» » История свободного кислорода в земной коре. Нахождение кислорода в природе

История свободного кислорода в земной коре. Нахождение кислорода в природе

Можно вполне оценить планетное значение явлений жизни, в частности дыхания, обратив внимание на историю свободного кислорода в земной коре, одного из бесчисленных химических тел, вносимых живым веществом в биосферу.

Свободный кислород в молекулах О 2 , как мы знаем, в форме газа и еще больше в водных растворах играет совершенно исключительную роль во всех химических реакциях земной поверхности. Можно сказать, что он своим присутствием меняет весь их ход. Количество непрерывно существующих в земной коре молекул О 2 огромно. Можно определить его с достаточной точностью. В атмосфере - в тропосфере и в нижней стратосфере - вес свободного кислорода, молекул О 2 , по С. Аррениусу, соответствует минимально 1,2∙10 15 т, максимально 2,1∙10 15 т. Эта масса в сотни тысяч раз превышает общие массы в земной коре целого ряда многочисленных химических элементов земной коры. Атмосфера далеко не содержит всего свободного кислорода. Очень значительная часть его находится в растворе в водах и прежде всего в той массе соленой воды, которая образует Мировой океан. Все же эта часть меньше, чем вся масса свободного кислорода атмосферы и немногим превышает 1,5∙10 13 т.

Свободный кислород также растворен в пресной воде суши, растворен или окклюдирован в снегах и во льдах. Но это количество меньше растворенного кислорода гидросферы, так как весь объем пресной воды, по В. Гальбфассу, составляет лишь 3,6∙10 -1 % объема соленой воды океана, даже включая сюда льды и снега, представляющие по весу своему господствующую часть воды суши. Так, по Гальбфассу, объем льдов соответствует 3,5-4 10 6 км 3 , объем воды океана - 1,3 10 9 км 3 (О. Крюммель), объем воды озер, болот, рек и надземных вод - 7,5 10 5 км 3 максимально. Таким образом, все количество свободного кислорода, даже считая свободный кислород, включенный в осадочные породы, немного превышает 1,5∙10 15 т, приблизительно составляя одну десятитысячную часть всего кислорода земной коры.

Мы знаем, что свободный кислород существует лишь на поверхности Земли. Вода глубоких источников, как это доказал уже в конце XVIII в. врач Д. Пирсон (1751 - 1828) в Англии, его не содержит. Газы вулканических и метаморфических пород почти свободны от него.

Количество свободного кислорода в биосфере, несомненно, одна из наиболее точно определенных физических постоянных нашей планеты. Оно определяет геохимическую работу живых организмов и позволяет понять ее значение в истории химических элементов.

Свободный кислород - самый могущественный деятель из всех нам известных химических тел земной коры. Он изменяет - окисляет - огромное количество химических соединений, он всегда находится в движении, все время вступает в соединения. Мы знаем тысячи химических реакций, которыми он захватывается, во время которых он входит в соединения. Среди них наиболее важны окисленные соединения металлоидов, таких, как сера и углерод (в том числе и соединения организмов), и соединения металлов - железа или марганца. История всех циклических элементов земной коры определяется их отношением к свободному кислороду. Недавние исследования указывают даже на его первостепенное влияние в вулканических явлениях. Кислород атмосферы, захваченный горящей лавой, дает окисленные продукты (например, воды, окислы серы и пр.), и тепло, освобожденное этими реакциями окисления, играет огромную роль в термических эффектах лав. Высокая температура лав достигается на поверхности под влиянием этих реакций окисления; лава, поднимающаяся из недр коры и еще не соприкасающаяся с кислородом воздуха, имеет температуру, часто на сотни градусов более низкую.

Несмотря на все значение, представляемое этими реакциями окисления для множества таких земных процессов, количество свободного кислорода планеты представляется неизменным или почти неизменным. Очевидно, должны существовать обратные процессы, должно идти освобождение свободного кислорода в окружающую среду взамен кислорода, постоянно удерживаемого в новых прочных соединениях. Мы знаем в биосфере одну-единственную реакцию такого рода, если будем принимать во внимание только реакции большого масштаба. Это реакция биохимическая, выделение свободного кислорода хлорофильными пластидами земных организмов. Эта реакция открыта в конце XVIII в. Д. Пристлеем, углублена трудами выдающихся ученых, его современников, освещена во всем ее значении, в ее всеобщности, в ее главных чертах женевским ученым Т. де Соссюром в начале прошлого века.

Несомненно, эта реакция образования свободного кислорода в земной коре не единственная, но, поскольку можно судить, она единственная, которая дает значительные массы свободного кислорода в составе атмосферы, облекающей нашу планету.

Выделение свободного кислорода вне влияния жизни доказано или же является в высшей степени вероятным в связи с процессами радиоактивного распада, разложения газов ультрафиолетовыми излучениями и процессами метаморфизма. Все эти процессы идут в значительной мере вне биосферы, может быть за исключением радиоактивного распада, и в ее явлениях - в создании тропосферы - едва ли участвуют.

В глубинах земной коры кислород должен выделяться, так как соединения, богатые кислородом, например сульфаты или тела, содержащие окись железа, образуемые на поверхности, превращаются в глубоких слоях коры в соединения, более бедные кислородом или его не содержащие.

Однако этот свободный кислород должен немедленно вступать в соединения; нигде мы не находим его проявления.

Если даже кислород подымается временами и местами из глубин земной коры, совершенно ясно, что эти возможные его выделения, указания на которые встречаются, ничтожны по массе - в биосфере - по сравнению с тем количеством кислорода, которое в ней выделяется биогенным путем.

Гораздо важнее могло бы быть выделение свободного кислорода в стратосфере и выше под влиянием ультрафиолетовых излучений в связи с разложением паров воды, может быть углекислоты. Эта область явлений еще менее изучена и учтена по сравнению даже с выделением кислорода в метаморфической оболочке. Однако два обстоятельства должны быть приняты во внимание, сильно уменьшающие геологическое значение этого явления: 1) малая масса разреженных газов в стратосфере и выше и 2) чрезвычайно заторможенный их обмен с тропосферой.

Наконец, третий фактор может быть учитываем: распад молекул воды под влиянием а -, отчасти β-излучений всюду находящихся атомов радиоактивных элементов. Существование этих явлений несомненно, но нигде концентрации таких атомов в природных водах не представляются столь большими, чтобы с ними пришлось считаться в пределах биосферы. К сожалению, это явление и экспериментально и наблюдением в природе изучено недостаточно.

Учитывая все это, можно сейчас утверждать, что свободный кислород тропосферы и поверхностной водной атмосферы (газов, растворенных в поверхностных природных водах), т. е. больше чем пятая часть массы тропосферы, есть создание жизни.

Но больше того, совершенно аналогичное явление наблюдается для свободного азота тропосферы, и будет правильным заключить - и это в дальнейшем учитывать, - что земная газовая оболочка, наш воздух, есть создание жизни.

В истории свободного кислорода мы получаем, таким образом, яркое мерило геологического и геохимического значения жизни.

— Источник—

Вернадский, В.И. Биосфера/ В.И. Вернадский. – М.: Мысль, 1967.– 374 с.

Воздух – это естественная смесь различных газов. Больше всего в нем содержатся такие элементы, как азот (около 77%) и кислород, менее 2% составляют аргон, углекислый газ и прочие инертные газы.

Кислород, или О2 – второй элемент периодической таблицы и важнейший компонент, без которого вряд ли бы существовала жизнь на планете. Он участвует в разнообразных процессах , от которых зависит жизнедеятельность всего живого.

Вконтакте

Состав воздуха

О2 выполняет функцию окислительных процессов в человеческом теле , которые позволяют выделить энергию для нормальной жизнедеятельности. В состоянии покоя человеческий организм требует около 350 миллилитров кислорода , при тяжелых физических нагрузках это значение возрастает в три-четыре раза.

Сколько процентов кислорода в воздухе, которым мы дышим? Норма равна 20,95% . Выдыхаемый воздух содержит меньшее количество О2 – 15,5-16% . Состав выдыхаемого воздуха также включает углекислый газ, азот и другие вещества. Последующее понижение процентного содержания кислорода приводит к нарушению работы, а критическое значение 7-8% вызывает летальный исход .

Из таблица можно понять, например, что в выдыхаемом воздухе содержится очень много азота и дополнительных элементов, а вот О2 всего 16,3% . Содержание кислорода во вдыхаемом воздухе примерно составляет 20,95%.

Важно понять, что представляет собой такой элемент, как кислород. О2– наиболее распространенный на земле химический элемент , который не имеет цвета, запаха и вкуса. Он выполняет важнейшую функцию окисления в .

Без восьмого элемента периодической таблицы нельзя добыть огонь . Сухой кислород позволяет улучшить электрические и защитные свойства пленок, уменьшать их объемный заряд.

Содержится этот элемент в следующих соединениях:

  1. Силикаты – в них присутствует примерно 48% О2.
  2. (морская и пресная) – 89%.
  3. Воздух – 21%.
  4. Другие соединения в земной коре.

Воздух содержит в себе не только газообразные вещества, но и пары и аэрозоли , а также различные загрязняющие примеси. Это может быть пыль, грязь, другой различный мелкий мусор. В нем содержатся микробы , которые могут вызывать различные заболевания. Грипп, корь, коклюш, аллергены и прочие болезни – это лишь малый список негативных последствий, которые появляются при ухудшении качества воздуха и повышении уровня болезнетворных бактерий.

Процентное соотношение воздуха – это количество всех элементов, которые входят в его состав. Показать наглядно, из чего состоит воздух, а также процент кислорода в воздухе удобнее на диаграмме.

Диаграмма отображает, какого газа содержится больше в воздухе. Значения, приведенные на ней, будут немного отличаться для вдыхаемого и выдыхаемого воздуха.

Диаграмма — соотношение воздуха.

Выделяют несколько источников, из которых образуется кислород:

  1. Растения. Еще из школьного курса биологии известно, что растения выделяют кислород при поглощении углекислого газа.
  2. Фотохимическое разложение водяных паров. Процесс наблюдается под действием солнечного излучения в верхнем слое атмосферы.
  3. Перемешивание потоков воздуха в нижних атмосферных слоях.

Функции кислорода в атмосфере и для организма

Для человека огромное значение имеет так называемое парциальное давление , которое мог бы производить газ, если бы занимал весь занимаемый объем смеси. Нормальное парциальное давление на высоте 0 метров над уровнем моря составляет 160 миллиметров ртутного столба . Увеличение высоты вызывает уменьшение парциального давления. Этот показатель важен, так как от него зависит поступление кислорода во все важные органы и в .

Кислород нередко используется для лечения различных заболеваний . Кислородные баллоны, ингаляторы помогают органам человека нормально функционировать при наличии кислородного голодания.

Важно! На состав воздуха влияют многие факторы, соответственно, может меняться процент кислорода. Негативная экологическая ситуация приводит к ухудшению качества воздуха. В мегаполисах и крупных городских поселениях пропорция углекислого газа (СО2) будет больше, чем в небольших поселениях или на лесных и заповедных территориях. Большое влияние оказывает и высота – процентное содержание кислорода будет меньше в горах. Можно рассмотреть следующий пример – на горе Эверест, которая достигает высоты 8,8 км, концентрация кислорода в воздухе будет ниже в 3 раза, чем в низине. Для безопасного пребывания на высокогорных вершинах требуется использовать кислородные маски.

Состав воздуха изменялся с течением лет. Эволюционные процессы, природные катаклизмы привели к изменениям в , поэтому уменьшился процент кислорода , необходимый для нормальной работы биоорганизмов. Можно рассмотреть несколько исторических этапов:

  1. Доисторическая эпоха. В это время концентрация кислорода в атмосфере составляла около 36% .
  2. 150 лет назад О2 занимал 26% от общего воздушного состава.
  3. В настоящее время концентрация кислорода в воздухе составляет чуть менее 21% .

Последующее развитие окружающего мира может привести к дальнейшему изменению состава воздуха. На ближайшее время маловероятно, что концентрация О2 может быть ниже 14%, так как это вызовет нарушение работы организма .

К чему приводит недостаток кислорода

Малое поступление чаще всего наблюдается в душном транспорте, плохо проветриваемом помещении или на высоте. Понижение уровня содержания кислорода в воздухе может вызвать негативное влияние на организм . Происходит истощение механизмов, наибольшему влиянию подвергается нервная система. Причин, по которым организм страдает от гипоксии, можно выделить несколько:

  1. Кровяная нехватка. Вызывается при отравлении угарным газом . Подобная ситуация понижает кислородную составляющую крови. Это опасно тем, что кровь прекращает доставить кислород к гемоглобину.
  2. Циркуляторная нехватка. Она возможна при диабете, сердечной недостаточности . В такой ситуации ухудшается или становится невозможным транспорт крови.
  3. Гистотоксические факторы, влияющие на организм, могут вызвать потерю способности поглощать кислород. Возникает при отравлении ядами или из-за воздействия тяжелых .

По ряду симптомов можно понять, что организму требуется О2. В первую очередь повышается частота дыхания . Также увеличивается частота сердечных сокращений. Эти защитные функции призваны поставить кислород в легкие и обеспечить им кровь и ткани.

Недостаток кислорода вызывает головные боли, повышенную сонливость , ухудшение концентрации. Единичные случаи не так страшны, их довольно просто подкорректировать. Для нормализации дыхательной недостаточности врач выписывает бронхорасширяющие лекарства и другие средства. Если же гипоксия принимает тяжелые формы, такие как потеря координации человека или даже коматозное состояние , то лечение усложняется.

Если обнаружены симптомы гипоксии, важно незамедлительно обратиться к доктору и не заниматься самолечением, так как применение того или иного лекарственного средства зависит от причин нарушения. Для легких случаев помогает лечение кислородными масками и подушками, кровяная гипоксия требует переливания крови, а корректировка циркулярных причин возможна только при операции на сердце или сосуды.

Невероятное путешествие кислорода по нашему организму

Заключение

Кислород – важнейшая составляющая воздуха , без которой невозможно осуществление многих процессов на Земле. Воздушный состав менялся в течение десятков тысяч лет из-за эволюционных процессов, но в настоящее время количество кислорода в атмосфере достигло значения в 21% . Качество воздуха, которым дышит человек, влияет на его здоровье, поэтому необходимо следить за его чистотой в помещении и постараться сократить загрязнение окружающей среды.

Примкнем к геологической экспедиции, выехавшей для исследования недр в один из районов нашей страны.

Экспедиция разбивается на отдельные партии - отряды.

Рано утром расходятся геологи по заранее намеченным маршрутам.

Геологи-разведчики при помощи буровых инструментов извлекают образцы пород из различных глубин земной коры и собирают на поверхности земли скальные породы.

Гидрогеологи занимаются исследованием водоносных горизонтов грунтовых и поверхностных вод. Вечером, вернувшись в свои походные палатки-лаборатории, они производят анализы добытых за день образцов.

Перед нами принесенные геологами образцы пород, содержащих кремний. Кремний по распространенности в природе занимает второе место, после кислорода. Около 30 процентов веса земной коры состоит из кремния. Но в природе кремний встречается не в свободном состоянии, а в соединении с кислородом (SiO 2), которое химики называют кремнеземом , а геологи - кварцем.

Земная кора на 65 процентов состоит из кремнезема. Известны многочисленные разновидности этого соединения. Кремний, кварц, горный хрусталь, простой песок, точильный камень, различные драгоценные камни - все это родные братья кремнезема.

А как многообразно используется кремнезем в быту и в технике! Чайная и столовая посуда, сделанная из стекла, хрусталя, фарфора и фаянса, кирпичные здания, железобетонные сооружения и перекрытия, мосты, широкие полотна автострад, гранитные облицовки величественных зданий и набережных состоят главным образом из соединений кремния и кислорода.

Еще задолго до того, как человек начал использовать кремний в технике, в природе растения использовали его для своей жизни.

Прочность стебля растений обусловлена наличием в нем кремния и кислорода. В золе сгоревшей соломы или трубок бамбука мы находим много кремнезема, который при жизни растений настолько укрепляет их стебли, что они способны устоять против сильных порывов ветра и грозовых ливней.

Декоративные растения подкармливают специальными растворами солей кремнезема, чтобы укрепить их стебли и лепестки цветка. Такие растения можно перевозить на далекие расстояния.

Часто геологи-разведчики приносят с собой в палатку светлосерый камень - известняк, одну из кристаллических разновидностей углекислого кальция (СаСO 3).

В состав углекислого кальция входит 48 процентов кислорода, 40 процентов кальция и 12 процентов углерода. Из этих же элементов состоят мел и мрамор - другие разновидности углекислого кальция.

Рассматривая известняк через лупу, иногда на его срезах можно заметить очертания раковин морских животных.

На необъятных просторах земли идет постоянный процесс превращения нерастворимого в простой воде углекислого кальция в растворимый. Потоки воды, насыщенные углекислым газом и содержащие углекислоту (Н 2 O+СO 2 - Н 2 СO 3), встречают на своем пути углекислый кальций (СаСО 3) и, вступая с ним во взаимодействие (СаСО 3 + Н 2 СO 3 - Са(НСO 3) 2), образуют соль, которая растворяется в воде и уносится в море. Для беспозвоночных животных, которые живут в морях и океанах, соли служат материалом для построения их наружного покрова - раковинок. Раковинки погибших животных скопляются на дне моря, постепенно образуя мощные слои известняка и мела.

Геологи считают, что те пространства земли, на которых сейчас встречаются огромные массивы известняка и мела, были когда-то морским дном.

При постройке зданий и сооружений известняк используется как строительный материал. Из известняка можно изготовить облицовочные плиты.

Большое количество известняка в Советском Союзе используется для получения другого ценного строительного материала - негашеной извести. Если углекислый кальций прокалить, он разлагается на известь и углекислый газ (СаСО 3 - CaO + СO 2). Всю негашеную известь и почти весь углекислый газ получают из известняка, прокаливая его в специальных печах.

Геологи-разведчики принесли в палатку-лабораторию образцы невзрачной на вид, но чрезвычайно ценной руды, состоящей из гидратов окиси алюминия: Аl(ОН) 3 и Аl(ОН). Смесь этих кислородных соединений алюминия носит название бокситов. Они состоят из алюминия, водорода и кислорода. Из бокситов получают окись алюминия (А1 2 O 3), которую в технике называют глиноземом .

Глинозем является основным сырьем для производства алюминия.

Но чтобы получить алюминий, нужен еще и криолит - фтористая соль натрия и алюминия. Криолит в природе встречается редко, но его можно получить искусственным путем.

Алюминий получают электролизом в специальных ваннах, в которые загружают криолит и глинозем. Под действием постоянного тока температура в ванне повышается настолько, что криолит расплавляется. В расплавленной массе криолита растворяется глинозем. В растворе глинозема под действием постоянного электрического тока идет электролиз. Алюминий выделяется на графитовых стенках ванны, к которым подведен отрицательный полюс источника тока, а кислород, выделяясь на положительных графитовых электродах, постепенно сжигает их в двуокись углерода. На дне ванны скопляется расплавленный алюминий, который сливают через специальные отверстия.

Так из бокситов получают серебристо-белый металл, который обладает ценнейшими свойствами.

Сплав из 95 процентов алюминия и небольшого количества меди, магния и железа - дюралюмин - прочен, легок, почти в 3 раза легче железа. Дюралюмин покрывают очень тонким слоем чистого алюминия, чтобы предохранить его от разрушения на воздухе - коррозии. Это объясняется не тем, что алюминий вовсе не окисляется кислородом воздуха в присутствии влаги, а тем, что при своем окислении алюминий покрывается тонкой пленкой окиси, которая и предохраняет его от дальнейшего разрушения.

Ванна для получения алюминия электролизом: 1 - подвод тока к катоду; 2 - подвод тока к аноду; 3 - аноды; 4 - катоды; 5 - расплавленный электролит; 6 - застывший электролит; 7 - расплавленный алюминий.

Из алюминиевых сплавов изготовляют детали самолетов, части к автомобилям и другим машинам. Из них делают кухонную посуду, мебель, применяют в жилищном строительстве. Порошок алюминия входит в состав красок.

При нагревании алюминий жадно поглощает кислород, образуя окись алюминия. Реакция происходит с большим выделением тепла.

Этим свойством алюминия пользуются в технике.

Алюминиевый порошок смешивают с магнитной окисью железа (Fe 3 O 4) и поджигают. Образуется высокая температура, при которой легко плавится металл. Такая смесь носит название термита и применяется для сварки трамвайных рельсов и других железных и стальных изделий.

Термит используется и для военных целей. Им заполняют специальные зажигательные артиллерийские снаряды и авиационные бомбы.

В виде металла алюминий нигде в природе не встречается. Но в различных кислородных соединениях он находится во всей земной коре.

Не вся земная кора доступна изучению. Современная геологическая техника позволяет исследовать ее на глубине 16-18 километров.

Алюминий составляет примерно 10 процентов веса земной коры, доступной исследованию. Он встречается не только в виде бокситов - он входит в состав глины, слюды и полевых шпатов. Во всех этих соединениях алюминий связан с кислородом.

Окись алюминия часто встречается в природе в виде минерала. К наиболее твердым минералам относится корунд, из которого изготовляют точильные камни и который входит в состав наждака.

Корунд и наждак - серые камки, мало привлекающие взгляд человека.

Встречаются и очень красивые природные драгоценные камни, состоящие из алюминия, кислорода и незначительной примеси хрома, титана или железа. Прекрасный рубин сверкает своим яркокрасным светом потому, что к природной окиси алюминия примешаны незначительные следы хрома. Такие же ничтожные количества других металлов, подмешанные к глинозему, превращают его в природе в зеленый изумруд или фиолетовый аметист.

Сейчас человек уже разгадал тайны природы и научился искусственным путем в специальных печах при высокой температуре изготовлять некоторые драгоценные камни, которые не только идут на украшения, но и применяются в технике.

В недрах земли находится еще одно кислородное соединение - магнитная окись железа (Fe 3 O 4). В технике эту руду называют магнитным железняком. В земной коре его насчитывается до 5 процентов.

Магнитный железняк залегает огромными массивами. На Урале из него состоят целые горы: Магнитная, Высокая и Благодать. Руда эта составляет смесь закиси железа (FeO) и окиси (Fe 2 O 3). Поэтому часто магнитный железняк называют закись-окись железа .

В природе часто встречается и другая разновидность железной руды - окись железа (Fe 2 O 3), или красный железняк. Почти вся донецкая металлургическая промышленность снабжается этой рудой. Огромные запасы ее находятся в районе Кривого Рога и Курска.

Окись железа входит в состав бурого железняка - водной окиси железа бурого цвета. Залежи бурого железняка разрабатываются на Южном Урале, в Керчи и других местах Советского Союза.

СССР занимает первое место в мире по запасам железной руды. Больше половины всех мировых запасов железа падает на территорию Советского Союза.

В состав большинства полезных ископаемых, встречающихся в недрах земли, в том или ином виде входит кислород. Его можно встретить в химическом соединении с легкими элементами, включая магний и алюминий, в соединении с тяжелыми элементами, включая уран, с щелочными металлами - натрием и калием, с щелочноземельными металлами - кальцием, стронцием и барием и в соединении с редкими элементами.

Кислород - самый распространенный элемент на земле.

Много труда положили ученые, чтобы определить, сколько кислорода находится в природе. В настоящее время принято считать, что половину веса земной коры, воздуха, воды, животных и растительных организмов составляет кислород, а вторую половину - все остальные элементы периодической системы Менделеева.

На Земле находится 49,4% кислорода, который встречается либо в свободном виде в воздухе, либо в связанном (вода, соединения и минералы).

Характеристика кислорода

На нашей планете газ кислород распространен больше всех других химических элементов. И это неудивительно, ведь он входит в состав:

  • горных пород,
  • воды,
  • атмосферы,
  • живых организмов,
  • белков, углеводов и жиров.

Кислород активный газ и поддерживает горение.

Физические свойства

В атмосфере кислород содержится в бесцветном газообразном виде. Он не имеет запаха, малорастворим в воде и других растворителях. У кислорода прочные молекулярные связи, из-за которых он химически малоактивен.

Если кислород нагревать, он начинает окислять и реагировать с большинством неметаллов и металлов. Например, железо, этот газ медленно окисляет и вызывает его ржавление.

При снижении температуры (-182,9°С), и нормальном давлении газообразный кислород переходит в другое состояние (жидкое) и приобретает бледно-синий цвет. Если температуру еще снижать (до -218,7°С) газ затвердеет и изменится до состояния синих кристаллов.

В жидком и твердом состояниях кислород приобретает синий цвет и обладает магнитными свойствами.

Древесный уголь является активным поглотителем кислорода.

Химические свойства

Почти во время всех реакций кислорода с другими веществами образуется и выделяется энергия, сила которой может зависеть от температуры. Например, при обычных температурах этот газ медленно реагирует с водородом, а при температуре выше 550°С возникает реакция со взрывом.

Кислород - активный газ, который входит в реакцию с большинством металлов, кроме платиновых и золота. Сила и динамика взаимодействия, во время которого образуются оксиды, зависит от присутствия в металле примесей, состояния его поверхности и измельчения. Некоторые металлы, во время связи с кислородом, кроме основных оксидов образуют амфотерные и кислотные оксиды. Оксиды золота и платиновых металлов возникают во время их разложения.

Кислород кроме металлов, так же активно взаимодействует практически со всеми химическими элементами (кроме галогенов).

В молекулярном состоянии кислород более активен и эту особенность используют при отбеливании различных материалов.

Роль и значение кислорода в природе

Зеленые растения вырабатывают больше всего кислорода на Земле, причем основная масса производится водными растениями. Если кислорода в воде выработалась больше, то избыток уйдет в воздух. А если меньше, то наоборот, недостающее количество будет дополнено из воздуха.

Морская и пресная вода содержит 88,8 % кислорода (по массе), а в атмосфере его 20,95 % по объёму. В земной коре больше 1500 соединений имеют в составе кислород.

Из всех газов, входящих в состав атмосферы, больше всего важен для природы и человека кислород. Он есть в каждой живой клетке и необходим всем живым организмам для дыхания. Недостаток кислорода в воздухе сразу отражается на жизнедеятельности. Без кислорода невозможно дышать, а значит жить. Человек во время дыхания за 1 мин. в среднем его потребляет 0,5 дм3. Если в воздухе его станет меньше до 1/3 его части, то он потеряет сознание, до 1/4 части — он умрет.

Дрожжи и некоторые бактерии могут жить без кислорода, но теплокровные животные, умирают при его недостатке через несколько минут.

Круговорот кислорода в природе

Круговоротом кислорода в природе называется обмен им между атмосферой и океанами, между животными и растениями во время дыхания, а так же в процессе химического горения.

На нашей планете важный источник кислорода - растения, в которых проходит уникальный процесс фотосинтеза. Во время него происходит выделение кислорода.

В верхней части атмосферы тоже образуется кислород, вследствие разделения воды под действием Солнца.

Как происходит круговорот кислорода в природе?

Во время дыхания животных, людей и растений, а так же горения любого топлива тратится кислород и образуется углекислый газ. Потом углекислым газом питаются растения, которые в процессе фотосинтеза снова вырабатывают кислород.

Таким образом, его содержание в воздухе атмосферы поддерживается и не заканчивается.

Области применения кислорода

В медицине во время операций и опасных для жизни заболеваний больным дают дышать чистым кислородом, чтобы облегчить их состояние и ускорить выздоровление.

Без баллонов с кислородом альпинисты не поднимаются в горы, а аквалангисты не погружаются на глубину морей и океанов.

Кислород широко применяется в разных видах промышленности и производства:

  • для обрезки и сварки различных металлов
  • для получения очень высоких температур на заводах
  • для получения разнообразных химических соединений. для ускорения плавления металлов.

Так же широко кислород применяется в космической индустрии и авиации.

С момента появления химии человечеству стало понятно, что все вокруг состоит из вещества, в состав которого входят химические элементы. Многообразие веществ обеспечивается различными соединениями простых элементов. На сегодня открыто и внесено в периодическую таблицу Д. Менделеева 118 химических элементов. Среди них стоит выделить ряд ведущих, наличие которых определило появление органической жизни на Земле. В этот перечень входят: азот, углерод, кислород, водород, сера и фосфор.

Кислород: история открытия

Все эти элементы, а также ряд других, способствовали развитию эволюции жизни на нашей планете в том виде, в котором мы сейчас наблюдаем. Среди всех компонентов именно кислорода в природе больше остальных элементов.

Кислород как отдельный элемент был открыт 1 августа 1774 года В ходе эксперимента по получению воздуха из окалины ртути путём нагревания при помощи обычной линзы он обнаружил, что свеча горит необычно ярким пламенем.

Долгое время Пристли пытался найти этому разумное объяснение. На тот момент этому явлению было дано название «второй воздух». Несколько ранее изобретатель подводной лодки К. Дреббель в начале XVII века выделил кислород и использовал его для дыхания в своём изобретении. Но его опыты не оказали влияния на понимание того, какую роль играет кислород в природе энергообмена живых организмов. Однако учёным, официально открывшим кислород, признан французский химик Антуан Лоран Лавуазье. Он повторил эксперимент Пристли и понял, что образующийся газ является отдельным элементом.

Кислород взаимодействует практически со всеми простыми и кроме инертных газов и благородных металлов.

Нахождение кислорода в природе

Среди всех элементов нашей планеты наибольшую долю занимает кислород. Распространение кислорода в природе весьма разнообразно. Он присутствует как в связанном виде, так и в свободном. Как правило, являясь сильным окислителем, он пребывает в связанном состоянии. Нахождение кислорода в природе как отдельного несвязанного элемента зафиксировано только в атмосфере планеты.

Содержится в виде газа и представляет собой соединение двух атомов кислорода. Составляет около 21 % от общего объёма атмосферы.

Кислород в воздухе, кроме обычной своей формы, имеет изотропную форму в виде озона. состоит из трёх атомов кислорода. Голубой цвет неба непосредственно связан с наличием этого соединения в верхних слоях атмосферы. Благодаря озону, жёсткое коротковолновое излучение от нашего Солнца поглощается и не попадает на поверхность.

В случае отсутствия озонового слоя органическая жизнь была бы уничтожена, подобно поджаренной еде в микроволновой печи.

В гидросфере нашей планеты этот элемент находится в связанном виде с двумя и образует воду. Доля содержания кислорода в океанах, морях, реках и подземных водах оценивается около 86- 89 %, с учётом растворенных солей.

В земной коре кислород находится в связанном виде и является наиболее распространённым элементом. Его доля составляет около 47 %. Нахождение кислорода в природе не ограничивается оболочками планеты, этот элемент входит в состав всех органических существ. Его доля в среднем достигает 67 % от общей массы всех элементов.

Кислород - основа жизни

Из-за высокой окислительной активности кислород достаточно легко соединяется с большинством элементов и веществ, образуя оксиды. Высокая окислительная способность элемента обеспечивает всем известный процесс горения. Кислород также участвует в процессах медленного окисления.

Роль кислорода в природе как сильного окислителя незаменима в процессе жизнедеятельности живых организмов. Благодаря этому химическому процессу происходит окисление веществ с выделением энергии. Её живые организмы используют для своей жизнедеятельности.

Растения - источник кислорода в атмосфере

На начальном этапе образования атмосферы на нашей планете существующий кислород находился в связанном состоянии, в виде двуокиси углерода (углекислый газ). Со временем появились растения, способные поглощать углекислый газ.

Данный процесс стал возможен благодаря возникновению фотосинтеза. Со временем, в ходе жизнедеятельности растений, за миллионы лет в атмосфере Земли накопилось большое количество свободного кислорода.

По мнению учёных, в прошлом его массовая доля достигала порядка 30 %, в полтора раза больше, чем сейчас. Растения, как в прошлом, так и сейчас, существенно повлияли на круговорот кислорода в природе, обеспечив тем самым разнообразную флору и фауну нашей планеты.

Значение кислорода в природе не просто огромно, а первостепенно. Система метаболизма животного мира чётко опирается на наличие кислорода в атмосфере. При его отсутствии жизнь становится невозможной в том виде, в котором мы знаем. Среди обитателей планеты останутся только анаэробные (способные жить без наличия кислорода) организмы.

Интенсивный в природе обеспечен тем, что он находится в трёх агрегатных состояниях в объединении с другими элементами. Будучи сильным окислителем, он очень легко переходит из свободной формы в связанную. И только благодаря растениям, которые путём фотосинтеза расщепляют углекислый газ, он имеется в свободной форме.

Процесс дыхания животных и насекомых основан на получении несвязанного кислорода для окислительно-восстановительных реакций с последующим получением энергии для обеспечения жизнедеятельности организма. Нахождение кислорода в природе, связанного и свободного, обеспечивает полноценную жизнедеятельность всего живого на планете.

Эволюция и «химия» планеты

Эволюция жизни на планете опиралась на особенности состава атмосферы Земли, состава минералов и наличия воды в жидком состоянии.

Химический состав коры, атмосферы и наличие воды стали основой зарождения жизни на планете и определили направление эволюции живых организмов.

Опираясь на имеющуюся «химию» планеты, эволюция пришла к углеродной органической жизни на основе воды как растворителя химических веществ, а также использовании кислорода как окислителя с целью получения энергии.

Иная эволюция

На данном этапе современная наука не опровергает возможность жизни в иных средах, отличных от земных условий, где за основу построения органической молекулы может быть взят кремний или мышьяк. А среда жидкости, как растворителя, может представлять собой смесь жидкого аммиака с гелием. Что касается атмосферы, то она может быть представлена в виде газообразного водорода с примесью гелия и других газов.

Какие метаболические процессы могут быть при таких условиях, современная наука пока не в состоянии смоделировать. Однако такое направление эволюции жизни вполне допустимо. Как доказывает время, человечество постоянно сталкивается с расширением границ нашего понимания окружающего мира и жизни в нем.