возникли два мнения по поводу состояния Метагалактики до начала расширения. Согласно одному из них первоначальное вещество метагалактики состояло из «холодной» смеси протонов, т.е. ядер атомов водорода, электронов и нейтронов. Согласно второй, температура была очень велика, а плотность излучения даже превосходила плотность вещества. Но после открытия в 1965 г. реликтового излучения А. Тицнасом и Р. Вилсоном предпочтение было отдано второй теории. После была представлена попытка представить ход событий на первых стадиях расширения Метагалактики: через 1с после начала расширения сверхплотной исходной плазмы плотность вещества снизилась до 500 кг/ см3, а t=1013 Со. В течение следующих 100с плотность снизилась до 50 г/см2 температура упала. Объединились протоны и нейтроны => ядра гелия. При t=4000о, это продолжалось несколько сотен тысяч лет. Затем, после того, как образовались атомы водорода, началось постепенное формирование горячих водородных облаков, из которых образовались галактики и звезды. Однако в процессе расширения могли сохраниться сгустки сверхплотного до звездного вещества, а в процессе их распада образовались звезды и галактики. Не исключено, что действовали оба механизма. Понятие Метагалактика не является вполне ясным. Оно сформировалось на основании аналогии со звездами. Наблюдения показывают, что галактики, подобно звездам, группирующиеся в рассеянные и шаровые скопления, также объединяются в группы и скопления различной численности. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется Метагалактикой (или нашей Вселенной). В Метагалактике пространство между галактиками заполнено чрезвычайно разряженным межгалактическим газом, пронизывается космическими лучами, в нем существуют магнитные и гравитационные поля, и возможно невидимые массы веществ.

От наиболее удаленных метагалактических объектов свет идет до нас много миллионов лет. Но все-таки нет оснований утверждать, что метагалактика это вся вселенная. Возможно существуют др., пока не изветсные нам метагалактики.

В 1929 г. Хаббл открыл замечательную закономерность которая была названная «законом Хаббла» или «закон красного смещения»: линии галактик смещенных к красному концу, причем смещение тем больше, чем дальше находится галактика.

Объяснив красные смещения эффектом Доплера. Ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Хотя безусловно галактики не разлетаются во все стороны от нашей галактики, которая не занимает никакого особого положения в метагалактике, а происходит взаимное удаление всех галактик. Следовательно, Метагалактика не стационарна.

Открытие расширения метагалактики свидетельствует о том, что в прошлом метагалактика была не такой как сейчас и иной станет в будущем, т.е. метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самым большими скоростями (более 250 000 км/с) обладают некоторые квадры, которые считаются самыми удаленными от нас объектами Метагалактики.

Мы живем в расширяющейся Метагалактики; расширение метагалактики проявляется только на уровне скоплений и сверхскоплений галактик. Метагалактика имеет одну особенность: не существует центра, от которого разбегаются галактики. Удалось вычислить промежуток времени с начала расширения метагалактики.

Промежуток расширения равен 20-13 млрд. лет. Расширение метагалактики является самым грандиозным из известных в настоящие время явлений природы. Это открытие произвело коренное изменение во взглядах философов и ученых. Ведь некоторые философы ставили знак равенства между метагалактикой и вселенной, и пытались доказать, что расширение метагалактики подтверждает религиозное представление о божественности происхождения вселенной. Но Вселенной известны естественные процессы, по всей вероятности это взрывы. Есть предположение, что расширение метагалактики также началось с явления напоминающего. Колоссальный взрыв вещества, обладающего огромной температурой и плотностью.

Расчеты выполненные астрофизиками свидетельствуют о том, что после начала расширения вещество метагалактики имело высокую температуру и состояло из элементарных частиц (нуклонов) и их античастиц. По мере расширения изменилась не только температура и плотность вещества, но и состав входивших в него частиц, т.е. многие частицы и античастицы манипулировали, порождая при этом электромагнитные кванты, излучения которые в современной нам метагалактики оказалось больше, чем атомов, из которых состоят звезды, планеты, диффузная материя.

Эта теория называется теорией «горячей Вселенной» чтобы сверхплотное вещество превратилось в вещество с близкой плотностью к плотности воды. Через несколько часов плотность почти сравнялась с плотностью нашего воздуха, а сейчас, по истечении миллиардов лет оценка средней плотности вещества в метагалактике приводит к значению порядка 10-28 кг/м3.

Но все эти данные удалось получить только с помощью уникального сложного оборудования позволяющего расширить границы Вселенной. До сих пор человечество совершенствует его, изобретали все более гениальные приборы, но еще на заре цивилизации, когда пытливый человеческий ум обратился к заоблачным высотам, великие философы мыслили свое представление о Вселенной, как о чем-то бесконечном. Древнегреческий философ Анаксимандр (VI в. до н.э.) ввел представление о некой единой беспредельности, не обладавшей ни какими привычными наблюдениями, качествами, первооснове всего – апейроне.

Стихии мыслились сначала как полуматериальные, полубожественные, одухотворенные субстанции. Представление чистоматериальной основе всего сущего в древнегреческой основе достигли своей вершины в учении атомистов Левкиппа и Демокрита (V-IV в.в. до н.э.) о Всленной, состоящей из бескачественных атомов и пустоты.

Древнегреческим философам принадлежит ряд гениальных догадок об устройстве Вселенной. Анаксиандр высказал идею изолированности Земли, в пространстве. Эйлалай первым описал пифагорейскую систему мира, где Земля как и Солнце обращались вокруг некоего «гигантского огня». Шаррообразность Земли утверждал другой пифагорец Парменид (VI-V в.в. до н.э.) Гераклид Понтийский (V-IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею египтян о том, что само солнце может служить центром вращение некоторых планет (Венера, Меркурий).

Французский философ и ученый, физик, математик, физиолог Рене Декарт (1596-1650) создал теорию о эволюционной вихревой модели Вселенной на основе гелиоцентрализма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII в.в. его идея была необыкновенно смелой. По Декарту, все небесные тела образовывались в результате вихревых движений, происходивших в однородной в начале, мировой материи. Совершенно одинаковые материальные частицы находясь в непрерывном движении и взаимодействии, меняли свою форму и размеры, что привело к наблюдаемому нами богатому разнообразию природы.

Солнечная система согласно Декарту, представляет собой один из таких вихрей мировой материи. Планеты не имеют собственного движения – они движутся, увлекаемые мировым вихрем. Декарт внес и новую идею для объяснения тяжести: он считал, что в вихрях, возникающих вокруг планет частицы давят друг на друга и тем вызывают явление тяжести (например на Земле). Таким образом Декарт, первым стал рассматривать тяжесть не как врожденное, а как производное качество тел.

Великий немецкий ученый, философ Иммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры и представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновение такой Вселенной исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях – начиная с планетной системных и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Это было сравнительно просто, как и всё гениальное. Ему не пришлось предварительно открыть новые явления, установить количественные закономерности. Он лишь дал принципиально новое объяснение.

Эйнштейн раскрыл более глубокий смысл установленных зависимостей, эффектов уже связанных в некую физико-математическую систему (в виде постулатов Пуанкаре). Заменив в данном случае теорию абсолютности пространства и времени идей их относительности «Пуанкаре», которую теперь уже не связывали с идеей абсолютного в пространстве, абсолютной системы отсчета. Такой переворот снимал основное противоречие, создававшее кризисную ситуацию, в теоретическом осмыслении действия. Более того открылся путь для дальнейшего проникновения в свойства и законы окружающего мира, настолько глубоко, что сам Эйнштейн не сразу осознал степень революционности своей идеи.

В статье от 30.06.1905 г., заложившей основы специальной теории относительности Эйнштейн, обобщая принципы относительности Галилея, провозгласил равноправие всех инерциальных систем отсчета не только в механических, но также электромагнитных явлений.

Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла Лоренца. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Впервые принципиально новые космогологические следствие общей теории относительности раскрыл выдающийся советский математик и физик – теоретик Александр Фридман (1888-1925 гг.). Выступив в 1922-24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находится в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

Существует несколько теории эволюции: Теория пульсирующей Вселенной утверждает, что наш мир произошел в результате гигантского взрыва. Но расширение вселенной не будет продолжаться вечно, т.к. его остановит гравитация.

По этой теории наша Вселенная расширяется в течении 18 млрд. лет со времени взрыва. В будущем расширение полностью замедлится и произойдет остановка, а затем она начнёт сжиматься до тех пор пока вещество опять не сожмется и произойдет новый взрыв.

Теория стационарного взрыва: согласно ей Вселенная не имеет не начала, не конца. Она все время прибывает в одном и том же состоянии. Постоянно идет образование нового водоворота, чтобы возместить вещество удаляющимися галактиками. Вот по этой причине Вселенная всегда одинакова, но если Вселенная, начало которой положил взрыв будет расширятся до бесконечности, то она постепенно охладится и совсем угаснет.

Но пока ни одна из этих теорий не доказана, т.к. на данный момент не существует ни каких точных доказательств хотя бы одной из них.

Открытие многообразных процессов эволюции в различных системах и телах, составляющих Вселенную, позволило изучить закономерности космической эволюции на основе наблюдательных данных и теоретических расчетов.

В качестве одной из важнейших задач рассматривается определение возраста космических объектов и их систем. Поскольку в большинстве случаев трудно решить, что нужно считать и понимать под «моментом рождения»тела или системы, то устанавливая возраст характеристики имеют ввиду две оценки:

Время, в течении которого система уже находится в наблюдаемом состоянии.

Полное время жизни данной системы от момента её появления. Очевидно, что вторая характеристика может быть получена только на основе теоретических расчетов.

Обычно первую из высказанных величин называют возрастом, а вторую – временем жизни.

Факт взаимного удаления галактик, составляющих метагалактики свидетельствует о том, что некоторое время тому назад она находилась в качественно ином состоянии и была более плотной.

Наиболее вероятное значение постоянной Хаббла (коэффициента пропорциональности, связывающего скорости удаления внегалактических объектов и расстояние до них составляющее 60 км/сек – мегапарсек), приводит к значению времени расширения метагалактики до современного состояния 17 млрд. лет.

Из всех вышеперечисленных и тех доказательств, которые не вошли в мой реферат из-за своей громоздкости и математическо-физической сложности можно с уверенностью сделать вывод: Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

Проблема жизни в космосе – одна из наиболее увлекательных и популярных проблем в науке о Вселенной, которая с давних пор волнует не только ученых, но и всех людей. Еще Дж. Бруно и М. Ломоносов высказывали предположение о множественности обитаемых миров. Изучение жизни во Вселенной – одна из сложнейших задач, с которой когда-либо встречалось человечество. Речь идет о явлении, с которым сталкивалось человечество. Речь идет о явлении, с которым людям по существу еще не приходилось непосредственно сталкиваться. Все данные о жизни вне Земли, носят чисто гипотетический характер. Поэтому глубоким исследованиям биологических закономерностей и космических явлений занимается научная дисциплина – «экзобналогия».

Так исследования внеземных, космических форм жизни помогло бы человеку, во первых, понять сущность жизни, т.е. то, что отличает все живые организмы от неорганической природы, во-вторых, выяснить пути возникновения и развития жизни и, в-третьих, определить место и роль человека во Вселенной. Сейчас можно считать достаточно твердо установленным, что на нашей собственной планете жизнь возникла в отдаленном прошлом из неживой, неорганической материи при определенных внешних условиях. Из числа этих условий можно выделить три главных. Прежде всего, это присутствие воды, которая входит в состав живого вещества, живой клетки. Во-вторых, наличие газовой атмосферы, необходимой для газового обмена организма с внешней средой. Правда, можно представить себе и какую-либо иную среду. Третьим условием является наличием на поверхности данного небесного тела подходящего диапазона температур. Также необходима внешняя энергия для синтеза молекулы живого вещества из исходных органических молекул энергия космических лучей, или ультрафиолетовой радиации или энергия электронных разрядов. Внешняя энергия нужна и для последующей жизнедеятельности живых организмов. Условия необходимые для возникновения жизни, в своё время сложилась естественным путём, в ходе эволюции Земли, нет таких оснований считать, что они не могут складываться и процессе развития других небесных тел. Было выдвинуто множество гипотез по этому поводу. Академик А.И. Опарин, считает, что жизнь должна была появиться тогда, когда поверхность нашей планеты представляла собой сплошной океан. В результате соединения С2СН 2 и N2 возникли простейшие органические соединения. Затем в водах первичного океана молекулы этих соединений, объединились и укрепились, образуя сложный раствор органических веществ на третьей стадии из этой среды выделились комплексы молекул, которые и дали начало первичным живым организмам. Оро и Фесенков заметили, что своеобразными переносчиками если не самой жизни, то по крайней мере её исходных элементов могут быть кометы и метеориты. Однако, если не вступать в область близкую к фантастике, и оставаться на почве лишь достаточно твердо установленных научных фактов, то при поисках живых организмов на других небесных телах мы должны прежде всего исходить из того, что нам известно о земной жизни.

Что касается нашей солнечной системы, то различные ее планеты движутся на разных расстояниях от Солнца и получают неодинаковое количество солнечной энергии. В связи с этим. В солнечной системе может быть выделен своеобразный тепловой пояс жизни, в который входят Земля, Марс и Венера, а также Луна на первый взгляд физические условия на Луне полностью не исключает возможность существования живых организмов: на Луне отсутствует атмосферная оболочка, нет воды, температура изменяется от –1500С до +1300С, поверхность Луны подвергается постоянной бомбардировке метеоритами, космическими лучами, ультрафиолетовой радиацией Солнца и т.п.. И пока можно гадать о том, существует ли в природе высокоорганизованные формы жизни, способные развиваться при подобных условиях. Исключение могут составлять лишь микробы и бактерии, которые, как известно способны приспосабливаться к самым неблагоприятным условиям: нагревание и глубокое охлаждение; ультрафиолетовые и радиоактивные излучения: интенсивная радиация и т.д. В настоящее время ряд ученых считает, что на Луне имеются органические вещества. Они могли образоваться здесь на заре существования Луны или быть занесенными метеоритами. Высказываются предположения, что над слоем лунного грунта (10м) расположен целый мощный слой сложных органических соединений. Так же и Венера, если температура на её поверхности высока, то не смотря на наличие атмосферы, условия для жизни на этой планете малопригодны. Гораздо перспективнее в этом отношении Марс.

В наши дни астрономов прежде всего интересует вопрос о физических условиях на Марсе. Живые организмы, обитающие на небесном теле, непрерывно взаимодействуют с окружающей средой. Так, например, на поверхности Марса имеются темные пятна «моря». Они меняют свою окраску в соответствии со сменой времен года. Это явление напоминает сезонные изменения цвета зеленой растительности. Атмосфера Марса значительно разряжена, чем земная. В воздушной оболочке морей до сих пор не обнаружен свободный кислород. В связи с этим можно предположить, что марсианские растения выделяют кислород не в атмосферу а в почву, или удерживают его в корнях, или растений так мало, что они выделяют небольшое количество кислорода, чтобы его можно было обнаружить с Земли. Вода. Известно, что на Марсе нет открытых водных поверхностей. Но исследователи считают, что на поверхности планеты вода есть: об этом свидетельствовало уменьшение в весенне-летний периоды белых пятен, полярных шапок. При тех физических условиях, существующих на Марсе, вода в жидком состоянии находится там не может. Она должна немедленно испаряться и замерзать оседая в виде тонкого слоя инея. Почва слой льда или вечной мерзлоты. Жидкая вода же может существовать на значительной глубине. Было отмечено, что у марсианских растений отсутствует хлорофилл, его заменяет каратиноид, пигмент красного цвета. Особый интерес вызывают марсианские каналы. Американский астроном Ловелл считает, что это ирригационная система построенная разумными обитателями Марса. Они выглядят темными жилками неправильной формы и цепочками отдельных пятнышек. На протяжении десятилетий был высказан целый ряд гипотез:

Зоны растительности

Образования тектонического характера

Трещины в вечной мерзлоте

Результаты ударов метеоритов.

Но на основании только гипотез выводы делать преждевременно. Но бесспорно, что весьма любопытные выводы, к которым приводит теория графов: тщательный статистический анализ различных образований типа сетей, встречающихся в земных условиях, привел ученых к выводу, что искусственные сети отличаются от естественных в узлах. Искусственного происхождения преобладают узлы с четырьмя сходящимися линиями, а сеть каналов Марса обладает преимущественно узлами 4-го порядка, сеть также отличается значительным процентом этих узлов; делают выяснение природы загадочных марсианских преобразований еще более увлекательной проблемой.

Трактаты и статьи ученых чьи имена звучали в реферате:

  1. Г. Декарт. «Трактат о системе мира» 1633 г., «Рассуждение о методе» 1637 г., «Геометрия», «Диоптика», «Метеоры» 1638 г., «Начала философии» 1644 г., «Трактат о свете» 1664 г.
  2. И. Кант. «Всеобщая естественная история и теория неба» 1755 г.
  3. А. Фридман. «О кривизне пространства мира» 1922 г., «О возможности мира с постоянной отрицательной кривизной пространства» 1924 г.

Литература использованная в написании реферата:

  1. Т.А. Агекян «Звезды, галактики, Метагалактика», М. «Наука»
  2. Б.А. Воронцов-Вельяминов «Вселенная» Государственное изд-во технико-теоритической литературы.
  3. И.Д. Новиков «Эволюция Вселенной», М. 1983 г.
  4. А.И. Еремеева. «Астрологическая картина мира и ее творцы». М. «Наука» 1984 г.
  5. Б.А. Воронцов-Вельяминов. «Очерки о Вселенной», М., «Наука» 1976
  6. П.П. Паренаго «Новейшие данные о строении Вселенной», М. «Правда» 1948 г.
  7. Большая Советская Энциклопедия» . 5т., стр. 443-445.
  8. В.Н. Комаров «Увлекательная астрономия». М, «Наука», 1968 г.
  9. С.П. Левитан. «Астрономия», М., «Просвещение» 1994 г.
  10. В.В. Казютинский «Вселенная Астрономия, Философия», М., «Знание» 1972 г.

Выполнила студентка гр.ПИ-05-1: Цааева Д.Б.

Грозненский государственный нефтяной институт
имени академика М.Д. Миллионщикова

Данная работа дает описание о том, что собой представляет научная картина мира, так же дается краткое описание представлении о Вселенной (Наше представление о Вселенной, Рождение Вселенной и т.д.).

Данная работа включает 10 страниц.

Научная картина мира - целостная система представлений об общих свойствах и закономерностях действительности, построенная в результате обобщения и синтеза фундаментальных научных понятий и принципов.

Научная картина мира существенно отличается от религиозных представлений о мире, которые основаны не столько на доказанных фактах, сколько на авторитете пророков и религиозной традиции. Религиозные интерпретации концепции мироздания постоянно изменяются, чтобы приблизить их к современным научным трактовкам. Так, ещё несколько сотен лет назад христиане, буквально толкуя Библию, считали, что небо - твёрдое («твердь»), а мусульмане, согласно Корану, полагали, что Солнце заходит в «мутный колодец». Догмы разных религий, как правило, противоречат друг другу, и эти противоречия весьма трудно преодолеть (в отличие от научных противоречий, которые преодолеваются экспериментальным путём).

Как-то один известный ученый (говорят, это был Бертран Рассел) читал публичную лекцию об астрономии. Он рассказывал, как Земля обращается вокруг Солнца, а Солнце, в свою очередь, обращается вокруг центра огромного скопления звезд, которое называют нашей Галактикой. Когда лекция подошла к концу, из последних рядов зала поднялась маленькая пожилая леди и сказала: "Все, что вы нам говорили, - чепуха. На самом деле наш мир - это плоская тарелка, которая стоит па спине гигантской черепахи". Снисходительно улыбнувшись, ученый спросил: "А на чем держится черепаха?" - "Вы очень умны, молодой человек, - ответила пожилая леди. - Черепаха - на другой черепахе, та - тоже на черепахе, и так все ниже и ниже".

Такое представление о Вселенной как о бесконечной башне из черепах большинству из нас покажется смешным, но почему мы думаем, что сами знаем лучше? Что нам известно о Вселенной, и как мы это узнали? Откуда взялась Вселенная, и что с ней станется? Было ли у Вселенной начало, а если было, то что происходило до начала? Какова сущность времени? Кончится ли оно когда-нибудь? Достижения физики последних лет, которыми мы частично обязаны фантастической новой технике, позволяют наконец получить ответы хотя бы на отдельные из таких давно поставленных вопросов. Пройдет время, и эти ответы, может быть, станут столь же очевидными, как то, что Земля вращается вокруг Солнца, а может быть, столь же нелепыми, как башня из черепах. Только время (чем бы оно ни было) решит это.

В соответствии с данными космологии, Вселенная возникла в результате взрывного процесса, получившего название Большой взрыв, произошедшего около 14 млрд. лет назад. Теория Большого взрыва хорошо согласуется с наблюдаемыми фактами (например, расширением Вселенной и преобладанием водорода) и позволила сделать верные предсказания, в частности, о существовании и параметрах реликтового излучения.

В момент Большого взрыва Вселенная занимала микроскопические, квантовые размеры.

В соответствии с инфляционной моделью, в начальной стадии своей эволюции Вселенная пережила период ускоренного расширения (инфляции). Предполагается, что в этот момент Вселенная была "пустой и холодной" (существовало только высокоэнергетическое скалярное поле), а затем заполнилась горячим веществом, продолжавшим расширяться.

Переход энергии в массу не противоречит физическим законам, например, рождение пары частица-античастица из вакуума можно наблюдать и сейчас в некоторых научных экспериментах.

Одно из важнейших свойств Вселенной - она расширяется, причём ускоренно. Чем дальше расположен объект от нашей галактики, тем быстрее он от нас удаляется (но это не означает, что мы находимся в центре мира: то же самое справедливо для любой точки пространства).

Видимое вещество во Вселенной структурировано в звёздные скопления - галактики. Галактики образуют группы, которые, в свою очередь, входят в сверхскопления галактик. Сверхскопления сосредоточены в основном внутри плоских слоёв, между которыми находится пространство, практически свободное от галактик. Таким образом, в очень больших масштабах Вселенная имеет ячеистую структуру, напоминающую «ноздреватую» структуру хлеба. Однако на ещё больших расстояниях (свыше 1 млрд. световых лет) вещество во Вселенной распределено однородно.

Если в ясную безлунную ночь посмотреть на небо, то, скорее всего, самыми яркими объектами, которые вы увидите, будут планеты Венера, Марс, Юпитер и Сатурн. Кроме того, вы увидите огромное количество звезд, похожих на наше Солнце, но находящихся гораздо дальше от нас. При обращении Земли вокруг Солнца некоторые из этих "неподвижных" звезд чуть-чуть меняют свое положение относительно друг друга, т. е. на самом деле они вовсе не неподвижны!

Дело в том, что они несколько ближе к нам, чем другие. Поскольку же Земля вращается вокруг Солнца, близкие звезды видны все время в разных точках фона более удаленных звезд. Благодаря этому можно непосредственно измерить расстояние от нас до этих звезд: чем они ближе, тем сильнее заметно их перемещение.

Интересно, каким было общее состояние научной мысли до начала XX в.: никому и в голову не пришло, что Вселенная может расширяться или сжиматься. Все считали, что Вселенная либо существовала всегда в неизменном состоянии, либо была сотворена в какой-то момент времени в прошлом примерно такой, какова она сейчас. Отчасти это, может быть, объясняется склонностью людей верить в вечные истины, а также особой притягательностью той мысли, что, пусть сами они состарятся и умрут, Вселенная останется вечной и неизменной.

Горелов А.А. Концепции современного естествознания. – М.: Центр, 2002. – 208с.

Канке В.А. Концепции современного естествознания. Учебник для вузов. Изд. 2-е, испр. – М.: Логос, 2003. – 368с.

Карпенков С.Х. Концепции современного естествознания. ГУП «Издательство», «Высшая школа», 2001.

Работа добавлена на сайт сайт: 2013-11-26

Узнай цену своей работы

Всероссийская государственная налоговая академия при Минфине РФ

РЕФЕРАТ

По Концепции современного естествознания

на тему:
Происхождение Вселенной

Выполнил: студент гр. БЗ-101

Ларина А. Б.
Проверил: преподаватель
________________________

Москва 2006


Содержание:

Введение

стр. 3
Образование Вселенной
стр. 5
Строение Галактики. Виды Галактик
стр. 7
Земля – планета Солнечной системы
стр. 9
Строение Земли
стр. 13
Заключение.
стр. 17
Список использованной литературы
стр. 18

Введение

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой , или нашей Вселенной. Размеры метагалактики очень велики: радиус космологического горизонта составляет 15-20 млрд. световых лет.
Космология – один из тех разделов естествознания, которые всегда находятся на стыке наук. Строение и эволюция Вселенной изучаются космологией. Космология использует достижения и методы физики, математики, философии. Предмет космологии – весь окружающий нас мегамир, вся «большая Вселенная», и задача состоит в описании наиболее общих свойств, строения и эволюции вселенной.
Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила уникальные явления: расширение Метагалактики, космическую распространенность химических элементов, реликтовое излучение, свидетельствующие о том, что Вселенная непрерывно развивается.
С эволюцией структуры Вселенной связано возникновение скоплений галактик, обособление и формирование звезд и галактик, образование планет и их спутников. Сама Вселенная возникла примерно 20 млрд. лет назад из некоего плотного и горячего протовещества. Существует точка зрения, что с самого начала протовещество с гигантской скоростью начало расширятся. На начальной стадии это плотное вещество разлеталось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновении частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В этих комплексах, в свою очередь возникали более плотные участки – там впоследствии и образовались звезды и даже целые галактики.
В результате гравитационной нестабильности в разных зонах образовавшихся галактик могут сформироваться плотные «протозвездные образования» с массами, близкими к массе Солнца. Начавшийся процесс сжатия будет ускоряться под влиянием собственного поля тяготения. Процесс этот сопровождает свободное падение частиц облака к его центру – происходит гравитационное сжатие. В центре облака образуется уплотнение, состоящее из молекулярного водорода и гелия. Возрастание плотности и температуры в центре приводит к распаду молекул на атомы, ионизации атомов и образованию плотного ядра протозвезды.
Существует гипотеза о цикличности состояния Вселенной. Когда-то возникнув из сверхплотного сгустка материи, Вселенная, возможно, уже в первом цикле породила внутри себя миллиарды звездных систем и планет. Н затем Вселенная начинает стремиться к тому состоянию, с которого начиналась история цикла. В конце концов вещество Вселенной возвращается в первоначальное сверхплотное состояние, уничтожив всю жизнь, попавшуюся на пути. И так повторяется каждый раз, в каждом цикле на протяжении вечности.
К началу 30-х годов ХХ в. сложилось мнение, что главные составляющие Вселенной - галактики, каждая из которых в среднем состоит из 100 млрд. звезд. Солнце вместе с планетной системой входит в нашу Галактику, основную массу звезд которой мы наблюдаем в форме Млечного Пути. Кроме звезд и планет, Галактика содержит значительное количество разреженных газов и космической пыли.

Образование Вселенной.
Конечна или бесконечна Вселенная, какая у нее геометрия – эти и многие другие вопросы связаны с эволюцией Вселенной, в частности с наблюдаемым расширением. Если скорость «разлета» галактик увеличится на 75 км/с на каждый миллион парсек, то экстраполяция к прошлому приводит к удивительному результату: примерно 10-20 млрд. лет назад вся Вселенная была сосредоточена в очень маленькой области. Многие ученые считают, что в то время плотность Вселенной была такая же, как у атомного ядра: Вселенная представляла собой одну гигантскую «ядерную каплю ». По каким-то причинам эта «капля» пришла в неустойчивое состояние и взорвалась. Последствия этого взрыва мы наблюдаем сейчас как системы галактик.
При данной оценке времени образования Вселенной предполагалось, что наблюдаемая нами сейчас картина разлета галактик происходила с одинаковой скоростью и в сколь угодно далеком прошлом. А именно на таком предположении и основана гипотеза первичной Вселенной – гигантской «ядерной капли», пришедшей в состояние неустойчивости.
В настоящее время космологи предполагают, что Вселенная не расширялась «от точки до точки», а как бы пульсирует между конечными пределами плотности. Это означает, что в прошлом скорость разлета галактик была меньше, чем сейчас, а еще раньше система галактик сжималась, т. е. Галактики приближались друг к другу с тем большей скоростью, чем большее расстояние их разделяло. Современная космология располагает рядом аргументов в пользу картины «пульсирующей Вселенной». Такие аргументы носят чисто математический характер; главнейший из них – необходимость учета реально существующей неоднородности Вселенной. Решить вопрос, какая из двух гипотез справедлива, мы сейчас не можем. Потребуется огромная работа, чтобы решить эту одну из важнейших проблем космологии.
Современная космология возникла в начале ХХ в. после создания релятивистской теории тяготения. Первая релятивистская модель, основанная на новой теории тяготения и претендующая на описание всей Вселенной, была построена А. Эйнштейном в 1917 г. Однако она описывала статическую Вселенную и, как показали астрофизические наблюдения, оказалось неверной.
В 1922-1924 гг. советским математиком А.А. Фридманом были предложены общие уравнения для описания всей Вселенной, меняющейся с течением времени. Звездные системы не могут находиться в среднем на неизменных расстояниях друг от друга. Они должны либо удаляться, либо сближаться. Такой результат – неизбежное следствие наличия сил тяготения, которые главенствуют в космических масштабах. Вывод Фридмана означал, что Вселенная должна либо расширятся, либо сжиматься. Отсюда следовал пересмотр общих представлений о Вселенной. В 1929 г. американский астроном Э. Хаббл (1889-1953) с помощью астрофизических наблюдений открыл расширение Вселенной , подтверждающее правильность выводов Фридмана.
Модели Фридмана служат основой всего последующего развития космологии. Они описывают механическую картину движения огромных масс Вселенной и ее глобальную структуру. Если прежние космологические построения призваны описывать наблюдаемую теперь структуру Вселенной с неизменным в среднем движением миров в ней, то модели Фридмана по своей сути были эволюционными, связывали сегодняшнее состояние Вселенной с ее предыдущей историей. Из этой теории следует, что в далеком прошлом Вселенная была совсем не похожа на наблюдаемую нами сегодня. Тогда не было ни отдельных небесных тел, ни их систем, все вещество было почти однородным, очень плотным, быстро расширялось. Только значительно позже из такого вещества возникли галактики и их скопления.
Начиная с конца 40-х годов нашего века, все большее внимание в космологии привлекает физика процессов на разных этапах космологического расширения. В выдвинутой в это время Г.А. Гамовым теории горячей Вселенной рассматривались ядерные реакции, протекавшие в самом начале расширения Вселенной в очень плотном веществе. При этом предполагалось, что температура вещества была велика и падала с расширением Вселенной. Теория предсказывала, что вещество, из которого формировались первые звезды и галактики, должно состоять в основном из водорода (75%) и гелия (25%), примесь других химических элементов незначительна. Другой вывод теории – в сегодняшней Вселенной должно существовать слабое электромагнитное излучение, оставшееся от эпохи большой плотности и температуры вещества. Такое излучение в ходе расширения Вселенной было названо реликтовым излучением .
Тогда же появились принципиально новые наблюдательные возможности в космологии: возникла радиоастрономия, расширились возможности оптической астрономии. Сейчас Вселенная вплоть до расстояний в несколько парсек исследуется разными методами.
На современном этапе в развитии космологии интенсивно исследуется проблема начала космологического расширения, когда плотности материи и энергии частиц были огромными. Руководящими идеями являются новые открытия в физике взаимодействия элементарных частиц при очень больших энергиях. При этом рассматривается глобальная эволюция Вселенной. Сегодня эволюция Вселенной всесторонне обосновывается многочисленными астрофизическими наблюдениями, которые опираются на теоретический базис всей физики.
Строение Галактики. Виды Галактик.
Окружающие Солнце звезды и само Солнце составляют малую часть гигантского скопления звезд и туманностей, которую называют Галактикой. Галактика имеет довольно сложную структуру. Существенная часть звезд в Галактике находится в гигантском диске диаметром примерно 100 тыс. и толщиной около 1500 световых лет. В этом диске насчитывается более сотни миллиардов звезд самых различных видов. Наше Солнце – одна из таких звезд, находящихся на периферии Галактики вблизи ее экваториальной плоскости.
Звезды и туманности в пределах Галактики движутся довольно сложным образом: они участвуют во вращении Галактики вокруг оси, перпендикулярной ее экваториальной плоскости. Различные участки Галактики имеют различные периоды вращения.
Звезды удалены друг от друга на огромные расстояния и практически изолированы друг от друга. Они практически не сталкиваются, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами Галактики.
Астрономы последние несколько десятилетий изучают другие звездные системы, схожие с нашей. Это очень важные исследования в астрономии. За это время внегалактическая астрономия добилась поразительных успехов.
Число звезд в Галактике порядка триллиона. Самые многочисленные из них – карлики с массами, примерно в 10 раз меньшими массы Солнца. В состав Галактики входят двойные и кратные звезды, а также группы звезд, связанных силами тяготения и движущиеся в пространстве как единое целое, - звездные скопления . Существуют рассеянные звездные скопления, например Плеяды в созвездии Тельца. Такие скопления не имеют правильной формы; в настоящее время их известно более тысячи.
Наблюдаются шаровые звездные скопления. Если в рассеянных скоплениях содержатся сотни или тысячи звезд, то в шаровых их сотни тысяч. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет.
В различных созвездиях обнаруживаются туманные пятна, которые состоят в основном из газа и пыли, - это туманности . Они бывают неправильной, клочковатой формы – диффузные, и правильной формы, напоминающие по виду планеты, - планетарные.
Существуют еще светлые диффузные туманности, например Крабовидная туманность, названная за необычную сетку из ажурных газовых волокон. Это источник не только оптического излучения, но и радиоизлучения, рентгеновских и гамма-квантов. В центре Крабовидной туманности находится источник импульсного электромагнитного излучения – пульсар , у которого впервые были обнаружены наряду с пульсациями радиоизлучения оптические пульсации блеска и пульсации рентгеновского излучения. Пульсар, обладающий мощным переменным магнитным полем, ускоряет электроны и вызывает свечение туманности в различных участках спектра электромагнитных волн.
Пространство в Галактике заполнено везде – разреженным межзвездным газом и межзвездной пылью. В межзвездном пространстве существуют и различные поля – гравитационное и магнитное. Пронизывают межзвездное пространство космические лучи, представляющие собой потоки электрически заряженных частиц, которые при движении в магнитных полях разогнались до скоростей, близких к скорости света, и приобрели огромную энергию.
Галактику можно представить в виде диска с ядром в центре и огромными спиральными ветвями, содержащими в основном наиболее горячие и яркие звезды и массивные газовые облака. Диск со спиральными ветвями образует основу плоской подсистемы Галактики. А объекты, концентрирующиеся к ядру Галактики и лишь частично проникающие в диск, относятся к сферической подсистеме. Сама Галактика вращается вокруг своей центральной области. В центре Галактики сосредоточена лишь небольшая часть звезд. Солнце находится на таком расстоянии от центра Галактики, где линейная скорость звезд максимальна. Солнце и ближайшие к нему звезды движутся вокруг центра Галактики со скоростью 250 км/с, совершая полный оборот примерно за 290 млн. лет.
По внешнему виду галактики условно разделяются на три типа: эллиптические, спиральные и неправильные.

Пространственная форма эллиптических галактик – эллипсоиды с разной степенью сжатия. Среди них встречаются гигантские и карликовые. Почти четверть всех изученных галактик относится к эллиптическим. Это наиболее простые по структуре галактики – распределение звезд в них равномерно убывает от центра, пыли и газа почти нет. В них самые яркие звезды – красные гиганты.

Спиральные галактики – самый многочисленный вид. К нему относится наша Галактика и Туманность Андромеды, удаленная от нас примерно на 2,5 млн. световых лет.
Неправильные галактики не имеют центральных ядер, в их строении пока не обнаружены закономерности. Это Большое и Малое Магеллановы облака, являющиеся спутниками нашей Галактики. Они находятся от нас на расстоянии в полтора раза большем диаметра Галактики. Магеллановы облака значительно меньше нашей Галактики по массе и размерам.
Существуют и взаимодействующие галактики . Они обычно находятся на небольших расстояниях друг от друга, связаны «мостами» из светящейся материи, иногда как бы пронизывают одна другую.
Некоторые галактики обладают исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики .
В 1963 г. начались открытия звездоподобных источников радиоизлучения – квазаров . Сейчас их открыто более тысячи.
Земля – планета Солнечной системы.
Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни кометы бесчисленное множество метеоритных тел, движущихся как роями, так и виде отдельных частиц. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела – Солнца.
Солнечная система – это очень сложное природное образование, сочетающее разнообразие составляющих ее элементов с высочайшей устойчивостью системы как целого.
По образному высказыванию К. Э. Циолковского, Земля – это колыбель человечества.
В определенном плане Земля выделена самой природой: в Солнечной системе только на этой планете существуют развитые формы жизни, только на ней локальное упорядочение вещества достигло необычайно высокой ступени, продолжая общую линию развития материи. Именно на Земле пройден сложнейший этап самоорганизации, знаменующий глубокий качественный скачок к высшим формам упорядоченности.
Отличие планет земной группы от планет-гигантов очевидны. Но и среди ближайших соседей Земли нет двух одинаковых планет: все они различаются размерами, физико-химическими параметрами, строением недр и поверхностей, атмосферами и другими характеристиками. Основными различия определены начальными условиями формирования планет – химическим составом, плотностью вещества в тех частях протопланетного облака, где эти планеты формировались, расстоянием от Солнца, резонансными взаимодействиями с другими планетными телами и Солнцем.

Прямые исследования других ближних планет только начаты. Тем не менее, имеющиеся сведения уже позволяют проводить сравнительное изучение внешних оболочек Земли и других планет Солнечной системы. На этой основе возникло новое научное направление, названное сравнительной планетологией.
Земля – самая большая планета в своей группе. Но даже такие размеры и масса оказываются минимальными, при которых планета способна удерживать свою газовую атмосферу. Земля интенсивно теряет водород и некоторые другие легкие газы, что подтверждают наблюдения за так называемым шлейфом Земли. Венера почти равна по размерам и массе Земли, но она ближе к Солнцу и получает от него больше тепла. Поэтому она давно потеряла весь свободный водород. У остальных двух планет этой группы атмосфера либо отсутствует (Меркурий), либо сохранилась в очень разряженном состоянии (Марс).
Наиболее близкие к Солнцу планеты – Меркурий и Венера – очень медленно вращаются вокруг оси, с периодом в десятки-сотни земных суток. Медленное вращение этих планет, связано с их резонансными взаимодействиями с Солнцем и друг с другом. Земля и Марс вращаются почти с одинаковыми периодами около 24 ч. Земля и Венера также образуют резонансную структуру. В этой группе планет только Венера имеет обратное вращение (противоположное направлению вращения Солнца вокруг своей оси), она как бы опрокинута «вверх ногами» на своей орбите. Наконец, только Земля в своей группе имеет сильное собственное магнитное поле, более чем на два порядка величины превосходящее значения магнитных полей у других планет.
Ни одна из планет земной группы не имеет развитой системы спутников, что характерно для планет группы Юпитера. Планетоподобный спутник Земли – Луна – близок по размерам к планете Меркурий. Два спутника Марса – Фобос и Деймос – имеют неправильную форму, напоминая небольшие астероиды. До сих пор, как о происхождении Луны, так и о происхождении спутников Марса нет ясного представления.
Три из четырех планет земной группы обладают заметной атмосферой. Атмосфера каждой планеты несет отпечаток особенностей ее развития. Атмосфера Земли кардинально отличается от атмосфер других планет: в ней низкое содержание углекислого газа, высоко содержание молекулярного кислорода и относительно велико содержание паров воды. Две причины создают выделенность атмосферы Земли: вода океанов и морей хорошо поглощает углекислый газ, а биосфера насыщает атмосферу молекулярным кислородом, образующимся в процессе растительного фотосинтеза. Расчеты показывают, что если освободить всю поглощенную и связанную в океанах углекислоту, убрав одновременно из атмосферы весь накопленный в результате жизнедеятельности растений кислород, то состав земной атмосферы в своих основных чертах стал бы подобен составу атмосфер Венеры и Марса.
Относительно малые размеры Марса не позволили ему удержать плотную атмосферу. Возможно, что раньше, когда шли процессы активного выделения газов из недр планеты, атмосфера Марса была намного плотнее, чем теперь. Условия у его поверхности были более мягкие, без столь резких перепадов дневных и ночных температур. В марсианской атмосфере очень мало паров воды, соответственно отсутствует облачность. Но движения разреженной атмосферы временами достигают такой силы, что в общепланетном масштабе возникают мощные пылевые бури, поднимающие массы песка на высоту многих километров. Тогда поверхность планеты надолго скрывается за непроницаемой завесой.
В атмосфере Земли насыщенные водяные пары создают облачный слой, охватывающий значительную часть планеты. Облака Земли входят важнейшим элементом в системе гидросфера-атмосфера-суша.
Рельефы поверхности Земли и двух ближайших к ней планет существенно различны, что объясняется, прежде всего, различиями вулканических и геологических процессов на каждой из них. Считают, что тектоническая активность может служить мерилом уровня жизнеспособности планеты в целом. Сокращение, а тем более прекращение такой деятельности рассматривается как признак умирания планеты, завершения цикла ее эволюционного развития. Ведь суть такого развития – активный обмен веществом и энергией между недрами и поверхностью планеты, в ходе которого формируются и поддерживаются атмосфера, гидросфера и господствующие типы рельефа поверхности. С прекращением тектонической деятельности планета превращается в мертвое небесное тело, на котором преобладают процессы деградации.
На Земле тектонические процессы активно протекают и в наши дни, ее геологическая история далека от завершения. Палеонтологи утверждают, что в эпоху ранней молодости Земли ее тектоническая активность была еще выше. Современный рельеф планеты сложился и продолжает видоизменяться под влиянием совместного действия на ее поверхности тектонических, гидросферных, атмосферных и биологических процессов. На других планетах такое сочетание факторов отсутствует.
Рельеф земной поверхности в целом характеризуется глобальной асимметрией двух полушарий (северного и южного): одно из них представляет собой гигантское пространство, заполненное водой. Это океаны, занимающие более 70 % всей поверхности. В другом полушарии сосредоточены поднятия коры, образующие континенты. Океаническая и континентальная разновидности коры различаются и по возрасту, и по химико-геологическому составу. Рельеф океанического дна отличен от континентального рельефа.
Систематические исследования морского и океанического дна стали возможны лишь в самое последнее время. Они уже привели к новому пониманию глобального характера тектонических процессов, происходящих на Земле. Средняя глубина мирового океана близка к 4 км, отдельные впадины достигают в три раза большей глубины, а отдельные конусы значительно возвышаются над поверхностью воды. Главная достопримечательность океанического рельефа – глобальная система срединных хребтов, тянущаяся на десятки тысяч километров. Вдоль их центральных частей протянулись разломы, так называемые рифтовые зоны, через которые из мантии на поверхность выходят свежие массы вещества. Они раздвигают океаническую кору, формируя ее в процессе непрерывного обновления. Возраст океанической коры не превышает 150 млн. лет. Другая характерная особенность процесса – существование зон субдукции, где океаническая кора погружается под одну из островных дуг (например, под Курильскую, Марианскую и др.) или под край континента. Зоны субдукции характеризуются повышенной сейсмической и вулканической деятельностью.
Рельеф континентальной части планеты более разнообразный: равнины, возвышенности, плато, горные хребты и огромные горные системы. Отдельные участки суши лежат ниже уровня океана (например, район Мертвого моря), отдельные горные вершины подняты над его уровнем на 8-9 км. Согласно современным воззрениям, континентальная кора вместе с подстилающими слоями мантии образует систему литосферных континентальных плит. В отличие от литосферы океанов континентальные плиты имеют очень древнее происхождение, их возраст оценивается в 2,5-3,8 млрд. лет. Толщина центральной части некоторых континентальных плит достигает 250 км.
На границах литосферных плит, называемых геосинклиналиями, происходит либо сжатие, либо растяжение коры, что зависит от направления местного горизонтального смещения плит.
Предварительные итоги сравнительного сопоставления Земли, Венеры и Марса можно сформулировать так:
· ни на Венере, ни на Марсе нет даже простейших форм жизни. Остается открытым вопрос о возможном существовании каких-то форм жизни на Марсе в отдаленном прошлом.
· только на Земле существует мощная гидросфера, сформировавшаяся одновременно с планетой. На Марсе в прошлом предположительно существовала разновидность гидросферы, на Венере ее скорее всего никогда не было.
· в современную эпоху только Земля остается «живой» планетой, геологическое развитие которой продолжается и проявляет себя, в частности, в активной тектонической деятельности. Марс и Венера в прошлом прошли через период бурной сейсмической и вулканической активности, но на Марсе она прекратилась несколько сот миллионов лет, а на Венере – более миллиарда лет назад. Обе эти планеты, скорее всего, завершают или уже завершили цикл своего эволюционного развития.
· Многочисленные признаки говорят о том, что процессы в недрах земли протекали и продолжают протекать иначе, чем у Венеры и Марса. На это указывают такие факторы, как существование континентальной коры с гранитными породами, явно выраженные литосферные плиты с их перемещениями под действием глубинных процессов, существование у Земли относительно мощного магнитного поля.
Успехи науки и техники сделали доступным прямое изучение планет Солнечной системы, открыв принципиально новые возможности для сравнительного познания нашей собственной планеты. Тем самым открыта новая страница в постижении окружающего нас мира, но на ней пока записаны лишь первые строки. Все еще остается нерешенным вопрос: что выделило Землю среди семейства планет одного с ней типа так, что она смогла стать обителью жизни? Поиск ответа на этот вопрос может проходить только на путях движения от частного к общему, от планеты Земля с существующей на ней жизнью к осознанию космической природы жизни – этого важнейшего звена самоорганизации вещества в процессе развития материи.
Строение Земли.
Многочисленные науки о Земле и ее составных частях в недавнем прошлом развивались фактически независимо друг от друга. Теперь появилась осознанная необходимость рассматривать планету как единую систему, как цельное естественное тело, которому присущи свои внутренние законы развития. Быстрому внедрению такого представления в сознание людей способствовало выдающееся событие нашего времени – выход человека в ближний космос. Это позволило впервые взглянуть на Землю извне, увидеть ее сразу всю целиком, наглядно убедиться в общепланетных масштабах большинства атмосферных и поверхностных явлений, в тесной взаимосвязи всех внешних земных сфер – суши, воды, воздуха и биосферы. Картина оказалась впечатляющей.
Совокупность складывающихся на основе солидной материальной базы, в виде накопленных фактов, представлений требует рассматривать нашу планету не только как единое естественное тело, но и как самоорганизующуюся систему, развитие которой инициируется противоборством двух фундаментальных природных тенденций – стремлением к разрушению упорядоченности и стремлением к образованию все более упорядоченных систем.
Большинство частных наук о Земле составляют науки о ее поверхности, включая атмосферу. Кольская сверхглубокая скважина - на сегодняшний день самая глубокая на Земле –12-15 км. С глубин примерно до 200 км разными путями выносится наружу вещество недр и оказывается доступным для исследователей. Сведения о более глубоких слоях добываются косвенными методами – основанными на регистрации характера прохождения сейсмических волн разных типов через земные недра. Другая группа методов основывается на допущениях о структуре и составе протопланетного облака и на гипотетических предположениях о процессе формирования в нем планет. Исходя их этого, вещество метеоритов рассматривают как реликтовые остатки прошлого, отражающие состав и структуру вещества протопланетного облака в зоне формирования планет земной группы. На этой основе делаются выводы о совпадении вещества метеоритов определенного типа с веществом тех или других слоев земных глубин. Вещество метеоритов время от времени выпадает из космоса на Землю, и оно доступно прямому изучению. Тем не менее, выводы о составе земных недр, опирающиеся на данные о химико-минералогическом составе выпадающих на Землю метеоритов, не считаются надежными.
Зондирование недр Земли сейсмическими волнами позволило установить их оболочечное строение и дифференцированность химического состава. Различают три главные концентрически расположенные области: ядро, мантия и кора . Ядро и мантия в свою очередь подразделяются на дополнительные оболочки, различающиеся физико-химическими свойствами. Ядро занимает центральную область земного геоида и разделяется на две части. Внутреннее ядро находится в твердом состоянии, оно окружено внешним ядром, пребывающем в жидкой фазе. Между внутренним и внешним ядрами нет четкой границы, их разделяет переходная зона. О химическом составе ядра судят по плотности вещества в нем и на основании предположения, что состав ядра идентичен составу железных метеоритов. Поэтому внутреннее ядро полагают состоящим из железа (80%) и никеля (20%). Соответствующий сплав при давлении земных недр имеет температуру плавления порядка 4 500 0 С. Согласно тем же представлениям, внешнее ядро содержит железо (52%) и эвтектику (жидкая смесь твердых веществ), образуемую железом и серой (48%). Не исключается небольшая примесь никеля. Температура плавления такой смеси оценивается примерно 3200 0 С. Чтобы внутреннее ядро оставалось твердым, а внешнее жидким, температура в центре земли не должна превышать 4 500 0 С, но и не быть ниже 3200 0 С. Имеются и другие оценки температуры в центре Земли, несколько расходящиеся с приведенными и носящие предположительный характер.
С жидким состоянием внешнего ядра связывают представления о природе земного магнетизма. Магнитное поле Земли изменчиво, из года в год меняется положение магнитных полюсов. Палеомагнитные исследования характера магнитного поля планеты в далеком прошлом, основанные на измерениях остаточной намагниченности земных пород, показали, что, например, на протяжении последних 80 млн. лет имело место не только изменение напряженности поля, но и многократное систематическое перемагничивание, в результате которого северный и южный магнитные полюса менялись местами. В периоды смены полярности наступали моменты полного исчезновения магнитного поля. Следовательно, земной магнетизм не может создаваться постоянным магнитом за счет стационарной намагниченности ядра или какой-то его части. Предполагают, что магнитное поле создается процессом, названным эффектом динамо-машины с самовозбуждением. Роль ротора (подвижного элемента) динамо может играть масса жидкого ядра, перемещающаяся при вращении Земли вокруг своей оси, а система возбуждения образуется токами, создающими замкнутые петли внутри сферы ядра.
Плотность и химический состав мантии, по данным сейсмических волн, резко отличаются от соответствующих характеристик ядра. Мантию образуют различные силикаты (соединения, в основе которых кремний). Предполагается, что состав нижней мантии подобен составу каменных метеоритов, хондритов.
Верхняя мантия непосредственно связана с самым внешним слоем – корой. Она считается кухней, где приготовляются многие слагающие кору породы и их полуфабрикаты. Полагают, что верхняя мантия состоит из оливина (60%), пироксена (30%) и полевого шпата (10%). В определенных зонах этого слоя происходит частичное плавление минералов, и образуются щелочные базальты – основа океанической коры. Через рифтовые разломы среднеокеанических хребтов базальты поступают из мантии на поверхность Земли. Но этим не ограничивается взаимодействие коры и мантии. Хрупкая кора, обладающая высокой степенью жесткости, вместе с частью подстилающей мантии образует особый слой толщиной порядка 100 км, называемый литосферой. Этот слой опирается на верхнюю мантию, плотность которой заметно выше. Верхняя мантия обладает особенностью, определяющей характер ее взаимодействия с литосферой: по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный. Литосфера создает постоянную нагрузку на верхнюю мантию и под ее давлением подстилающий слой, называемый астеносферой, проявляет пластичные свойства, литосфера «плавает» в нем. Такой эффект называют изостазией.
Астеносфера в свою очередь опирается на более глубокие слои мантии, плотность и вязкость которых возрастают с глубиной. Причина этого – сдавливание пород, вызывающее структурную перестройку некоторых химических соединений. Силикаты, слагаемые такой модификации кремния, имеют очень компактную структуру, они преобладают в нижней мантии. В целом же литосфера, астеносфера и остальная мантия могут рассматриваться в качестве трехслойной системы, каждая из частей которой подвижна относительно других компонентов. Особой подвижностью отличается легкая литосфера, опирающаяся на не слишком вязкую и пластичную астеносферу.
Земная кора, образующая верхнюю часть литосферы, в основном слагается из восьми химических элементов: кислород, кремний, алюминий, железо, кальций, магний, натрий и калий. Половина всей массы коры приходится на кислород, который содержится в ней в связанных состояниях, в основном в виде окислов металлов. Геологические особенности коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы – этих трех самых внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется, что иллюстрируют такие данные. Благодаря выветриванию и сносу вещество континентальной поверхности полностью обновляется за 80-100 млн. лет. Убыль вещества континентов восполняется вековыми поднятиями их коры. Жизнедеятельность бактерий, растений и животных сопровождается полной сменой содержащейся в атмосфере углекислоты за 6-7 лет, кислорода – за 4000 лет. Вся масса воды гидросферы (1,4*10 18 т) целиком обновляется за 10 млн. лет. Еще более фундаментальный круговорот вещества поверхности планеты протекает в процессах, связывающих все внутренние оболочки в единую систему.
Существуют стационарные вертикальные потоки, называемые мантийными струями, они поднимаются из нижней мантии в верхнюю и доставляют туда более горячее вещество. К явлениям той же природы относят внутри плитовые «горячие поля», с которым, в частности, связывают наиболее крупные аномалии в форме земного геоида. В таких местах наблюдаются поднятия поверхности океана на 50-70 м от строгой линии геоида. Так что образ жизни земных недр чрезвычайно сложен. Отклонения от мобилистских положений не подрывают идею тектонических плит и горизонтальных их движений. Но не исключено, что в недалеком будущем появится более общая теория планеты, учитывающая горизонтальные движения плит и незамкнутые вертикальные переносы горячего вещества в мантии.
Самые верхние оболочки Земли – гидросфера и атмосфера – заметно отличаются от других оболочек, образующих твердое тело планеты. По массе это совсем незначительная часть земного шара, не более 0,025% всей его массы. Но значение этих оболочек в жизни планеты огромно. Гидросфера и атмосфера возникли на ранней стадии формирования планеты, а может быть, одновременно с ее формированием. Нет сомнений, что океан и атмосфера существовали 3,8 млрд. лет назад.
Образование Земли шло в русле единого процесса, вызвавшего химическую дифференциацию недр и возникновение предшественников современных гидросферы и атмосферы. Вначале из зерен тяжелых нелетучих веществ оформилось протоядро Земли, затем оно очень быстро присоединило вещество, ставшее впоследствии мантией. А когда Земля достигла примерно размеров Марса, начался период ее бомбардировки планетезималиями. Удары сопровождались сильным локальным разогревом и плавлением земных пород и планетезималий. При этом выделялись газы и пары воды, содержавшиеся в породах. А так как средняя температура поверхности планеты оставалась низкой, пары воды конденсировались, образуя растущую гидросферу. В этих столкновениях Земля теряла водород и гелий, но сохраняла более тяжелые газы. Содержание изотопов инертных газов в современной атмосфере позволяет судить об источнике, их породившем. Это изотопный состав согласуется с гипотезой об ударном происхождении газов и воды, но противоречит гипотезе о процессе постепенной дегазации земных недр как источнике образования гидросферы и атмосферы. Океан и атмосфера, безусловно, существовали не только на протяжении всей истории Земли как сформировавшейся планеты, но и в течение основной фазы аккреции, когда протоземля имела размеры Марса.
Идея ударной дегазации, рассматриваемой как основной механизм образования гидросферы и атмосферы, получает все большее признание. Лабораторными экспериментами подтверждалась способность ударных процессов выделять из земных пород заметные количества газов, в том числе и молекулярного кислорода. А это означает, что некоторое количество кислорода присутствовало в атмосфере Земли еще до того, как возникла на ней биосфера. Идеи абиогенного происхождения некоторой части атмосферного кислорода выдвигались и другими учеными.

Заключение.

Обе внешние оболочки - гидросфера и атмосфера – плотно взаимодействуют друг с другом и с остальными оболочками Земли, особенно с литосферой. На них оказывают прямое воздействие Солнце и Космос. Каждая из этих оболочек представляет собой открытую систему, обладающую определенной автономией и своими внутренними законами развития. Все, кто изучает воздушный или водный океаны, убеждены, что объекты исследования обнаруживают удивительную тонкость организации, способность к само регуляции. Но при этом ни одна из земных систем не выпадает из общего ансамбля, и их совместное существование демонстрирует не просто сумму частей, а новое качество.

Среди сообщества оболочек Земли особое место занимает биосфера. Она захватывает верхний слой литосферы, почти всю гидросферу и нижние слои атмосферы. Термин «биосфера» ввел в науку в 1875 г. австрийский геолог Э. Зюсс (1831-1914). Под биосферой понималась совокупность заселяющей поверхность планеты живой материи вместе со средой обитания. Новый смысл этому понятию придал В.И. Вернадский, рассматривавший биосферу как системное образование, как геологическую оболочку Земли. Значимость этой системы выходит за пределы чисто земного мира, она представляет собой звено космического масштаба.


Список использованной литературы:
1. Карпенков С.Х. Концепции современного естествознания: Учебник для вузов. – М.: Культура и спорт, ЮНИТИ, 1997.

Вселенная - совокупность галактик, их скоплений, звезд, планет, планетоидов, комет, астероидов, космической пыли и газов, всего известного человеку вещества (видимого и темного), энергии (включая темную) и излучений. В этом блоге чаще всего о Вселенной я буду говорить как предмете астрономического и космологического изучения. В визуальном смысле во Вселенной больше темных, чем освещенных участков. По одной версии видимая Вселенная - это шар, сфера диаметром 90-93 млрд световых лет. По другой это диск примерно такого диаметра. В любом случае речь идет об огромных расстояниях. Вселенная многоцентровая и неоднородная. Во Вселенной примерно 170 млрд галактик, которые местами собираются в большие скопления. В других местах есть есть пустоты. Но нет какого-то одного центра скоплений материи и энергии, нет единого центра, из которой она расширяется после Большого взрыва.

Вселенная состоит из материи и энергии. Вселенная расширяется с нарастающей скоростью. Расширения привело к тому, что стало больше пустот, чем скоплений вещества и энергии. Плотность материи во Вселенной 10 −29 г/см 3 (для сравнения - плотность чистой воды при нормальных условиях 1 г/см 3). Вселенной около 13,73 млрд лет, средняя ее температура -270°С, и уменьшается, так как звезды остывают. По современным представлениям у Вселенной было начало и будет конец. Все образования и космические тела во Вселенной движутся с огромными скоростями. Вселенная постоянно изменяется: в ней рождаются и разрушаются галактики, звезды, планеты. На современном этапе жизни у Вселенной есть границы, которые человек преодолеть не может - например, скорость света и абсолютный температурный ноль.

Как изучали Вселенную

С древних времен человека волновало, как устроен мир, где его границы, какие силы в нем действуют и побеждают. Первооткрыватели космоса сначала исследовали нашу Солнечную систему. Потом они обнаружили галактики, затем их скопления. В соответствии с современными теориями пространство и время имеет свои границы, но мы изучаем их постепенно, расширяя представление о мире. Возможно, эти границы по мере изучения расширятся, а некоторые ограничения будут сняты.

Первыми систематически изучать границы нашего мира начали древние греки. Не ощущая движения Земли вокруг Солнца и движения ее внутри галактики со всей Солнечной системой, они считали Землю неподвижным центром мироздания, вокруг которого движутся звезды, Солнце и Луна. Греки понимали, что предметы, поднятые над землей, падают вниз. Чтобы не упала Земля, она должна на что-то опираться. Фалес Милетский считал такой опорой мировой океан, Анаксимен - сжатый воздух. Анаксимандр Милетский, Парменид и Птоломей считали, что Земля обходится без опоры, так как лежит в центре мироздания, и куда-то падать у нее причин нет. Расходились их взгляды и на форму Земли. Анаксимандр считал Землю цилиндрической, Левкипп плоской. О том, что Земля - шар, впервые догадался Пифагор. Также считали Платон и Аристотель. Их представления о мире стали основой для ученых на многие века. Хотя уже среди греческих ученых были такие, которые пытались ставить в центр мира Солнце. Но они были в меньшинстве. Греческие философы также пытались объяснить, из каких элементов состоит мир. Аристотель говорил, что небо - это купол, на котором закреплены звезды. Пространство купола разделено на подлунный и надлунный мир. Подлунный свет содержит 4 первоэлемента - земля, вода, ветер и огонь. Надлунный свет - место, где есть пятый элемент (эфир) и где живут боги. Но древнегреческие боги, в отличие от бога христианского, не были склонны вмешиваться в дела ученых. Спорили греческие ученые и о том, что ближе к Земле - Солнце, Луна или звезды, откуда берутся метеориты. Анаксагор пришел к выводу, что метеориты слагаются из того же материала, что и Земля. Другие планеты Солнечной системы греки считали божествами. Несмотря на ошибочность геоцентрической модели мира, Анаксагор и другие философы заложили основы современной астрономии.

Аристотель Пифагор

В средневековье в европейскую астрономию серьезно вмешивалась христианская церковь. Вместо научных доводов она принимала мнения богословов, оценивая их по выгоде для стройности верований, а не по логичности и доказательности. После II века до н.э в философии доминирующими стали мистицизм или религиозный догматизм, поэтому на место астрономии пришла астрология. Антропоцетризм христианских верований, заключавшийся в том, что Земля создана богом для людей, значительно лучше воспринимал геоцентрическую систему . Средневековые астрономы Индии, Иудеи, латинских стран и исламского Востока также чаще опирались на работы Аристотеля и Птолемея. Упадок в средневековой европейской науке не позволял ученым не то что опровергнуть работы греков математически, но даже просто понять их. Геоцентрическая система существовала много веков, пока польский астроном Николай Коперник снова уверенно не заявил о гелиоцентрической системе мира. Он четко говорил, что Земля совершает оборот вокруг своей оси за сутки и вокруг Сонца за год. Новая система легко объяснила непонятное до того попятное движение планет (когда планета в какой-то момент начинается двигаться по небосводу в обратную сторону). С этого момента началась новая научная революция.

Коперник

Николай Коперник считал, что Земля и другие планеты Солнечной систем движутся вокруг Солнца равномерно. Свою теорию он изложил в книге 1543 года "О вращении небесных сфер". Он относительно четко рассчитал расстояние от Солнца до планет Солнечной системы.


Знаменитая картина Я. Матейко. 1873 год


Николай Коперник на польской банкноте в 1000 злотых

В 1572 году на небе зажглась сверхновая звезда (Тихо Браге). Она была видна даже днем. Глядя на нее, Томас Диггес (Оксфорд, Англия) засомневался, что небо - сфера. Новая звезда была явно за ее пределами. Но предстояло еще осмыслить отсутствие "небесной тверди" и отказаться от промежуточной гео-гелиоцентрической системы мира. Наиболее весомым в эти процессы был вклад Иоганна Кеплера и Галилео Галилея. Иоганн Кеплер доказал, что Солнце находится в геометрическом центре звездно-планетарной системы. Он также понял , как связаны периоды обращений планет и размеры их орбит: квадраты периодов обращений планет относятся как кубы больших полуосей их орбит. На основании этих открытий были составлены новые более точные таблицы движения планет.

В одно время с Иоганном Кеплером работал и итальянский физик, математик, астроном и философ Галилео Галилей. Он впервые использовал телескоп для наблюдения за небесными телами. В 1609 году, рассматривая в телескоп Млечный путь, он увидел, что его создают отдельные звезды. Он описал горы на Луне и 4 спутника Юпитера. Свои открытия он описал в работе «Звёздный вестник» (1610 год). Его открытия сделали популярным конструирование телескопов и одновременно нанесли тяжелый удар астрологии, разрушая некоторые ее традиции. Галилей открыл фазы Венеры, пятна на Солнце (описаны в книге «Письма о солнечных пятнах») и вращение Солнца вокруг оси. Своими открытиями и характером спорщика он нажил себе много врагов в церковных кругах и был обвинен инквизицией в ереси. В 1616 году римский папа Павел V официально назвал гелиоцентризм опасной ересью. Книга Коперника "О вращении небесных сфер" была внесена в перечень запрещенных. Авторитет Галилея защитил его от гонений, но открыто защищать труды Коперника он больше не мог. Галилей ошибся в толковании комет, считая их оптическими явлениями. Но даже эта ошибка способствовала дальнейшему развитию науки, пониманию относительности движения и инерции.

Точку в спорах о справедливости гелиоцентрической системы, длившихся более полутора веков, поставил Исаак Ньютон. В 1687 году он вывел из закона всемирного тяготения законы Кеплера.

В конце 18-го века Уильям и Каролина Гершель создали новое поколение телескопов. Они взяли за основу телескоп Исаака Ньютона, но заменили стеклянные зеркала металлическими. С помощью нового телескопа 13 марта 1781 года Уильям Гершель открыл Уран, за что получил почетное звание королевского астронома. В 1785 году он опубликовал первую карту галактики. В 1789 году астроном открыл спутники Сатурна Мимас и Энцелад, затем спутники Урана Титанию и Оберон. Его таланту мы также обязаны открытием инфракрасного излучения (далее и в тэгах - ИК). Он также увидел туманности, но не смог их объяснить.

Астрономы продолжали работу по измерению расстояния до звезд. Методом параллакса точно измерили расстояние от Земли до Солнца, но оказалось, что этот метод был ограничен расстоянием 300 млн км. Нужен был другой метод. Его предложила Генриетта Ливитт, научный сотрудник Гарвардского университета. Она сделала открытие: яркость звезды зависит от расстояния до нее. Это помогло измерить расстояние до многих звезд и туманностей. В честь Г. Ливитт были названы астероид и кратер на Луне.

Позже узнали, что Вселенная началась с Большого взрыва, что галактика - не полоса из звезд, а диск, который постоянно и быстро вращается. Солнечная система - тоже условный диск внутри галактики. Когда-то это был настоящий диск пыли и газа. В дискообразном облаке газов и пыли сформировались Солнце и планеты Солнечной системы. А в плоскости условного диска теперь лежат орбиты всех планет Солнечной системы. Движение по орбитам уравновесило силу гравитации и силу взрыва от рождения в центре диска Солнца. Траектория планетарного движения подчиняется тем же законам физики, что и движение предметов в нашем макромире. В микромире, на уровне элементарных частиц, действуют другие законы. Об этом я подробнее расскажу позже. Здесь уместно немного рассказать об Эдвине Хаббле.

Астроном Эдвин Хаббл сделал несколько важнейших открытий. Он обнаружил, что во Вселенной ни одна галактика, а множество. Это открытие он сделал, используя 100-дюймовый телескоп Хукера в обсерватории «Маунт-Вилсон» (Лос-Анджелес, Калифорния, США). Он понял, что идентифицированные им в туманностях Андромеды и Треугольника цефеиды (пульсирующие переменные звезды) находятся слишком далеко, чтобы быть частью Млечного пути. Эти цефеиды были позже названы цефеидами Хаббла. Описание Э. Хабблом туманности Андромеды позже помогло установить размеры Вселенной.

Вторым важным открытием стало то, что большинство галактик отдаляется друг от друга. Оказалось, что несколько галактик движутся в нашу сторону, и в рассчитанные сроки произойдет столкновение этих галактик с Млечным путем. Но все остальные галактики быстро отдаляются от нас. Причем чем дальше от нас галактики, тем быстрее они от нас отдаляются. Но как он это доказал? Э. Хаббл изучал движение галактик, фиксируя их световые волны. Если галактика приближается, ее световые волны сжимаются и становятся синими. Если удаляются, волны расширяются и становятся красными. Явление изменения длины, а вместе с ней и цвета волн, называется эффектом Доплера . "Красное смещение" спектра показало: большинство галактик удаляется друг от друга. К слову, это также подтверждает, что Большой взрыв действительно был.

В 1998 году была опубликована работа , в которой было доказано, что скорость расширения Вселенной увеличивается за счет темной энергии. Через 100 млрд лет, если мы будем живы, то будем видеть только редкие звезды Млечного пути, а Вселенная вокруг станет тусклой и пустой.

Вселенная состоит из одних и тех же 92-х химических элементов, присутствующих в периодической таблице Д.И. Менделеева - от водорода +1 до урана +92 . От порядкового номера (заряда) зависят свойства химических элементов. На сегодня эту зависимость определяют так : свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов. Разнообразие форм видимой материи определяется также распространенностью элементов. Чем она выше, тем больше шансов для химических взаимодействий. Самый распространенный элемент Вселенной - водород (75%). Далее следуют гелий (23%), кислород (1%), углерод (0,5%), неон (0,13%), железо (0,11%), азот (0,1%), кремний (0,07%), сера (0,05%) и т.д. Распространенность углерода, а также его способность создавать цепочки и кратные связи во многом объясняют причины возникновения биологической жизни на углеродной основе. Часть элементов входят в состав газов, часть являются галогенами или металлами. Например, Ca +20 и Na +11 в чистом виде - серебристые металлы. Но в таком виде мы их обычно не видим. Но если речь идет о Земле, то понятно, как именно мы узнали о составе почвы, атмосферы, воды в океанах и т.д. Еще до полета к планетам Солнечной системы ученые знали: атмосфера Венеры наполнена серой, а почва Марса - железом. Когда до них добрались, это подтвердили и уточнили. Но мы вероятно очень не скоро доберемся даже до ближайших звездных систем. До ближайшей к нам Проксима Центавры целых 4,22 световых года. Так откуда же мы знаем, из каких элементов она состоит? Благодаря спектральному анализу . Изучить индивидуальные спектры элементов позволило их сжигание. Барий горит зеленым огнем, медь - синим, стронций - красным. Таким образом мы ответили на еще один важнейший вопрос о первоэлементах Вселенной. Правда, на это вопросы не окончились.