» » Какая кристаллическая решетка у льда. Тайны ледяных кристаллов

Какая кристаллическая решетка у льда. Тайны ледяных кристаллов

Химия - удивительная наука. Столько невероятного можно обнаружить в, казалось бы, обычных вещах.

Всё материальное, что окружают нас повсюду, существует в нескольких агрегатных состояниях: газы, жидкости и твёрдые тела. Учёные выделили ещё и 4-е - плазму. При определённой температуре какое-либо вещество может переходить из одного состояние в другое. Например, вода: при нагревании свыше 100, из жидкой формы, превращается в пар. При температуре ниже 0 переходит в следующее агрегатную структуру - лёд.

Вконтакте

Весь материальный мир имеет в своём составе массу одинаковых частиц, которые между собой связаны. Эти мельчайшие элементы строго выстраиваются в пространстве и образуют так называемый пространственный каркас.

Определение

Кристаллическая решётка - особая структура твёрдого вещества, при которой частицы стоят в геометрически строгом порядке в пространстве. В ней можно обнаружить узлы - места, где расположены элементы: атомы, ионы и молекулы и межузловое пространство.

Твёрдые вещества , в зависимости от диапазона высоких и низких температур, являются кристаллическими или аморфными - они характеризуются отсутствием определённой температуры плавления. При воздействии повышенных температур они размягчаются и постепенно переходят в жидкую форму. К такого рода веществам относятся: смола, пластилин.

В связи с этим можно поделить на несколько видов:

  • атомную;
  • ионную;
  • молекулярную;
  • металлическую.

Но при различных температурах одно вещество может иметь различные формы и проявлять многообразные свойства. Это явление называется аллотропной модификацией.

Атомный тип

В этом типе в узлах расположены атомы того или иного вещества, которые связаны ковалентными связями. Этот вид связи образован парой электронов двух соседних атомов. Благодаря этому они связываются равномерно и в строгом порядке.

Вещества с атомной кристаллической решёткой характеризуются следующими свойствами: прочность и большая температура плавления. Такой тип связи представлен у алмаза, кремния и бора .

Ионный тип

Противоположно заряженные ионы находятся на узлах, которые создают электромагнитное поле, характеризующее физические свойства вещества. К таковым будут относиться: электропроводность, тугоплавкость, плотность и твёрдость. Поваренная соль и нитрат калия характеризуются наличием ионной кристаллической решётки.

Не пропустите: механизм образования , конкретные примеры.

Молекулярный тип

В узлах такого типа находятся ионы, связанные между собой ван-дер-ваальсовыми силами. Благодаря слабым межмолекулярным связям такие вещества, например, лёд, двуокись углерода и парафин, характеризуются пластичностью, электро- и теплопроводностью.

Металлический тип

В своём строении напоминает молекулярную, но имеет всё же более прочные связи. Отличие данного типа в том, что на её узлах находятся положительно заряженные катионы . Электроны, которые находятся в межузловом пространстве, участвуют в образовании электрического поля. Они ещё носят название электрического газа.

Простые металлы и сплавы, характеризуются металлическим типом решётки. Для них характерно наличие металлического блеска, пластичность, тепло- и электропроводность. Они могут плавиться при различных температурах.

Лёд - минерал с хим. формулой H 2 O , представляет собой воду в кристаллическом состоянии.
Химический состав льда: Н — 11,2%, О — 88,8%. Иногда содержит газообразные и твердые механические примеси.
В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С. Известны 10 кристаллических модификаций льда и аморфный лёд. Наиболее изученным является лёд 1-й модификации - единственная модификация, обнаруженная в природе. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного и др.), а также в виде снега, инея и т.д.

Смотрите так же:

СТРУКТУРА

Кристаллическая структура льда похожа на структуру : каждая молекула Н 2 0 окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76Α и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является ажурной, что влияет на его плотность (0,917). Лед имеет гексагональную пространственную решётку и образуется путём замерзания воды при 0°С и атмосферном давлении. Решётка всех кристаллических модификаций льда имеет тетраэдрическое строение. Параметры элементарной ячейки льда (при t 0°С): а=0,45446 нм, с=0,73670 нм (с - удвоенное расстояние между смежными основными плоскостями). При понижении температуры они меняются крайне незначительно. Молекулы Н 2 0 в решётке льда связаны между собой водородными связями. Подвижность атомов водорода в решётке льда значительно выше подвижности атомов кислорода, благодаря чему молекулы меняют своих соседей. При наличии значительных колебательных и вращательных движений молекул в решётке льда возникают трансляционные соскоки молекул из узла пространственной их связи с нарушением дальнейшей упорядоченности и образованием дислокаций. Этим объясняется проявление у льда специфических реологических свойств, характеризующих зависимость между необратимыми деформациями (течением) льда и вызвавшими их напряжениями (пластичность, вязкость, предел текучести, ползучесть и др.). В силу этих обстоятельств ледники текут аналогично сильно вязким жидкостям, и, таким образом, природные льды активно участвуют в круговороте воды на Земле. Кристаллы льда имеют относительно крупные размеры (поперечный размер от долей миллиметра до нескольких десятков сантиметров). Они характеризуются анизотропией коэффициента вязкости, величина которого может меняться на несколько порядков. Кристаллы способны к переориентации под действием нагрузок, что влияет на их метаморфизацию и скорости течения ледников.

СВОЙСТВА

Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309). В природе известны 14 модификаций льда. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии и обозначающегося как лёд I , образуются в условиях экзотических - при очень низких температурах (порядка -110150 0С) и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров - это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

МОРФОЛОГИЯ

В природе лёд — очень распространенный минерал. В земной коре существует несколько разновидностей льда: речной, озёрный, морской, грунтовый, фирновый и глетчерный. Чаще он образует агрегатные скопления мелкокристаллических зерен. Известны также кристаллические образования льда, возникающие сублимационным путем, т. е. непосредственно из парообразного состояния. В этих случаях лед имеет вид скелетных кристаллов (снежинки) и агрегатов скелетного и дендритного роста (пещерный лёд, изморозь, иней и узоры на стекле). Крупные хорошо огранённые кристаллы встречаются, но очень редко. Н. Н. Стуловым описаны кристаллы льда северо-восточной части России, встреченные на глубине 55-60 м. от поверхности, имеющие изометрический и столбчатый облик, причем длина наибольшего кристалла равнялась 60 см., а диаметр его основания - 15 см. Из простых форм на кристаллах льда выявлены только грани гексагональной призмы (1120), гексагональной бипирамиды (1121) и пинакоида (0001).
Ледяные сталактиты, называемые в просторечии «сосульки», знакомы каждому. При перепадах температур около 0° в осенне-зимние сезоны они растут повсеместно на поверхности Земли при медленном замерзании (кристаллизации) стекающей и капающей воды. Они обычны также в ледяных пещерах.
Ледяные забереги представляют собой полосы ледяного покрова из льда, кристаллизующегося на границе вода-воздух вдоль краёв водоёмов и окаймляющие края луж, берега рек, озёр, прудов, водохранилищ, и тп. при незамерзающей остальной части водного пространства. При их полном срастании на поверхности водоёма образуется сплошной ледяной покров.
Лёд образует также параллельно-шестоватые агрегаты в виде волокнистых прожилков в пористых грунтах, а на их поверхности — ледяные антолиты.

ПРОИСХОЖДЕНИЕ

Лёд образуется в основном в водных бассейнах при понижении температуры воздуха. На поверхности воды при этом появляется ледяная каша, сложенная из иголочек льда. Снизу на неё нарастают длинные кристаллики льда, у которых оси симметрии шестого порядка размещаются перпендикулярно к поверхности корочки. Соотношения между кристаллами льда при разных условиях образования показаны на рис. Лед распространен всюду, где имеется влага и где температура опускается ниже 0° С. В некоторых районах грунтовый лед оттаивает только на незначительную глубину, ниже которой начинается вечная мерзлота. Это так называемые районы вечной мерзлоты; в областях распространения многолетнемерзлых пород в верхних слоях земной коры встречаются так называемые подземные льды, среди которых различают современный и ископаемый подземный лёд. Не менее 10% всей площади суши Земли покрывают ледники, слагающая их монолитная ледяная порода носит название ледниковый лёд. Ледниковый лёд образуется в основном из скопления снега в результате его уплотнения и преобразования. Ледниковый покров занимает около 75% площади Гренландии и почти всю Антарктиду; самая большая мощность ледников (4330 м.) – установлена близ станции Бэрд (Антарктида). В центральной Гренландии толщина льда достигает 3200 м.
Месторождения льда общеизвестны. В местностях с холодной долгой зимой и коротким летом, а также в высокогорных районах образуются ледяные пещеры со сталактитами и сталагмитами, среди которых наиболее интересными являются Кунгурская в Пермской области Приуралья, а также пещера Добшине в Словакии.
В результате замерзания морской воды образуется морской лёд. Характерными свойствами морского льда являются солёность и пористость, которые определяют диапазон его плотности от 0,85 до 0,94 г/см 3 . Из-за такой малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины. Морской лёд начинает таять при температуре выше -2,3° С; он более эластичен и труднее поддается раздроблению на части, чем лёд пресноводный.

ПРИМЕНЕНИЕ

В конце 1980-х годов лаборатория Аргонн разработала технологию изготовления ледяной гидросмеси (Ice Slurry), способной свободно течь по трубам различного диаметра, не собираясь в ледяные наросты, не слипаясь и не забивая системы охлаждения. Солёная водяная суспензия состояла из множества очень мелких ледяных кристалликов округлой формы. Благодаря этому сохраняется подвижность воды и, одновременно, с точки зрения теплотехники она представляет собой лёд, который в 5-7 раз эффективнее простой холодной воды в системах охлаждения зданий. Кроме того, такие смеси перспективны для медицины. Опыты на животных показали, что микрокристаллы смеси льда прекрасно проходят в довольно мелкие кровеносные сосуды и не повреждают клетки. «Ледяная кровь» удлиняет время, в течение которого можно спасти пострадавшего. Скажем, при остановке сердца это время удлиняется, по осторожным оценкам, с 10-15 до 30-45 минут.
Использование льда в качестве конструкционного материала широко распространено в приполярных регионах для строительства жилищ - иглу. Лёд входит в состав предложенного Д. Пайком материала Пайкерит, из которого предлагалось сделать самый большой в мире авианосец.

Лед (англ. Ice) — H 2 O

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 4/A.01-10
Nickel-Strunz (10-ое издание) 4.AA.05
Dana (8-ое издание) 4.1.2.1
Hey’s CIM Ref. 7.1.1

Из 14 известных на сегодняшний день форм твердой воды в природе мы встречаем только одну — лед. Остальные образуются в экстремальных условиях и для наблюдений вне специальных лабораторий недоступны. Самое интригующее свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки фирна на снежном поле или же гигантских ледниковых масс.

В небольшом японском городе Кага, расположенном на западном берегу острова Хонсю, есть необычный музей. Снега и льда. Основал его Укихиро Накайя — первый человек, который научился выращивать в лаборатории искусственные снежинки, такие же красивые, как и те, что падают с неба. В этом музее посетителей со всех сторон окружают правильные шестиугольники, потому что именно такая — гексагональная — симметрия свойственна кристаллам обычного льда (кстати, греческое слово kristallos, собственно, и означает «лед»). Она определяет многие уникальные его свойства и заставляет снежинки, при всем бесконечном их разнообразии, расти в форме звездочек с шестью, реже — тремя или двенадцатью лучами, но никогда — с четырьмя или пятью.

Молекулы в ажуре

Разгадка структуры твердой воды кроется в строении ее молекулы. Н2О можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В центре находится кислород, в двух вершинах — по водороду, точнее — протону, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, отчего их называют неподеленными.

При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, которые не позволяют при замерзании создавать плотную структуру. Этот невидимый каркас из водородных связей располагает молекулы в виде ажурной сетки с полыми каналами. Стоит лед нагреть, как кружево рушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — вот почему вода тяжелее льда.

Лед, который образуется при атмосферном давлении и плавится при 0°С, — самое привычное, но все еще не до конца понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а вот атомы водорода занимают самые разные положения вдоль связей. Такое поведение атомов вообще-то нетипично — как правило, в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество.

Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования ажурной структуры льда.

К «странностям» льда относят и генерацию электромагнитного излучения его растущими кристаллами. Давно известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти, проще говоря, вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. Примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

Неправильный лед

В твердом состоянии вода насчитывает, по последним данным, 14 структурных модификаций. Есть среди них кристаллические (их большинство), есть аморфные, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Например, при температуре ниже –110°С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110°, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

Две последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предсказание 40-летней давности о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень велика, и собраться вместе молекулам сверхчистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Помог катализатор — соляная кислота, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но их можно поискать на замерзших спутниках других планет.

Комиссия решила так

Снежинка — это монокристалл льда, вариация на тему гексагонального кристалла, но выросшего быстро, в неравновесных условиях. Над тайной их красоты и бесконечного разнообразия не одно столетие бьются самые пытливые умы. Астроном Иоганн Кеплер в 1611 году написал целый трактат «О шестиугольных снежинках». В 1665 году Роберт Гук в огромном томе зарисовок всего, что он увидел с помощью микроскопа, опубликовал множество рисунков снежинок самой разной формы. Первую удачную фотографию снежинки под микроскопом сделал в 1885 году американский фермер Уилсон Бентли. С тех пор он уже не мог остановиться. До конца жизни, сорок с лишним лет, Бентли фотографировал их. Более пяти тысяч кристаллов, и ни одного одинакового.

Самые знаменитые последователи дела Бентли — это уже упомянутый Укихиро Накайя и американский физик Кеннет Либбрехт . Накайя впервые предположил, что величина и форма снежинок зависят от температуры воздуха и содержания в нем влаги, и блистательно подтвердил эту гипотезу экспериментально, выращивая в лаборатории кристаллы льда разной формы. А Либбрехт у себя в и вовсе стал выращивать снежинки на заказ — заранее заданной формы.

Жизнь снежинки начинается с того, что в облаке водяного пара при понижении температуры образуются кристаллические зародыши льда. Центром кристаллизации могут быть пылинки, любые твердые частицы или даже ионы, но в любом случае эти льдинки размером меньше десятой доли миллиметра уже имеют гексагональную кристаллическую решетку.

Водяной пар, конденсируясь на поверхности этих зародышей, образует сначала крошечную гексагональную призму, из шести углов которой начинают расти совершенно одинаковые ледяные иголочки — боковые отростки. Одинаковые просто потому, что температура и влажность вокруг зародыша тоже одинаковые. На них в свою очередь вырастают, как на дереве, боковые отростки — веточки. Подобные кристаллы так и называют дендритами, то есть похожими на дерево.

Передвигаясь вверх и вниз в облаке, снежинка попадает в условия с разной температурой и концентрацией водяного пара. Ее форма меняется, до последнего подчиняясь законам гексагональной симметрии. Так снежинки становятся разными. Хотя теоретически в одном облаке на одной высоте они могут «зародиться» одинаковыми. Но путь до земли у каждой свой, довольно долгий — в среднем снежинка падает со скоростью 0,9 км в час. А значит, у каждой — своя история и своя окончательная форма. Образующий снежинку лед прозрачен, но когда их много, солнечный свет, отражаясь и рассеиваясь на многочисленных гранях, создает у нас впечатление белой непрозрачной массы — мы называем ее снегом.

Чтобы не путаться с многообразием снежинок, Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.

Тем же законам подчиняется и рост инея, изморози и узоров на стеклах. Эти явления, как и снежинки, образуются при конденсации, молекула за молекулой — на земле, траве, деревьях. Узоры на окне появляются в мороз, когда на поверхности стекла конденсируется влага теплого комнатного воздуха. А вот градины получаются при застывании капель воды или когда в насыщенных водяным паром облаках лед плотными слоями намерзает на зародыши снежинок. На градины могут намерзать другие, уже сформировавшиеся снежинки, сплавляясь с ними, благодаря чему градины принимают самые причудливые формы.

Нам на Земле довольно и одной твердой модификации воды — обычного льда. Он буквально пронизывает все области обитания или пребывания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Горные ледники , ледяные покровы акваторий, вечная мерзлота, да и просто сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. А лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

Ольга Максименко, кандидат химических наук

Сегодня мы будем говорить про свойства снега и льда. Стоит уточнить, что лед образуются не только из воды. Кроме водяного льда бывает аммиачный и метановый. Не так давно ученые изобрели сухой лед. Свойства его уникальны, их рассмотрим чуть позже. Он образуется при замораживании углекислоты. Свое название сухой лёд получил благодаря тому, что при таянии он не оставляет луж. Находящийся в его составе углекислый газ тут же испаряется в воздух из замороженного состояния.

Определение льда

Прежде всего, подробнее рассмотрим лед, который получают из воды. Внутри него правильная кристаллическая решетка. Лед - это распространенный природный минерал, получаемый во время замерзания воды. Одна молекула этой жидкости связывается с четырьмя ближайшими. Ученые заметили, что такое внутреннее строение присуще различным драгоценным камням и даже минералам. Например, такое строение имеет алмаз, турмалин, кварц, корунд, берилл и другие. Молекулы удерживаются на расстоянии кристаллической решеткой. Эти свойства воды и льда говорят о том, что плотность такого льда будет меньше плотности воды, благодаря которой он образовался. Поэтому лед плавает на поверхности воды и не тонет в ней.

Миллионы квадратных километров льда

А вы знаете, сколько льда на нашей планете? Согласно последним исследованиям ученых, на планете Земля имеется примерно 30 миллионов квадратных километров замороженной воды. Как вы уже догадались, основная масса этого природного минерала находится на полярных шапках. В некоторых местах толщина ледяного покрова достигает 4 км.

Как получить лед

Сделать лед совсем несложно. Этот процесс не составит большого труда, как и не требует особых навыков. Для этого необходима низкая температура воды. Это единственное неизменное условие процесса образования льда. Вода замерзнет тогда, когда ваш термометр покажет температуру ниже 0 градусов по Цельсию. В воде начинается процесс кристаллизации благодаря низким температурам. Молекулы ее строятся в интересную упорядоченную структуру. Этот процесс называют образованием кристаллической решетки. Он одинаков и в океане, и в луже, и даже в морозильной камере.

Исследования процесса замерзания

Проводя исследование на тему замерзания воды, ученые пришли к выводу, что кристаллическая решетка выстраивается в верхних слоях воды. На поверхности начинают образовываться микроскопические ледяные палочки. Чуть позже между собой они смерзаются. Благодаря этому образуется тончайшая пленка на поверхности воды. Крупные водоемы замерзают намного дольше по сравнению с неподвижной водой. Это связано с тем, что ветер колышет и колеблет поверхность озера, пруда или реки.

Ледяные блины

Ученые провели ещё одно наблюдение. Если при низкой температуре продолжается волнение, то тончайшие пленки собираются в блины диаметром около 30 см. Далее они смерзаются в один слой, толщина которого не меньше 10 см. На ледяные блины сверху и снизу намерзает новый слой льда. Так образуется толстый и прочный ледяной покров. Его прочность зависит от видов: самый прозрачный лед будет в несколько раз прочнее белого льда. Экологи заметили, что 5-сантиметровый лёд выдерживает вес взрослого человека. Слой в 10 см способен выдержать легковую машину, но следует помнить, что выходить на лед в осеннее и весеннее время очень опасно.

Свойства снега и льда

Физики и химики долгое время изучали свойства льда и воды. Самое известное, а также важное свойство льда для человека - это его способность легко таять уже при нулевой температуре. Но для науки важны и другие физические свойства льда:

  • лед обладает прозрачностью, поэтому он хорошо пропускает солнечный свет;
  • бесцветность - лед не имеет цвета, но его с легкостью можно покрасить при помощи цветных добавок;
  • твердость - ледяные массы прекрасно сохраняют форму без каких-либо наружных оболочек;
  • текучесть - это частное свойство льда, присущее минералу только в некоторых случаях;
  • хрупкость - кусок льда можно с легкостью расколоть, не прикладывая больших усилий;
  • спайность - лед с легкостью раскалывается в тех местах, где он сросся по кристаллографической линии.

Лед: свойства вытеснения и чистоты

По своему составу у льда высокая степень чистоты, так как кристаллическая решетка не оставляет свободного места различным посторонним молекулам. Когда вода замерзает, то она вытесняет различные примеси, которые в ней когда-то растворились. Таким же образом можно получить очищенную воду в домашних условиях.

Но некоторые вещества способны затормаживать процесс замерзания воды. Например, соль в морской воде. Лёд в море образуется только при очень низких температурах. Удивительно, но процесс замерзания воды каждый год способен поддерживать самоочищение от разных примесей в течение многих миллионов лет подряд.

Секреты сухого льда

Особенности этого льда в том, что в своём составе он имеет углерод. Такой лед образуется только при температуре -78 градусов, но тает он уже при -50 градусах. Сухой лед, свойства которого позволяют пропустить стадию жидкостей, при нагревании сразу образуется пар. Сухой лед, как и его собрат - водяной, не имеет запаха.

А вы знаете, где применяют сухой лед? Благодаря его свойствам, этот минерал используют при транспортировке продуктов питания и медикаментов на дальние расстояния. А гранулы этого льда способны потушить воспламенение бензина. Ещё, когда сухой лед тает, он образует густой туман, поэтому его применяют на съемочных площадках для создания спецэффектов. Помимо всего перечисленного, сухой лед можно брать с собой в поход и в лес. Ведь когда он тает, то отпугивает комаров, различных вредителей и грызунов.

Что касается свойств снега, то эту удивительную красоту мы можем наблюдать каждую зиму. Ведь каждая снежинка имеет форму шестигранника - это неизменно. Но помимо шестиугольной формы, снежинки могут выглядеть по-разному. На формирование каждой из них влияет влажность воздуха, атмосферное давление и другие природные факторы.

Свойства воды, снега, льда удивительны. Важно знать ещё несколько свойств воды. Например, она способна принимать форму сосуда, в который ее наливают. При замерзании вода расширяется, а также у нее есть память. Она способна запоминать окружающую энергетику, а при замерзании она «сбрасывает» информацию, которую в себя впитала.

Мы рассмотрели природный минерал - лед: свойства и его качества. Продолжайте изучать науку, это очень важно и полезно!

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

Виды кристаллических решеток

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.
  • кристаллическая решетка.

Ионная кристаллическая решетка

Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

Атомная кристаллическая решетка

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные . Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой . Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

Молекулярная кристаллическая решетка

Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

Металлическая кристаллическая решетка

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

Кристаллические решетки, видео

И в завершение подробное видео пояснения о свойствах кристаллических решеток.