» » Загадочный беспорядок: история фракталов и области их применения. Удивительный мир фракталов Фракталы в природе 9 букв

Загадочный беспорядок: история фракталов и области их применения. Удивительный мир фракталов Фракталы в природе 9 букв

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал.

Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему?» многократно превышает число ответов, которые взрослые успевают давать. Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему?», на который родителям пришлось искать простое объяснение, понятное ребенку.

Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом.

⇡ Бенуа Мандельброт: отец фрактальной геометрии

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (Benoît B. Mandelbrot).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Например, французский математик Пьер Жозе Луи Фату (Pierre Joseph Louis Fatou) описал это множество более чем за семьдесят лет до открытия Бенуа Мандельбротом. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Гастон Жюлиа (всегда в маске — травма с Первой мировой войны)

Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.

Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил.

Впоследствии это изображение было раскрашено (например, один из способов окрашивания цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.

Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.

Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF .

⇡ Лорен Карпентер: искусство, созданное природой

Теория фракталов скоро нашла практическое применение. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники.

Будущий сооснователь легендарной студии Pixar Лорен Карпентер (Loren C. Carpenter) в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением.

Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. «Да, — говорили они, — это красивые картинки, но не более. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике.

Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера.

Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм.

Одна из первых визуализаций 3D по фрактальному алгоритму

Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm.

Анимация рендерилась на компьютере VAX-11/780 от Digital Equipment Corporation с тактовой частотой пять мегагерц, причем прорисовка каждого кадра занимала около получаса.

Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» (The Wrath of Khan) Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности.

В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

⇡ Фрактальные антенны: лучше меньше, да лучше

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.

Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей

Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.

Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

⇡ Фрактальные измерения: умом не понять

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности.

Чем меньше мера при измерении, тем больше измеряемая длина

Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

⇡ Фрактал в браузере

Пожалуй, один из самых простых способов получить фрактальный узор — воспользоваться онлайновым векторным редактором от молодого талантливого программиста Toby Schachman . В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия.

В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать (чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift) и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

⇡ XaoS: фракталы на любой вкус

Многие графические редакторы имеют встроенные средства для создания фрактальных узоров. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS . Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе.

XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

⇡ Fractal Zoomer: компактный фрактальный генератор

По сравнению с другими генераторами изображений фракталов имеет несколько преимуществ. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Вы можете выбирать оттенки в цветовых моделях RGB, CMYK, HVS и HSL.

Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

⇡ Mandelbulb3D: редактор трехмерных фракталов

Когда употребляется термин «фрактал», чаще всего подразумевается плоское двухмерное изображение. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.

А еще этот фрактал можно съесть

Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D . Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт (Daniel White) и Пол Ниландер (Paul Nylander), преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации. Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта.

Фрактальный редактор Incendia поддерживает двойное сглаживание изображения, содержит библиотеку из полусотни различных трехмерных фракталов и имеет отдельный модуль для редактирования базовых форм.

Приложение использует фрактальный скриптинг, с помощью которого можно самостоятельно описывать новые типы фрактальных конструкций. В Incendia есть редакторы текстур и материалов, а движок визуализации позволяет использовать эффекты объемного тумана и различные шейдеры. В программе реализована опция сохранения буфера при длительном рендеринге, поддерживается создание анимации.

Incendia позволяет экспортировать фрактальную модель в популярные форматы трехмерной графики — OBJ и STL. В состав Incendia включена небольшая утилита Geometrica — специальный инструмент для настройки экспорта фрактальной поверхности в трехмерную модель. С помощью этой утилиты можно определять разрешение 3D-поверхности, указывать число фрактальных итераций. Экспортированные модели могут быть использованы в 3D-проектах при работе с такими трехмерными редакторами, как Blender, 3ds max и прочие.

В последнее время работа над проектом Incendia несколько затормозилась. На данный момент автор ищет спонсоров, которые помогли бы ему развивать программу.

Если вам не хватает фантазии нарисовать в этой программе красивый трехмерный фрактал — не беда. Воспользуйтесь библиотекой параметров, которая находится в папке INCENDIA_EX\parameters. С помощью файлов PAR вы сможете быстро найти самые необычные фрактальные формы, в том числе и анимированные.

⇡ Aural: как поют фракталы

Мы обычно не рассказываем о проектах, работа над которыми только ведется, однако в данном случае мы должны сделать исключение, уж очень это необычное приложение. Проект под названием Aural придумал тот же человек, что и Incendia. Правда, на этот раз программа не визуализирует фрактальное множество, а озвучивает его, превращая в электронную музыку. Идея очень любопытная, особенно если учесть необычные свойства фракталов. Aural — это аудиоредактор, генерирующий мелодии с использованием фрактальных алгоритмов, то есть, по сути, это звуковой синтезатор-секвенсор.

Последовательность звуков, выдаваемая этой программой, необычна и… красива. Она вполне может пригодиться для написания современных ритмов и, как нам кажется, особенно хорошо подходит для создания звуковых дорожек к заставкам телевизионных и радиопередач, а также «петель» фоновой музыки к компьютерным играм. Рамиро пока не предоставил демонстрационной версии своей программы, но обещает, что, когда он это сделает, для того, чтобы работать с Aural, не нужно будет изучать теорию фракталов — достаточно просто поиграться с параметрами алгоритма генерирования последовательности нот. Послушать, как звучат фракталы, и .

Фракталы: музыкальная пауза

Вообще-то фракталы могут помочь написать музыку даже без программного обеспечения. Но это может сделать только тот, кто по-настоящему проникнут идеей природной гармонии и при этом не превратился в несчастного «ботана». Тут есть смысл брать пример с музыканта по имени Джонатан Колтон (Jonathan Coulton), который, помимо всего прочего, пишет композиции для журнала Popular Science. И не в пример другим исполнителям, Колтон все свои произведения публикует под лицензией Creative Commons Attribution-Noncommercial, которая (при использовании в некоммерческих целях) предусматривает свободное копирование, распространение, передачу произведения другим лицам, а также его изменение (создание производных произведения), чтобы приспособить его к своим задачам.

У Джонатана Колтона, конечно же, есть песня про фракталы.

⇡ Заключение

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.













































































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Авторы:
Бекбулатова Алина,
Гетьманова Софья

Руководители:
Могутова Татьяна Михайловна,
Дерюшкина Оксана Валерьевна

Введение .

Теоретическая часть проекта:

  • История развития фрактальной геометрии.
  • Понятие фрактала.
  • Виды фракталов:

а) геометрические фракталы, примеры геометрических фракталов;
б) алгебраические фракталы, примеры алгебраических фракталов;
в) стохастические фракталы, примеры.

  • Природные фракталы.
  • Практическое применение фракталов:
  • в литературе;
  • в телекоммуникации;
  • в медицине;
  • в архитектуре;
  • в дизайне;
  • в экономике;
  • в играх, кино, музыке
  • в естественных науках
  • в физике;
  • в биологии
  • фракталы для домохозяек
  • современные картины – фрактальная графика.
  • Фрактальная графика.
  • Роль фрактальной геометрии в жизни – гимн фракталам!

Практическая часть работы над проектом

  • Создание научной работы «Путешествие в мир фракталов»
  • Размещение в сети Интернет.
  • Участие в олимпиадах, конкурсах.
  • Создание собственных фракталов.
  • Создание брошюры «Удивительный мир фракталов»
  • Проведение фестиваля «Удивительный мир фракталов.

Введение

Геометрию часто называют холодной и сухой. Одна из причин заключается в ее неспособности описать все то, что окружает нас: форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. С огромной для нас радостью мы узнали, что в современном мире существует новая геометрия – геометрия фракталов.

Открытие фракталов произвело революцию не только в геометрии, но и в физике, химии, биологии, во всех областях нашей жизни.

Актуальность проекта:

  • Роль фракталов в современном мире достаточно велика
  • Убедительных аргументов в пользу актуальности изучения фракталов является широта области их применения

Гипотеза исследования:

Фрактальная геометрия – современная, очень интересная область человеческого познания. Появление фрактальной геометрии есть свидетельство продолжающейся эволюции человека и расширения его способов познания мира.

Цель проекта:

Изучить теорию фракталов для создания научной работы «Удивительный мир фракталов» и разработки и реализации на компьютере алгоритмов рисования фракталов на плоскости.

Задачи проекта:

  • Познакомиться с историей возникновения и развития фрактальной геометрии;
  • Изучить виды фракталов, их применение в современном мире.
  • Выполнить программы создания фракталов на языках программирования Pascal и Logo
  • Создать научную работу о фракталах, опубликовать ее в сети Интернет.
  • Создать брошюру «Удивительный мир фракталов»
  • Провести фестиваль «Удивительный мир фракталов» с целью ознакомления с результатами нашей работы учащихся школы.

Над проектом мы работали в течении 4 месяцев.

Основные этапы нашей работы:

  • Сбор необходимой информации: использование сети Интернет, книг, публикаций по данной теме. (2 недели)
  • Сортировка информации по темам: систематизация и определение порядка написания работы. Работа заняла 2 недели.
  • Составление текстовой работы: написание текста, частичное оформление систематизированной информации. Заняло один месяц.
  • Создание презентации: сжатие систематизированных сведений, определение структуры презентации, её создание и оформление и проходило в течении месяца.
  • Изучение программы создания фракталов и создание собственных фракталов на языках программирования Pascal и Logo (до сегодняшнего дня)

Теоретическая часть проекта

Мы изучили историю создания фрактальной геометрии.

Интерес к фрактальным объектам возродился в середине 70-х годов 20 века.

Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature". В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Так что же такое фрактал?

Фрактал - геометрическая фигура, составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.

Небольшая часть фрактала содержит информацию обо всем фрактале. Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которое в более крупном масштабе подобно себе.

Фракталы делятся на геометрические, геометрические и стохастические.

Геометрические фракталы по-другому называют классическими. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите всё тот же узор.

Приведем самые известные примеры геометрических фракталов.

Снежинка Коха.

Изобретена в 1904 годнемецким математиком Хельге фон Кохом.

Для её построения берется единичный отрезок, делится на три равные части и среднее звено заменяется равносторонним треугольником без этого звена. На следующем шаге повторяем операцию для каждого из четырёх получившихся отрезков. В результате бесконечного повторения данной процедуры получается фрактальная кривая.

Пятиугольник Дюрера.

Фрактал выглядит как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Салфетка Серпинского.

В 1915 году польский математик Вацлав Серпинский придумал занимательный объект.

Для его построения берётся сплошной равносторонний треугольник. На первом шаге из центра удаляется перевернутый равносторонний треугольник. На втором шаге удаляется три перевернутых треугольника из трёх оставшихся треугольников и т.д.

Кривая Дракона.

Изобретена итальянским математиком Джузеппе Пеано.

Ковер Серпинского.

Берется квадрат, разбивается на девять равных квадратов, средний из которых выбрасывается, а с остальными повторяется та же операция до бесконечности.

Второй вид фракталов – алгебраические фракталы.

Свое название они получили за то, что их строят на основе алгебраических формул. В результате математической обработки данной формулы на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются эффекты самоподобия на различных масштабных уровнях. Практически каждая точка на экране компьютера как отдельный фрактал.

Примеры самых известных алгебраических фракталов.

Множество Мандельброта .

Множества Мандельброта наиболее распространенный среди алгебраических фракталов. Его можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями.

Множество Жулиа .

Множество Жулиа было изобретено французским математиком Гастоном Жулиа. Не менее известный алгебраический фрактал.

Бассейны Ньютона.

Стохастические фракталы.

Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастичными. Термин "стохастичность" происходит от греческого слова, обозначающего "предположение".

При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Эти фракталы используются при моделировании рельефов местности и поверхности морей, процесса электролиза. Эта группа фракталов получила широкое распространение благодаря работам Майкла Барнсли из технологического института штата Джорджия.
Типичный представитель данного класса фракталов "Плазма".

Наиболее понятны для нас так называемые природные фракталы.

«Великая книга Природы написана на языке геометрии» (Галилео Галилей).

Природные фракталы .

  • В живой природе:
    • Морские звезды и ежи
    • Цветы и растения (брокколи , капуста)
    • Кроны деревьев и листья растений
    • Плоды (ананас)
    • Кровеносная система и бронхи людей и животных
  • В неживой природе:
    • Границы географических объектов (стран, областей, городов)
    • Морозные узоры на оконных стёклах
    • Сталактиты , сталагмиты , геликтиты .

Почти все природные образования: кроны деревьев, облака, горы, береговые линии имеют фрактальную структуру.
Что это значит?

Если посмотреть на фрактальный объект в целом, затем на его часть в увеличенном масштабе, потом на часть этой части, то нетрудно увидеть, что они выглядят одинаково.

Морские фракталы.

Осьминог – морское придонное животное из отряда головоногих.

Фрактальное строение имеют его тела и присоски на всех восьми щупальцах этого животного.

Еще одни типичнейшим представителем фрактального подводного мира является коралл.

В природе известно свыше 3500 разновидностей кораллов.

Зеленый фрактал – листья папоротника.

Листья папоротника имеют форму фрактальной фигуры - они самоподобны.

Лук – фрактал, который заставляет плакать. Конечно, фрактал он незамысловатый: обычные окружности разного диаметра, можно даже сказать примитивный фрактал.

Ярким примером фрактала в природе является «Романеску », она же «романская брокколи» или «цветная коралловая капуста».

Цветная капуста - типичный фрактал.

Рассмотрим строение цветной капусты.

Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты.

Матрешка - игрушка-сувенир - типичный фрактал. Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Человек – это фрактал.

Рождается ребенок, растет, и этот процесс сопровождается принципом «самоподобия», фрактальностью.

Широка область применения фракталов.

Фракталы в литературе

Среди литературных произведений есть такие, которые обладают текстуальной, структурной или фрактальной природой. В литературных фракталах бесконечно повторяются элементы текста:

У попа была собака,
он ее любил.
Она съела кусок мяса,
он ее убил.
В землю закопал,
Надпись написал:
У попа была собака…

«Вот дом.
Который построил Джек.
А вот пшеница.

В доме,
Который построил Джек
А вот весёлая птица-синица,
Которая ловко ворует пшеницу,
Которая в тёмном чулане хранится
В доме,
Который построил Джек…».

Фракталы в телекоммуникации .

Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

Фракталы в медицине .

В данное время фракталы находят широкое применение в медицине. Сам по себе человеческий организм состоит из множества фрактальных структур: кровеносная система, мышцы, бронхи, бронхиальные пути в легких, артерии.

Теория фракталов применятся для анализа электрокардиограмм.

Оценка величины и ритмов фрактальной размерности позволяют на более ранней стадии и с большей точностью и информативностью судить о нарушениях гомеостазиса и развитии конкретных заболеваний сердца.

Рентгеновские снимки, обработанные с помощью фрактальных алгоритмов, дают более качественную картинку, а соответственно и более качественную диагностику!!

Еще одна область активного применения фракталов – гастроэнтерология.

Новый метод исследования в медицине, электрогастроэнтерография - метод исследования, позволяющий оценить биоэлектрическую активность желудка, двенадцатиперстной кишки и других отделов ЖКТ.

Фракталы в архитектуре.

Фрактальный принцип развития природных и геометрических объектов проникает вглубь архитектуры и как образ внешнего решения объекта, и как внутренний принцип архитектурного формообразования.

Дизайнеры со всего мира начали использовать в своих работах замечательные фрактальные структуры, только недавно описанные видными математиками.

Использование фракталов поставило практически все направления современного дизайна на новый уровень.

Привнесение фрактальных структур увеличило во многих случаях как визуальную, так и функциональную составляющие дизайна.

Дизайнер Такеси Миякава в детстве мечтал стать математиком.

Иначе как объяснить этот предмет мебели: тумбочка Fractal 23 содержит 23 ящика самых разных размеров и пропорций, которые как-то ухитряются уживаться между собой внутри кубического корпуса, заполняя почти всё доступное им пространства.

Фракталы в экономике.

Последнее время фракталы стали популярны у экономистов для анализа курса фондовых бирж, валютных и торговых рынков.
Фракталы появляются на рынке достаточно часто.

Фракталы в играх.

Сегодня в очень многих играх (пожалуй самый яркий пример Minecraft), где присутствуют разного рода природные ландшафты, так или иначе используются фрактальные алгоритмы. Создано большое количество программ для генерации ландшафтов и пейзажей, основанных на фрактальных алгоритмах.

Фракталы в кино .

В кино для создания различных фантастических пейзажей используется фрактальный алгоритм. Фрактальная геометрия позволяет художникам по спецэфффектам без труда создавать такие объекты как облака, дым, пламя, звёздное небо и т.д. Что уж тогда говорить о фрактальной анимации, это действительное потрясающее зрелище.

Электронная музыка .

Зрелищность фрактальной анимации с успехом используют виджеи. Особенно часто такие видеоинсталляции используются на концертах исполнителей электронной музыки.

Естественные науки .

Очень часто фракталы применяются в геологии и геофизике. Не секрет что побережья островов и континентов имеют некоторую фрактальную размерность, зная которую можно очень точно вычислить длины побережий.

Исследование разломной тектоники и сейсмичности порой тоже исследуется с помощью фрактальных алгоритмов.

Геофизика использует фракталы и фрактальный анализ для исследования аномалий магнитного поля, для изучения распространение волн и колебаний в упругих средах, для исследования климата и многих других вещей.

Фракталы в физике .

В физике фракталы применяются очень широко. В физике твёрдых тел фрактальные алгоритмы позволяют точно описывать и предсказывать свойства твёрдых, пористых, губчатых тел, аэрогелей. Это помогает в создании новых материалов с необычными и полезными свойствами.
Пример твёрдого тела - кристаллы.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы.

Переход к фрактальному представлению облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных систем.
При помощи фракталов также можно смоделировать языки пламени.

Фракталы в биологии .

В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Фракталы для домохозяек.

Легкоперенести теорию фракталов в домашние условия, в том числе и на кухню.

Результатом применения может быть что угодно: фрактальные сережки, фрактальное вкусное печень и многое другое. Нужно подключить только знания и смекалку!

Широко используются в современном мире фрактальная графика. Пользуются популярностью картины - результат фрактальной графики.

И это не случайно. Полюбуйтесь красотой фрактальной графики!

Практическая часть проекта

  • Создали научную работу «Путешествие в мир фракталов»
  • Изучили программы создания фракталов на языках программирования Pascal и Logo
  • Создали собственные фракталы.
  • Сделали своими руками «Салфетку Серпинского» и «Ковер Серпинского»
  • Сделали «Фрактальные сережки»
  • Создали цикл картин «Чудеса фрактальной графики»
  • Опубликовали работу «Путешествие в мир фракталов « в сети Интернет.
  • Приняли участие с работой « Путешествие в мир фракталов» в VII Всероссийской олимпиаде школьников и студентов «Наука 2.0» по учебному предмету «Математика». Заняли первое место.
  • Приняли участие с работой «Путешествие в мир фракталов» во Всероссийском конкурсе «Великие открытия и изобретения». Заняли первое место.
  • Приняли участие с работой «Путешествие в мир фракталов» в VIII Всероссийской олимпиаде школьников и студентов «Я – исследователь» по учебному предмету Математика. Заняли первое место.
  • Создали презентацию « Удивительный мир фракталов»
  • Создали брошюры «Применение фракталов» и «Фракталы вокруг нас»
  • Провели фестиваль «Удивительный мир фракталов» для учащихся 8-11 классов»

Итак, можно с полной уверенностью сказать об огромном практическом применении фракталов и фрактальных алгоритмов на сегодняшний день.

Спектр областей, где применяются фракталы, очень обширен и разнообразен.

И наверняка, в ближайшем будущем, фракталы, фрактальная геометрия, станут близки и понятны каждому из нас. Мы не сможем обходиться без них в нашей жизни!

Будем надеяться, что появление фрактальной геометрии есть свидетельство продолжающейся эволюции человека и расширения его способов познания и осознания мира. Возможно, наши дети будут также легко и осмысленно оперировать понятиями фракталов и нелинейной динамики, как мы оперируем понятиями классической физики, эвклидовой геометрии.

Результаты работы над проектом

  • Познакомились с историей возникновения и развития фрактальной геометрии;
  • Изучили виды фракталов, их применение в современном мире.
  • Создали собственные фракталы на языках программирования Pascal и Logo
  • Создали научную работу о фракталах.
  • Создали брошюры «Фракталы вокруг нас» и «Применение фракталов»
  • Провели фестиваль «Удивительный мир фракталов» для учащихся 8-11 классов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Фракталы -- потрясающая красота математики в природе

Природа так загадочна, что чем больше изучаешь ее, тем больше вопросов появляется… Ночные молнии - синие «струи» ветвящихся разрядов, морозные узоры на окне, снежинки, горы, облака, кора дерева - все это выходит за рамки привычной евклидовой геометрии. Мы не можем описать камень или границы острова с помощью прямых, кружков и треугольников. И здесь нам приходят на помощь фракталы.

Фрактал - это сложная геометрическая фигура, обладающая свойством самоподобия. То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал -- это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты -- фракталами (от латинского fractus -- изломанный).

Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, - это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста.

Фрактал как природный объект - это вечное непрерывное движение, новое становление и развитие.

Фракталы встречаются всюду: в продуктах питания, в бактериях, в растениях, в животных, в горах, в небе и в воде.

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он преподавал математику в Йельском университете США. В 1977 - 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы», в которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывало наличие некого образца для копирования. Открытие Мандельброта возымело весомые последствия в развитии физики, астрономии и биологии.

Фракталы в природе

геометрический фигура фрактальный природный

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).

Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Фракталы и древние мандалы

Например, мандала для привлечения денег. Утверджают, что красный цвет работает как денежный магнит. А витиеватые узоры вам ничего не напоминают? Мне они показались очень знакомыми и я занялась исследованием мандал в качестве фрактала.

В принципе, мандала -- это геометрический символ сложной структуры, который интерпретируется как модель Вселенной, «карта космоса». Вот и первый признак фрактальности!

Их вышивают на ткани, рисуют на песке, выполняют цветными порошками и делают из металла, камня, дерева. Яркий и завораживающий вид, делает её красивым украшением полов, стен и потолков храмов в Индии. На древнем индийском языке «мандала» обозначает мистический круг взаимосвязи духовных и материальных энергий Вселенной или по-другому цветок жизни.

Мне хотелось написать обзор о фрактальных мандалах совсем небольшим, с минимумом абзацев, показав, что взаимосвязь явно существует. Однако, пытаясь найти осознать и связать информацию о фракталах и мандалах в единое целое, у меня было ощущение квантового скачка в неизвестное мне пространство.

Демонстрирую необъятность этой темы цитатой: ”Такие фрактальные композиции или мандалы могут использоваться как в виде картин, элементов дизайна жилого и рабочего помещения, носимых амулетов, в форме видеокассет, компьютерных программ…” В общем, тема для исследования фракталов просто огромнейшая.

Одно я могу сказать точно, мир гораздо разнообразнее и богаче, чем убогие представления нашего ума о нем.

Фрактальные морские животные

Мои догадки о фрактальных морских животных были не беспочвенны. Вот и первые представители. Осьминог - морское придонное животное из отряда головоногих.

Взглянув на его фотографию, мне стало очевидно фрактальное строение его тела и присосок на всех восьми щупальцах этого животного. Присосок на щупальцах взрослого осьминога достигает до 2000.

Интересен то факт, что у осьминога три сердца: одно (главное) гонит голубую кровь по всему телу, а два других -- жаберных -- проталкивают кровь через жабры. Некоторые виды этих глубоководных фракталов ядовиты.

Приспосабливаясь и маскируясь под окружающую среду, осьминог обладает весьма полезной способностью изменять окраску.

Осьминогов считают самыми «умными» среди всех беспозвоночных. Узнают людей, привыкают к тем, кто их кормит. Интересно было бы посмотреть на осьминогов, которые легко поддаются дрессировке, имеют хорошую память и даже различают геометрические фигуры. Но век этих фрактальных животных недолог - максимум 4 года.

Человек использует чернила этого живого фрактала и других головоногих. Они пользуются спросом у художников за их стойкость и красивый коричневый тон. В средиземноморской кухне осьминог является источником витаминов B3, B12, калия, фосфора и селена. Но я думаю, что этих морских фракталов нужно уметь готовить, чтобы получать удовольствие от их употребления в виде пищи.

Кстати, нужно заметить, что осьминоги - хищники. Своими фрактальными щупальцами они удерживают жертву в виде моллюсков, ракообразных и рыбы. Жаль, если пищей этих морских фракталов становится вот такой красивый моллюск. По-моему, тоже типичный представитель фракталов морского царства.

Также к примеру,родственник улиток, брюхоногий голожаберный моллюск Главк, он же Глаукус, он же Glaucus atlanticus, он же Glaucilla marginata. Это фрактал еще и необычен тем, что живет и передвигается под поверхностью воды, удерживаясь за счет поверхностного натяжения. Т.к. моллюск является гермафродитом, то после спаривания оба "партнера" откладывают яйца. Этот фрактал встречается во всех океанах тропического пояса.

Фракталы морского царства

Каждый из нас хотя бы раз в жизни держал в руках и с неподдельным детским интересом рассматривал морскую раковину.

Обычно раковины являются красивым сувениром, напоминающим о поездке на море. Когда смотришь на это спиралевидное образование беспозвоночных моллюсков, нет никаких сомнений в его фрактальной природе.

Мы, люди, чем-то напоминаем этих мягкотелых моллюсков, обитая в благоустроенных бетонных домах-фракталах, помещая и перемещая свое тело в быстрых автомобилях.

Еще одни типичнейшим представителем фрактального подводного мира является коралл.

В природе известно свыше 3500 разновидностей кораллов, в палитре которых различают до 350 цветовых оттенков.

Коралл - это материал скелета колонии коралловых полипов, тоже из семейства беспозвоночных. Их огромные скопления образуют целые коралловые рифы, фрактальный способ образования которых очевиден.

Коралл с полной уверенностью можно назвать фракталом из морского царства.

Он также используется человеком в виде сувенира или сырья для ювелирных изделий и украшений. Но повторить красоту и совершенство фрактальной природы очень сложно.

Почему-то не сомневаюсь, что в подводном мире также отыщется и множество фрактальных животных.

Фракталы в народном творчестве

Мое внимание привлекла история всемирно известной игрушки «Матрешка». Присмотревшись внимательней, с уверенностью можно сказать, что эта игрушка-сувенир - типичный фрактал.

Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Мои небольшие исследования истории появления этого игрушечного фрактала на мировом рынке показали, что корни у этой красавицы - японские. Матрешка всегда считалась исконно русским сувениром. Но оказалось, что она прототип японской фигурки старика-мудреца Фукурума, привезенного когда-то в Москву из Японии.

Но именно российский игрушечный промысел принес этой японской фигурке мировую славу. Откуда возникла идея фрактальной вложенности игрушки, лично для меня, так и осталось загадкой. Скорей всего автор этой игрушки использовал принцип вложенности фигурок друг в друга. А самый простой способ вложения - это подобные фигурки разных размеров, а это уже - фрактал.

Не менее интересный объект исследования представляет собой роспись игрушки-фрактала. Это декоративная роспись - хохлома. Традиционные элементы хохломы - это травяные узоры из цветов, ягод и веток.

Снова все признаки фрактальности. Ведь один и тот же элемент можно повторять несколько раз в разных вариантах и пропорциях. В итоге получается народная фрактальная роспись.

И если новомодной росписью компьютерных мышек, крышек ноутбуков и телефонов никого уже не удивишь, то фрактальный тюнинг автомобиля в народном стиле - это что-то новое в автодизайне. Остается только удивляться проявлению мира фракталов в нашей жизни таким необычным образом в таких обычных для нас вещах.

Фракталы на кухне

Каждый раз, разбирая цветную капусту на небольшие соцветия для бланширования в кипящей воде, я ни разу не обращала внимания на явные признаки фрактальности, пока у меня в руках не оказался этот экземпляр.

Типичный представитель фрактала из растительного мира красовался на моем кухонном столе.

При всей моей любви к цветной капусте мне все время попадались экземпляры с однородной поверхностью без видимых признаков фрактальности, и даже большое число соцветий, вложенных друг в друга, не давали мне повода увидеть в этом полезном овоще фрактал.

Но поверхность именно этого экземпляра с явно выраженной фрактальной геометрией не оставляла ни малейшего сомнения во фрактальном происхождении этого вида капусты.

Очередной поход в гипермаркет только подтвердил фрактальный статус капусты. Среди огромного числа экзотических овощей красовался целый ящик с фракталами. Это была Романеску, или романская брокколи, цветная коралловая капуста.

Оказывается, дизайнеры и 3D-художники восторгаются ее экзотическими формами, похожими на фракталы.

Капустные почки нарастают по логарифмической спирали. Первые упоминания о капусте романеску пришли из Италии 16-го века.

А капуста броколли совсем не частая гостья в моем рационе, хотя по содержанию полезных веществ и микроэлементов она превосходит цветную капусту в разы. Но ее поверхность и форма настолько однородны, что мне никогда не приходило в голову увидеть в ней овощной фрактал.

Размещено на Allbest.ru

...

Подобные документы

    Определение основных свойств выпуклых фигур. Описание традиционного решения изопериметрической задачи. Приведение примеров задач на поиск точек экстремума. Формулирование и доказательство теоремы о пятиугольнике наибольшего периметра единичного диаметра.

    дипломная работа , добавлен 30.03.2011

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа , добавлен 23.12.2015

    Основные условия симметричности фигуры. Примеры геометрических фигур, обладающих центральной симметрией. Центральная симметрия плодов растений и некоторых цветов, живых существ. Центральная симметрия в транспорте. Анализ аксиом стереометрии и планиметрии.

    презентация , добавлен 30.10.2013

    Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа , добавлен 24.06.2010

    Особенности использования метода секущих плоскостей для создания проекции и разветки пересечения поверхностей фигур. Порядок построения изометрии взаимного пересечения поверхностей фигур. Характеристика процесса создания фигуры с вырезом, опоры и стойки.

    реферат , добавлен 27.07.2010

    Основные виды симметрии (центральная и осевая). Прямая в качестве оси симметрии фигуры. Примеры фигур, обладающих осевой симметрией. Симметричность относительно точки. Точка как центр симметрии фигуры. Примеры фигур, обладающих центральной симметрией.

    презентация , добавлен 30.10.2014

    Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа , добавлен 29.01.2010

    Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.

    курсовая работа , добавлен 13.08.2011

    Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них - еще меньшие, и т. д., то есть ветка подобна всему дереву. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них - мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты - фракталами (от латинского fractus - изломанный).

С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон (Lewis Fry Richardson) - весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит - у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона (Richardson effect).

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов - ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты - элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. А экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад).

Выполнила ученица 7 класса Карпюк Полина

Приода создана из самоподобных офигур, просто мы этого не замечаем. В этой галерее мы собрали образы, в которых ясно видна фрактальность.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Фракталы в природе Выполнила: ученица 7 «Б» класса Карпюк Полина Руководитель: Молчанова Ирина Павловна Рубцовск-2015

Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту. Бертранд Рассел

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них - еще меньшие, и т. д., то есть ветка подобна всему дереву. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них - мельчайшие капилляры, по которым кислород поступает в органы и ткани. Это свойство объектов американский математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты - фракталами. Само слово «фрактал» с латыни переводится как "частичный", "разделенный", "раздробленный", а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. .

Космические фотографии земных ландшафтов часто дают отличные примеры фракталов.

Береговые линии обычно имеют фрактальную форму, но различаются степенью своей изрезанности. На этом примере видны два характерных свойства природных фракталов: Отдельные протоки не являются копией друг друга, но имеют аналогичные криволинейные очертания, будто они нарисованы одним лекалом. Большие протоки аналогичны по очертаниям маленьким и очень маленьким протокам. Если мы увеличим, например, нижний левый угол картинки, мы получим нечто похожее на всю картинку целиком

Взаимодействие воды и земли порождает фрактальные структуры ландшафтов - будь то горы, реки или побережья.

Наверное, каждый знает картину японского художника Хокусаи "Большая волн\", там волна цунами изображена на фоне Фудзиямы. Если вглядываться в эту картину, то обращаешь внимание, что художник рисуя гребень волны использовал фрактал, как бы состоящий из многочисленных хищных водяных лап. Поэтому часто эту картину используют в качестве иллюстрации к книгам по теории хаоса, фракталам.

Когда песчаная дюна размывается водой, в крошечных масштабах повторяется то, что придает фрактальную форму большим земным ландшафтам.

Разряд молнии-один из примеров природных фракталов.

Эта картинка иллюстрирует не только фрактальность крон деревьев, она наводит на еще одно интересное соображение: лес как биологическое сообщество также является фракталом. Отдельные деревья - большие и маленькие - выступают тогда в качестве ветвей фрактала. Они похожи, но не повторяют друг друга.

Прожилки листьев - плоский природный фрактал. Для каждого растения характерный рисунок уникален, как уникален папиллярный рисунок на руке человека. Гете (поэт и ученый) считал, что лист - самая выразительная часть растения, в которой отражается вся его морфология.

Папортники - пример природных фракталов, которые очень похожи на компьютерные фракталы. При этом они еще интересны тем, что папортники - одни из самых эволюционно древних растений, наряду с различными мхами и прочими низшими растениями

Это еще один знаменитый и очень впечатляющий пример природного фрактала, который обладает математически четкими формами. Прослеживается как минимум три уровня самоподобных хитроумных пирамидок Капуста романеско

Волшебно красивый фрактал, который бы вполне мог вдохновить какого-нибудь художника. А между тем, приглядитесь: это всего лишь тугой пучок капустных листьев.

Это любопытные примеры фрактальной структуры в минеральном мире. Карбонат-апатит Золотой самородок - изысканное сокровище, изготовленное самой природой.

Вы задумывались когда-нибудь, что мы буквально мыслим фракталами? Тут есть о чем задуматься – кто будет спорить, что мозг – одно из самых удивительных и уникальных творений природы. И оказывается, он внешне имеет те же фрактальные признаки, что и атмосферная облачность или корневая система крапивы.

Тут еще все сложнее: переплетаются два отдельных фрактальных дерева - по одному подается венозная кровь, по другому отводится обогащенная кислородом артериальная. А в совокупности легкое - потрясающая по сложности система трех фракталов - одного дыхательного и двух кровеносных.

Сетчатка содержит светочувствительные клетки, благодаря которым мы видим. На этом снимке они желтовато-зеленые. Они действительно образуют сеть (сетчатку), но эта сеть хаотична и фрактальна.

Это живот свиньи. Пятна его окраса, кажется, тоже подчиняются фрактальным правилам. Это интересная тема и, главное, имеет массу применений, в том числе имеет и военное значение. По каким правилам должен составляться рисунок камуфляжа, чтобы его носитель сливался с природными формами - ландшафта и растительности?

Спасибо за внимание!!!