» » Старение клеток признаки старения клеток. Как мы стареем: Возрастные изменения в органах, тканях и клетках человека

Старение клеток признаки старения клеток. Как мы стареем: Возрастные изменения в органах, тканях и клетках человека

Старение клеток является многофакторным процессом и с незапамятных времен волнует ученых. Этот процесс включает эндогенные молекулярные программы клеточного старения, а также экзогенные влияния, приводящие к прогрессирующему вторжению в процессы выживаемости клеток.

С возрастом прогрессивно страдает ряд функций клеток. Стареющие клетки обладают сниженной способностью к поглощению питательных веществ и восстановлению хромосомных повреждений. Морфологические изменения в стареющих клетках, в которых снижается активность окислительного фосфорилирования в митохондриях и их вакуолизация, уменьшается эндоплазматическая сеть, снижается активность синтеза ферментов и рецепторов клеток. Какие преобразования происходят с ядром клетки в процессе старения.

Ядро КЛЕТКИ является местом хранения и реализации генетического материала - планов построения и регуляции процессов белкового синтеза в клетке.

ГЛАВНЫМИ КОМПОНЕНТАМИ ЯДРА ЯВЛЯЮТСЯ:

  • ядерная оболочка;
  • хроматин;
  • ядрышко;
  • ядерный матрикс.

Ядро всегда локализуется в определенном месте клетки. Основными функциями, которые выполняет ядро клетки, являются хранение, использование и передача генетической информации. Кроме того, ядро отвечает за образование субъединиц рибосом.

Ядро в клетке может находиться в двух состояниях: митотическом (во время деления) и интерфазном (между делениями). Во время интерфазы под микроскопом в ядре живой клетки видно только ядрышко, и оно кажется оптически пустым. Структуры ядра в виде нитей, зерен можно наблюдать только при действии на клетку повреждающих факторов, когда она переходит в пограничное состояние между жизнью и смертью. Из этого состояния клетка может вернуться к нормальной жизни или погибнуть.

ЯДЕРНАЯ ОБОЛОЧКА - основная функция - барьерная. Она отвечает за отделение содержимого ядра от цитоплазмы, ограничение свободного транспорта макромолекул между ядром и цитоплазмой, а также за создание внутриядерного порядка - фиксацию хромосомного материала. Ядерная оболочка состоит из внешней и внутренней ядерной мембраны.

Внешняя мембрана ядерной оболочки, непосредственно контактирующая с цитоплазмой клетки, имеет целый ряд структурных особенностей, которые позволяют отнести ее к собственно мембранной системе эндоплазматической сети. В первую очередь к таким особенностям относится наличие на ней со стороны гиалоплазмы многочисленных полирибосом, а сама внешняя ядерная мембрана может прямо переходить в мембраны гранулярной эндоплазматической сети.

Внутренняя ядерная мембрана связана с хромосомным материалом ядра. Со стороны кариоплазмы к внутренней ядерной мембране прилегает так называемый фибриллярный слой, состоящий из фибрилл, но он характерен не для всех клеток.

Ядерная оболочка не является сплошной. В ней имеются ядерные поры, которые образуются в результате слияния двух ядерных мембран. При этом формируются округлые сквозные отверстия. Эти отверстия ядерной оболочки заполнены сложноорганизованными глобулярными и фибриллярными структурами. Количество ядерных пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетке, тем больше пор на единицу поверхности клеточного ядра.

ХРОМАТИН (от греч. chroma - цвет, краска) - это основная структура интерфазного ядра. Химически он представляет собой комплекс белков и ДНК различной степени спирализации (закрученности). ДНК - это последовательность нуклеотидов, индивидуальная и неповторимая для каждого. Она представляет собой уникальный шифр или код, который обусловливает особенности строения, функционирования и развития (старения) организма. То есть особенности старения передаются по наследству.

Морфологически различают два вида хроматина: гетерохроматин и эухроматин. Гетерохроматин соответствует частично конденсированным в интерфазе участкам хромосом и является функционально неактивным. Эухроматин - это деконденсированные в интерфазе участки хромосом, функционально активный хроматин.

Во время митоза весь эухроматин максимально конденсируется и входит в состав хромосом. В этот период хромосомы не выполняют никаких синтетических функций. Иногда в отдельных случаях целая хромосома в период интерфазы может оставаться в конденсированном состоянии, при этом она имеет вид гладкого гетерохроматина. Например, одна из Х-хромосом соматических клеток женского организма подлежит гетерохроматизации на начальных стадиях эмбриогенеза (во время дробления) и не функционирует. Этот хроматин называется половым хроматином или тельцами Барра.

Белки хроматина составляют 60-70% от его сухой массы и представлены двумя группами:

  • гистоновыми белками;
  • негистоновыми белками.

Гистоновые белки (гистоны) - щелочные белки, содержащие основные аминокислоты (главным образом лизин, аргинин). Они располагаются неравномерно в виде блоков по длине молекулы ДНК. Один блок содержит 8 молекул гистонов, которые образуют нуклеосому. Нуклеосома образуется путем компактизации и сверхспирализации ДНК.

Негистоновые белки составляют 20% от количества гистонов и в интерфазных ядрах образуют внутри ядра структурную сеть, которая носит название ядерного белкового матрикса. Этот матрикс представляет основу, которая определяет морфологию и метаболизм ядра.

ЯДРЫШКО - самая плотная структура ядра, она является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активным синтезом РНК в интерфазе, но не является самостоятельной структурой или органеллой.

Ядрышко имеет неоднородную структуру и состоит из двух основных компонентов - гранулярного и фибриллярного. Гранулярный компонент представлен гранулами (созревающие субъединицы рибосом) и локализуется по периферии. Фибриллярный компонент представляет собой рибонуклеопротеидные тяжи предшественников рибосом, которые сосредоточены в центральной части ядрышка.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается, и ядрышки превращаются в плотные фибриллярные тяжи базофильной природы.

ЯДЕРНЫЙ МАТРИКС (кариоплазма) - это жидкая часть ядра, которая заполняет пространство между хроматином и ядрышками.

Кариоплазма состоит главным образом из белков, метаболитов, ионов. Частью ядерного матрикса является фиброзная пластинка ядерной оболочки. Ядерный скелет, вероятно, способствует образованию белковой основы, к которой прикрепляются петли ДНК.

ФИЗИОЛОГИЧЕСКОЕ СТАРЕНИЕ КЛЕТОК - это состояние необратимого прекращения роста. В основе старения организма лежит клеточное старение. Которое, в свою очередь, вызвано реорганизацией генома, происходящей в результате укорочения теломер, дефектов систем репарации ДНК.

Доказано, что в стареющих клетках происходит активация специфических генов, повреждаются регуляторы и стимулируются ингибиторы роста, а также включаются и другие генетические механизмы. Ученые предполагают, что генные дефекты могут быть обусловлены теломерическим укорочением хромосом.

Теломеры играют важную роль в стабилизации терминальных порций хромосом и прикреплении их к ядерному матриксу. Длина теломеров уменьшается у клеток людей старческого возраста. Обнаружена связь между длиной теломера и активостью теломеразы, в результате деятельности которой длина теломерных участков хромосом клетки увеличивается или сохраняется на постоянном уровне.

Клетки в возрасте не похожи на молодые, и проявляется это в накоплении лишних фрагментов ДНК и неправильных клеточных белков, а также в появлении аномальных структур в ядрышке (кластере белков и нуклеиновых кислот, расположенном в ядре клетки). Также эти клетки подвержены репликативному старению, то есть они способны делиться определенное число раз (около 50).

Ученые также установили, что в некоторых случаях возможен сброс счетчика . При этом удалось узнать, как активируется специальный ген NDT80. Чтобы убедиться в предполагаемой роли данного гена, исследователи активировали его в старой и уже не размножающейся клетке. Включение NDT80 принесло двойной эффект - клетка прожила вдвое дольше обычной, и у нее оказались исправлены возрастные дефекты в ядрышке. Это указывает на то, что в аномалиях ядрышка кроется один из ключей к клеточному старению (второй ключ, теломерный, изучен намного лучше). К сожалению, пока непонятно, как работает механизм обнуления клеточных часов. Известно только, что белок, кодируемый геном NDT80, является фактором транскрипции, то есть служит спусковым крючком - активирует другие гены в клетке.

Последователи свободно-радикальной теории старения считают, что приобретенные повреждения клеток при старении возникают под действием свободных радикалов. Причинами этих повреждений может быть воздействие ионизирующей радиации или прогрессирующее снижение активности антиоксидантных механизмов защиты, например, витамина Е. Кроме того, свободные радикалы вызывают повреждение нуклеиновых кислот как в ядре, так и митохондриях. Мутации и уничтожение митохондриальной ДНК с возрастом становятся просто «драматическими». Свободные радикалы кислорода катализируют также образование модификаций белков, включая ферменты, делая их чувствительными к повреждающему действию нейтральных и щелочных протеаз, содержащихся в цитозоле, что ведет к дальнейшему нарушению функций клетки.

Посттрансляционные изменения внутриклеточных и внеклеточных белков также возникают с возрастом. Одна из разновидностей таких изменений - неферментное гликозилирование белков. Например, связанное с возрастом гликозилирование белков хрусталика лежит в основе старческой катаракты.

Таким образом, процесс клеточного старения многообразен. Он запускается различными факторами, идет через разные сигнальные пути. В разных клетках процесс старения различен, наступает в разные моменты времени, но в любом случае приводит к дисфункции и смерти клетки. Точка в обсуждении причин клеточного старения и его влияния на общее старение организма еще не поставлена, и ученым только предстоит найти ответы на многочисленные вопросы, важные для разработки средств борьбы со старением.

  • КЛЕТОЧНАЯ КОСМЕТИКА CELLCOSMET & CELLMEN (ШВЕЙЦАРИЯ)
  • КОСМЕТИКА «ДОКТОР ШПИЛЛЕР БИОКОСМЕТИК» (DR.SPILLER )
  • ИНЪЕКЦИИ КРАСОТЫ

6057 0

Последовательность старения клеток организма

Начиная с работ Мино (Minot, 1908), Метальникова (1917), Шмальгаузена (1926), Коудри (Cowdry, 1939), идет линия исследований, утверждающая связь между специализацией, дифференциацией клеток, способностью их к делению и старением.

Вместе с потерей способности клеток к делению они теряют возможность существенно обновляться , создаются условия их ускоренного старения. Коудри (Cowdry, 1939) предложил классификацию, отражающую, с его точки зрения, эту связь между способностью клеток к делению и развитием в них старения.

К первой группе относятся клетки, существование которых начинается с митоза и кончается митозом (базальные клетки эпидермиса, сперматогонии и др.). Жизнь этих клеток коротка. Уловить в них развитие старения не удается. Вторая группа - более специализированные клетки, обладающие дифференцированным митозом: клетки, в которых можно проследить ряд возрастных изменений, таких как накопление гемоглобина, переход гемоцитобласта к нормобласту и эритроциту, появление кератина в коже. Третья группа - специализированные клетки с выраженными признаками старения.

Они проявляют способность к митозу только в особых условиях, например при повреждении. К ним относятся клетки печени, почек, щитовидной железы и др. Четвертая группа - высокодифференцированные клетки, неспособные к митозу ни при каких условиях (соматические мышечные волокна, нервные клетки и др.). В этих клетках развиваются отчетливые проявления старения.

Недостаток обычных классификаций последовательности старения отдельных клеток в независимом рассмотрении их друг от друга. В естественных условиях в процесс возрастных изменений вовлекаются сложнорегулируемые функциональные системы, развиваются старение одних клеток и адаптивные сдвиги в других. В этих условиях старение постмитотических клеток может оказывать различное влияние на активно делящиеся клеточные элементы. В условиях целостного организма старение клеток является сложным сплавом их собственных возрастных изменений и регуляторных, трофических влияний.

С этих позиций можно условно выделить 3 типа клеток:

А) клетки, которым свойственно первичное старение;
б) клетки, у которых старение является сплавом собственных возрастных изменений и влияний регуляторных, трофических, средовых, а также связанных с первичным старением других клеточных элементов;
в) клетки, у которых в естественных условиях существования старение в основном вторично и опосредовано через весь комплекс внутриорганизменных регуляторных влияний, включая и механизмы общей трофики - кровоснабжение, проницаемость барьеров и др. (Фролькис, 1970).

К первой группе следует отнести нервные клетки, многие соединительнотканные элементы; ко второй - мышечные волокна, клетки железистых образований, печени, почек; к третьей - эпидермис, эпителий во многих органах и др.

Клеткам третьей группы тоже свойственны свои возрастные изменения, однако темп и выраженность регуляторных сдвигов предваряют во многом эти изменения. Признание этого положения закономерно приводит к важному для биологии старения выводу - интимные механизмы старения различных клеток неоднородны; существует несколько типов старения клеток.

Кроме свойств клеток sui generis, темп и направленность их старения зависят от отношения их к определенной функциональной системе; поэтому структурно однородные элементы, относящиеся, по Коудри (Cowdry, 1939), к одной и той же группе, стареют в различном темпе.

Так, например, в старости неодинаково изменяются структура и функция артериол скелетной мышцы, почек, кишечника; мотонейронов, мышечных волокон, принимающих участие в акте сгибания и разгибания; различных структур одного и того же отдела ЦНС (например, гипоталамуса) и др.

Более того, существует корреляция в темпе развития старения различных структурных элементов в пределах одной функциональной системы (отличие в возрастных изменениях мотонейронов, периферических нервов, мышечных волокон, сосудов, рецепторов одного функционального двигательного комплекса по сравнению с другим).

При анализе механизмов старения, как правило, недоучитывается клеточная специфика , обычно стремятся найти, описать универсальный первичный механизм старения всех клеток. Вместе с тем конкретные механизмы старения нейрона, миокардиоцита, гепатоцита, секреторной клетки, фибробласта и т. д. отличаются во многом друг от друга.

В одних случаях механизмы старения связаны с первичными сдвигами в генетическом аппарате клеток, в других - с изменением в системе энергетического обеспечения клетки, в третьих - с нарушениями в процессах реактивности и транспорта веществ. Итак, последовательность старения различных клеток определяется уровнем их дифференцировки, специализации, митотической активностью и отношением к различным регулируемым функциональным системам.

Организм стареет не как сумма клеток, а как сложная биологическая система.

Вот почему так важно выяснение межклеточных взаимодействий, на основе которых можно понять генез возрастных изменений нейрогуморальной регуляции иммунитета, питания, движения и других функций организма.

Возрастные изменения в соединительнотканных элементах могут привести к нарастающим старческим сдвигам и в других системах организма, к склерозу внутренних органов при старении (Богомолец, 1938). Собел (Sobel, 1962) предполагает следующую последовательность событий: время -> уплотнение волокон соединительной ткани -> клеточная гипоксия -> ухудшение питания -> гибель паренхиматозных элементов, пролиферация мезенхимальных клеток и др.

По мнению Бюргера (Burger, 1960), многие соединительнотканные элементы относятся к брадитрофным тканям, характеризующимся пониженным метаболизмом. При старении сдвиги в метаболизме брадитрофных тканей, медленно прогрессируя, приводят к их существенным изменениям, оказывая влияние на старение всего организма.

Изменения соединительной ткани по-разному влияют на старение различных структур. В одних случаях сдвиги в них вторичны по отношению к первично стареющим постмитотическим клеткам; в других - могут стать одним из первичных механизмов, ведущих к старению активно делящихся клеточных элементов.

Структурные изменения клеток

В процессе старения в различных органах и тканях развиваются структурные изменения , обладающие органоспецифическими особенностями, но в то же время имеющие общие черты. К последним следует отнести: избыточное развитие и качественные изменения соединительной ткани; изменения стенки кровеносных капилляров с формированием волокнистых структур в утолщенном базальном слое и расширенном перикапиллярном пространстве (Ступина, Саркисов, 1978) (рис. 16, вкл.).



Рис. 16. Формирование фибриллярных структур в расширенном базальном слое стенки капилляра (обозначено стрелкой) и в расширенном перикапиллярном пространстве надпочечника старой крысы. Микрофото. Ув. 9000.


Наблюдаются атрофия и дистрофические изменения в отдельных клетках. Количество паренхиматозных клеток падает; это относится прежде всего к клеткам статических популяций. В последующих статьях мы приведем данные о потере нейронов в старости. Сато и Тауши (Sato, Tauchi, 1978), изучавшие несколько сотен аутопсий печени, почек, поджелудочной железы, считают, что уменьшение количества клеток паренхиматозных органов является фундаментальным признаком старческих изменений.

Вместе с тем оставшиеся и активно функционирующие клетки не уменьшаются в размерах, а часто увеличиваются, что следует расценивать как проявление компенсаторной гипертрофии в связи с утратой части клеток. Так, имеются указания на увеличение объема кардиомиоцитов (Левкова, 1974; Fleischer et al., 1978), нейронов (Межиборская, 1970; Давиденко, 1972), гепатоцитов (Watanabe et al., 1978) эпителиальных клеток различных паренхиматозных органов (Sato, Tauchi, 1978).

Увеличение объема клетки при этом происходит преимущественно за счет цитоплазмы; ядро увеличивается в меньшей степени, в результате чего ядерно-цитоплазматическое соотношение уменьшается. Важной компенсаторной реакцией является увеличение числа двуядерных и полиплоидных клеток (Watanabe et al., 1978), что рассматривают как активное состояние клеток в условиях ингибирования клеточного деления (Sato, Tauchi, 1973).

Ядра клеток, наряду с некоторым увеличением объема, изменяют свою форму. Для ядер старых клеток характерна неровная, фестончатая поверхность за счет многочисленных инвагинаций ядерных мембран (рис. 17).



Рис. 17. Множественные инвагинации ядра (Я) кардиомиоцита. Очаговое набухание митохондрий (М), разволокненне миофиламентов в сердце старой крысы. Микрофото. Ув. 12 000.


Происходящее при этом увеличение поверхности ядерных мембран рассматривается как компенсаторный процесс, ведущий к увеличению поверхности соприкосновения между ядром и цитоплазмой. Такие изменения формы ядер описаны в кардиомиоцитах (Ступина, 19756; Sachs et al., 1977), нейронах, эндотелиоцитах. Эндрю (Andrew, 1978) сообщает об аналогичных перестройках в ядрах эпителиальных клеток паренхиматозных органов.

В клетках наблюдается расширение перинуклеарного пространства между внутренней и наружной ядерными мембранами, с формированием цистерн, разделенных ядерными порами; при этом нередко отмечается расширение ядерных пор (Артюхина, 1979).

В ядрах увеличивается доля маргинально расположенного конденсированного хроматина и уменьшается доля диффузного хроматина. Аналогичные изменения описаны при старении клеток в культуре ткани (Van Gansen, 1979). При старении появляются так называемые ядерные включения, которые могут располагаться в самом ядре в виде фибриллярных пучков, тубуло-мембранных систем, вирусоподобных частиц; либо между мембранами ядра в виде мультивезикулярных и электронно-плотных телец; либо в цитоплазматических инвагинациях, чередуясь со складками ядерной мембраны.

Природа этих включений неизвестна, однако полагают, что они уменьшают «эффективный» ядерный объем. В процессе старения изменяется плотность цитоплазматического матрикса клетки. Как в клетках статических популяций, так и в других появляется резко просветленный цитоплазматический матрикс с явлениями гидратации, уменьшением количества гранул РНК; в других клетках матрикс, наоборот, слишком уплотнен, с очагами некробиоза и деструкции.

Один из постоянных признаков процесса старения клетки - морфологические изменения митохондрий.

Часть органелл имеет просветленный матрикс, расширенные межкристные промежутки, дискомплексированные кристы (рис. 17). Вместе с тем в старческом возрасте определенный процент митохондрий представляется значительно измененным в виде резкого набухания, с разрушением крист и внутренней мембраны или же со спирализацией и миелинизацией ее; появляются электронно-плотные митохондриальные включения (Wilson, Franks, 1975; Sohal, 1978), разрушается наружная мембрана (Nickerson, 1979).

Изменяются форма и размеры митохондрий - наряду с органеллами обычных для клетки размеров появляются крупные, иногда гигантские митохондрии, что рассматривается как компенсация редукции количества органелл, вызванной ингибированием деления митохондрий.

Гигантские митохондрии в клетках при старении описаны в кардиомиоцитах (Ступина, 1975б), нейронах (Артюхина, 1979), гладкомышечных клетках стенки вен (Фролькис, Евдокимов, 1979), в печени (Franks, 1974), в клетках щитовидной железы (Горбуноба, 1979). Имеются данные об уменьшении плотности митохондриального объема в клетке за счет числа этих органелл.

В миокарде увеличивается относительный объем митохондрий (Офицеров, Загоруйко, 1977; Sachs et al., 1977), что также можно рассматривать как компенсаторную перестройку в связи с дистрофическими изменениями в части митохондрий и нарушением их функций. Вместе с тем площадь митохондриальных мембран на единицу объема митохондрий снижается (Sachs et al., 1977).

В процессе старения происходят изменения в белоксинтезирующей системе клетки.

В клетках статических популяций наблюдаются расширение цистерн гранулярной и гладкой эндоплазматической сети, заполнение просвета цистерн электронно-плотным содержимым, тубулярными структурами; происходит уменьшение количества рибосом на мембранах, отмечаются уменьшение и лизис полисомальных розеток, рибосом (рис. 18) (Suzuki et al., 1978; Артюхина, 1979).



Рис. 18. Липофусцин и липидные гранулы (ЛФ), цистерны гранулярной эндоплазматической сети (ГЭС), бедные гранулами РНК в цитоплазме нейрона мамиллярного ядра головного мозга старой крысы. Микрофото. Ув. 30 000.


В клетках печени у старых животных эндоплазматическая сеть, как показал стереологический анализ, имеет меньшую площадь поверхности по сравнению с таковой у взрослых (Schmucker et al., 1978). В пластинчатом комплексе Гольджи при старении происходят редукция, рексис, уменьшение линейной площади поверхности, что отмечено в нейронах (рис. 18), гепатоцитах (Schmucker et al., 1978).

Расширение пузырьков и накопление в них жидких фракций и электронно-плотных гранул рассматриваются как результат застойных явлений, связанных со снижением обменных процессов между структурами аппарата Гольджи и цитоплазмой клетки (Артюхина, 1979).

Вместе с тем Манина (1978) в гипертрофированных цистернах обнаружила липопротеиды и считает, что пластинчатый комплекс в нервных клетках старых животных сохраняет высокую синтетическую и функциональную способность. В цитоплазме нейронов появляются так называемые окаймленные везикулы, находящиеся в интимной связи с элементами пластинчатого комплекса и лизосомами.

Довольно постоянным признаком старения клеток различных популяций является увеличение количества первичных лизосом , появляющихся в большом количестве в области перикариона, между митохондриями, вблизи очагов деструкции и свободно в цитоплазме. Значение этого факта может быть весьма многообразно, если учесть функциональную роль лизосом (Покровский, Тутельян, 1976).

Происходят и качественные изменения лизосом
- в них нарастает количество трудноперевариваемых веществ, изменяется активность лизосомальных ферментов в зависимости от типа клеток и вида ферментов (Asano et al., 1979; Knoock, 1979), наблюдается снижение стабильности лизосомальных мембран, приводящее к освобождению лизосомальных гидролаз и деструктивным изменениям в цитоплазме клеток статических популяций, а также в печени (Покровский, Тутельян, 1976).

Таким образом, участие лизосом в процессах старения может быть обусловлено:

1) повреждающей литической активностью внутри клетки - чрезмерной аутофагией, утечкой гидролаз через поврежденную мембрану лизосом;
2) экструзией ферментов вследствие изменения клеточной мембраны или гибели клетки, что ведет к повреждению соединительной ткани, сосудов, образованию коллагена, продуцированию антител;
3) нарушением литической активности как следствие блокирования непереваренными продуктами.

Наряду с нарастанием количества первичных лизосом в клетках в процессе старения происходит формирование вторичных лизосом - аутофагического типа, а также остаточных телец, которые могут участвовать в процессах переваривания, пока не будут полностью блокированы непереваренными продуктами.

Остаточные тельца, нагруженные липофусцином, при старении обнаруживаются в возрастающем количестве в нейронах и глиальных клетках, миокардиоцитах, гепатоцитах, клетках эндокринных желез, а также в остеобластах, остеоцитах, эндотелиальных клетках (рис. 18) (Давиденко, 1976; Шапошников, 1978; Артюхина, 1979; Квитницкая-Рыжова, 1980).

Многие исследователи связывают возрастное накопление липофусцина с лизосомами (Покровский, Тутельян, 1976) и структурами пластинчатого комплекса (Артюхина, 1979). Следует отметить исследования Карнаухова (1971), показавшего наличие в липофусцине миоглобиноподобных веществ и каротиноидов, что дало возможность автору связать липофусцин с созданием внутриклеточного депо кислорода, позволяющего клеткам теплокровных животных компенсировать малую скорость поступления кислорода в условиях гипоксии, вызванной старением или экспериментальной гипоксией.

Некоторые исследователи считают, что наружная клеточная мембрана наиболее устойчива в процессе старения (Артюхина, 1979). Действительно, сохраняется непрерывность клеточной мембраны, так как нарушение целости мембраны ведет к гибели клетки.

Однако в процессе старения в наружной клеточной мембране наблюдаются не только функциональные, но и структурные изменения. В ней отмечены очаговые уплотнения и утолщения. Кроме того, обнаруживаются структурные изменения, свидетельствующие о нарушении ее функции.

Так, в эндотелиальных клетках капилляров в процессе старения наблюдается уменьшение интенсивности микропиноцитоза, уменьшение количества микроворсинок и микровыростов (Горячкина и др., 1977; Ступина и др., 1978а), что особенно демонстративно в условиях повышенной функциональной нагрузки. Демонстративны также возрастные изменения специализированных мембранных структур. Так, в гладкомышечных клетках нижней полой вены наряду с очаговым утолщением клеточных мембран отмечено уменьшение количества нексусов (Фролькис, 1973). Изменение щелевидных контактов при старении выявлено в клетках культуры ткани фибробластов человека (Kelley et al., 1979).

Таким образом, в процессе старения во всех компонентах клеток наблюдаются структурные изменения, имеющие гетерогенный характер. Наряду с атрофированными клетками, имеющими выраженные возрастные изменения, наблюдаются сохранные клетки, ничем не отличающиеся от клеток молодых организмов.

Н.И. Аринчин, И.А. Аршавский, Г.Д. Бердышев, Н.С. Верхратский, В.М. Дильман, А.И. Зотин, Н.Б. Маньковский, В.Н. Никитин, Б.В. Пугач, В.В. Фролькис, Д.Ф. Чеботарев, Н.М. Эмануэль

Статья на конкурс «био/мол/текст»: Уже более 50 лет прошло с тех пор, как на культуре фибробластов доказан феномен старения клеток, но существование старых клеток в организме долгое время подвергалось сомнению. Не было доказательств, что старение отдельных клеток играет важную роль в старении всего организма . В последние годы были открыты молекулярные механизмы старения клеток, их связь с онкологическими заболеваниями и воспалением. По современным представлениям, воспаление играет ведущую роль в генезе практически всех возраст-зависимых заболеваний, которые в конечном итоге приводят организм к смертельному исходу. Оказалось, что старые клетки, с одной стороны, выступают в качестве супрессоров опухолей (поскольку необратимо перестают делиться сами и снижают риск трансформации окружающих клеток), а с другой - специфический метаболизм старых клеток может вызывать воспаление и перерождение соседних предраковых клеток в злокачественные. В настоящее время проходят клинические испытания лекарственных препаратов, избирательно элиминирующих старые клетки в органах и тканях, тем самым предотвращая дегенеративные изменения органов и рак.

В организме человека присутствует примерно 300 типов клеток, и все они делятся на две большие группы: одни могут делиться и размножаться (то есть, они митотически компетентны ), а другие - постмитотические - не делятся: это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

В нашем организме существуют обновляющиеся ткани, в которых есть пул постоянно делящихся клеток, которые заменяют отработанные или погибающие клетки. Такие клетки есть в криптах кишечника, в базальном слое эпителия кожи, в костном мозге (кроветворные клетки). Обновление клеток может происходить довольно интенсивно: так, клетки соединительной ткани в поджелудочной железе заменяются каждые 24 часа, клетки слизистой желудка - каждые три дня, лейкоциты - каждые 10 дней, клетки кожи - каждые шесть недель, примерно 70 г пролиферирующих клеток тонкого кишечника удаляется из организма ежедневно .

Стволовые клетки, существующие практически во всех органах и тканях, способны делиться неограниченно. Регенерация тканей происходит за счет пролиферации стволовых клеток, которые могут не только делиться, но и дифференцироваться в клетки той ткани, регенерация которой происходит. Стволовые клетки есть в миокарде, в головном мозге (в гипокампе и в обонятельных луковицах) и в других тканях. Это открывает большие надежды в плане лечения нейродегенеративных заболеваний и инфаркта миокарда .

Постоянно обновляющиеся ткани способствуют увеличению продолжительности жизни. При делении клеток происходит омоложение тканей: новые клетки приходят на место поврежденных, при этом интенсивнее происходит репарация (устранение повреждений ДНК) и возможна регенерация при повреждении тканей. Не удивительно, что у позвоночных значительно выше продолжительность жизни, чем у беспозвоночных - тех же насекомых, у которых во взрослом состоянии клетки не делятся.

Но в то же время обновляющиеся ткани подвержены гиперпролиферации, что ведет к образованию опухолей, в том числе - злокачественных. Это происходит из-за нарушений регуляции деления клеток и повышенной частоты мутагенеза в активно делящихся клетках. По современным представлениям, чтобы клетка приобрела свойство злокачественности, ей необходимо 4–6 мутаций . Мутации возникают редко, и для того, чтобы клетка стала раковой - это подсчитано для фибробластов человека - должно произойти около 100 делений (такое число делений обычно происходит у человека примерно в возрасте 40 лет) .

Стоит, в прочем, помнить, что мутация мутации рознь, и согласно новейшим геномным исследованиям в каждом поколении человек приобретает около 60 новых мутаций (которых не было в ДНК у его родителей). Очевидно, что большая часть из них вполне нейтральная (см. «Перевалило за тысячу: третья фаза геномики человека »). - Ред.

В целях защиты от самого себя, в организме сформировались специальные клеточные механизмы супрессии опухолей . Один из них - репликативное старение клеток (сенесценция ), заключающееся в необратимой остановке деления клетки в стадии G1 клеточного цикла . При старении клетка перестает делиться: она не реагирует на ростовые факторы и становится устойчивой к апоптозу.

Лимит Хейфлика

Феномен старения клеток был впервые открыт в 1961 г. Леонардом Хейфликом с коллегами на культуре фибробластов. Оказалось, что клетки в культуре фибробластов человека при хороших условиях живут ограниченное время и способны удваиваться примерно 50±10 раз, - и это число стали называть лимитом Хейфлика , . До открытия Хейфлика господствовала точка зрения, что клетки бессмертны, а старение и смерть - это свойство организма в целом.

Эта концепция считалась неопровержимой во многом благодаря экспериментам Карреля, который поддерживал культуру клеток сердца цыпленка 34 года (ее выбросили лишь после его смерти). Однако, как выяснилось впоследствии, бессмертие культуры Карреля было артефактом, поскольку вместе с эмбриональной сывороткой, которая добавлялась в культуральную среду для роста клеток, туда попадали и сами эмбриональные клетки (и, скорее всего, культура Карреля стала уже далеко не тем, чем была в начале).

По-настоящему бессмертными являются раковые клетки. Так, клетки HeLa , выделенные в 1951 г. из опухоли шейки матки Генриетты Лакс , до сих пор используются цитологами (в частности, c помощью клеток HeLa была разработана вакцина против полиомиелита). Эти клетки даже побывали в космосе.

О захватывающей истории бессмертия Генриетты Лакс см. в статье «Бессмертные клетки Генриетты Лакс », а также «Наследники клеток HeLa ». - Ред.

Как выяснилось, лимит Хейфлика зависит от возраста: чем старше человек, тем меньшее число раз удваиваются его клетки в культуре. Интересно, что замороженные клетки при разморозке и последующем культивировании как будто помнят число делений до замораживания. Фактически, внутри клетки существует «счетчик делений», и по достижении определенного предела (лимита Хейфлика) клетка перестает делиться - становится сенесцентной. Сенесцентные (старые) клетки имеют специфическую морфологию - они крупные, уплощенные, с большими ядрами, сильно вакуолизированы, у них меняется профиль экспрессии генов. В большинстве случаев они устойчивы к апоптозу.

Однако старение организма нельзя свести только к старению клеток. Это значительно более сложный процесс. Старые клетки есть и в молодом организме, но их мало! Когда же с возрастом сенесцентные клетки накапливаются в тканях, начинаются дегенеративные процессы, которые приводят к возраст-зависимым заболеваниям. Один из факторов этих заболеваний - так называемое старческое «стерильное» воспаление , которое связано с экспрессией провоспалительных цитокинов старыми клетками.

Еще один важный фактор биологического старения - строение хромосом и их кончиков - теломеров.

Теломерная теория старения

Рисунок 1. Теломеры - концевые участки хромосом. Поскольку хромосом у человека 23 пары (то есть, 46 штук), теломер получается 92.

В 1971 году наш соотечественник Алексей Матвеевич Оловников предположил, что лимит Хейфлика связан с «недорепликацией» концевых участков линейных хромосом (они имеют специальное название - теломеры ). Дело в том, что в каждом цикле деления клетки теломеры укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого кончика , . Кроме того, Оловников предсказал существование теломеразы (фермента, добавляющего повторяющиеся последовательности ДНК на концы хромосом), исходя из того факта, что иначе в активно делящихся клетках ДНК быстро бы «съелась», и генетический материал был бы утерян. (Проблема в том, что активность теломеразы угасает в большинстве дифференцированных клеток.)

Теломеры (рис. 1) играют важную роль: они стабилизируют кончики хромосом, которые иначе, как говорят цитогенетики, стали бы «липкими», т.е. подверженными разнообразным хромосомным аберрациям, что приводит к деградации генетического материала. Теломеры состоят из повторяющихся (1000–2000 раз) последовательностей (5′-TTAGGG-3′), что в сумме дает 10–15 тысяч нуклеотидных пар на каждый хромосомный кончик. На 3′-конце теломеры имеют довольно длинный однонитевой участок ДНК (150–200 нуклеотидов), участвующий в образовании петли по типу лассо , (рис. 2). С теломерами связано несколько белков, образующих защитный «колпачок» - этот комплекс называется шелтерином (рис. 3). Шелтерин предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы.

Рисунок 2. Состав и структура теломер. Многократное деление клетки в случае отсутствия активности теломеразы ведет к укорочению теломер и репликативному старению .

Рисунок 3. Строение теломерного комплекса (шелтерина ). Теломеры находятся на концах хромосом и состоят из тандемных повторов TTAGGG, которые заканчиваются 32-членным выступающим одноцепочечным фрагментом. С теломерной ДНК связан шелтерин - комплекс из шести белков: TRF1, TRF2, RAP1, TIN2, TPP1 и POT1.

Незащищенные концы хромосом воспринимаются клеткой как повреждение генетического материала, что активирует репарацию ДНК . Теломерный комплекс вместе с шелтерином «стабилизирует» хромосомные кончики, защищая всю хромосому от разрушения. В сенесцентных клетках критическое укорочение теломер нарушает эту защитную функцию , в связи с чем начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние сенесцентности - необратимой остановки клеточного цикла. При этом клетка гарантированно не может размножаться, а значит, не сможет и сформировать опухоль. В клетках с нарушенной способностью к сенесценции (которые размножаются, несмотря на дисфункцию теломер), образуются хромосомные аберрации.

Длина теломер и скорость их укорочения зависит от возраста. У человека длина теломер варьирует от 15 тысяч нуклеотидных пар (т.н.п.) при рождении до 5 т.н.п. при хронических заболеваниях. Длина теломер максимальна у 18-месячных детей, а затем она быстро снижается до 12 т.н.п. к пятилетнему возрасту. После этого скорость укорачивания снижается .

Теломеры укорачиваются у разных людей с разной скоростью. Так, на эту скорость сильно влияют стрессы. Э. Блекберн (лауреат Нобелевской премии по физиологии и медицине 2009 г.) установлено, что женщины, постоянно испытывающие стресс (например, матери хронически больных детей), имеют значительно более короткие теломеры по сравнению со сверстницами (примерно на десять лет!). Лабораторией Э. Блекберн разработан коммерческий тест для определения «биологического возраста» людей на основании длины теломер.

Любопытно, что у мышей очень длинные теломеры (50–40 т.н.п., по сравнению с 10–15 т.н.п. у человека). У некоторых линий лабораторных мышей длина теломер достигает 150 т.н.п. Более того, у мышей теломераза всегда активна, что не дает теломерам укорачиваться. Однако это, как всем известно, не делает мышей бессмертными. Мало того: у них опухоли развиваются намного чаще, чем у людей, что позволяет предположить, что укорачивание теломер как механизм защиты от опухолей у мышей не работает .

При сравнении длины теломер и теломеразной активности у разных млекопитающих оказалось, что виды, для которых характерно репликативное старение клеток, имеют большую продолжительность жизни и большой вес. Это, например, киты, продолжительность жизни которых может достигать 200 лет. Таким организмам репликативное старение просто необходимо, поскольку слишком большое число делений порождает множество мутаций, с которыми необходимо как-то бороться. Предположительно, репликативное старение и есть такой механизм борьбы, который сопровождается к тому же репрессией теломеразы .

Старение диференцированных клеток происходит иначе. Стареют и нейроны, и кардиомиоциты, а ведь они не делятся! Например, в них накапливается липофусцин - старческий пигмент, который нарушает функционирование клеток и запускает апоптоз. В клетках печени и селезенки с возрастом накапливается жир.

Связь репликативного старения клеток со старением организма, строго говоря, не доказана, но возрастная патология сопровождается и старением клеток (рис. 4). Злокачественные новообразования пожилого возраста в большинстве своем связаны с обновляемыми тканями. Онкологические заболевания в развитых странах - одна из основных причин заболеваемости и смертности, причем независимым фактором риска раковых заболеваний является просто... возраст. Число смертей от опухолевых заболеваний увеличивается с возрастом по экспоненте, так же как и общая смертность. Это говорит нам, что между старением и канцерогенезом существует фундаментальная связь.

Рисунок 4. Гистохимически окрашенные на наличие β-галактозидазной активности фибробласты человека линии WI-38. A - молодые; B - старые (сенесцентные).

Теломераза - фермент, который был предсказан

В организме должен существовать механизм, компенсирующий укорочение теломер, - такое предположение сделал А.М. Оловников . Действительно, в 1984 г. такой фермент был открыт Кэрол Грейдер и назван теломеразой . Теломераза (рис. 5) - это обратная транскриптаза, которая увеличивает длину теломер, компенсируя их недорепликацию. В 2009 году Э. Блэкберн, К. Грэйдер и Д. Шостак за открытие этого фермента и цикл работ по изучению теломер и теломеразы была присуждена Нобелевская премия (см: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе » ).

Рисунок 5. Теломераза содержит каталитический компонент (обратную транскриптазу ТERT), теломеразную РНК (hTR или TERC), содержащую две копии теломерного повтора и являющуюся матрицей для синтеза теломеров, и белок дискерин.

По данным Э. Блекберн, теломераза участвует в регуляции активности примерно 70 генов. Теломераза активна в зародышевых и эмбриональных тканях, в стволовых и пролиферирующих клетках. Ее обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. В настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы. Но в большинстве соматических клеток взрослого организма теломераза не активна.

В состояние сенесценции клетку могут привести многие стимулы - дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др. Фактически, клетки перестают делиться - становятся сенесцентными - в ответ на потенциально вызывающие рак события.

Страж генома

Дисфункция теломер, которая происходит при их укорачивании либо нарушении работы шелтерина, активирует белок р53 . Этот транскрипционный фактор приводит клетку в состояние сенесценции, либо вызывает апоптоз . При отсутствии р53 развивается нестабильность хромосом, характерная для карцином человека. Мутации в белке р53 обнаруживаются в 50% аденокарцином груди и в 40–60% случаев колоректальной аденокарциномы. Поэтому p53 зачастую называют «стражем генома».

Теломераза реактивируется в большинстве опухолей эпителиального происхождения, которые характерны для пожилых людей. Считается, что реактивация теломеразы - важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит Хейфлика. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что в отсутствии p53 чаще всего приводит к злокачественным новообразованиям.

О молекулярных механизмах старения клеток

Рисунок 6. Схема клеточного цикла. Клеточный цикл подразделяют на четыре стадии: 1. G1 (предсинтетическая) - период, когда клетка готовится к репликации ДНК. В этой стадии может произойти остановка клеточного цикла в случае обнаружения повреждений ДНК (на время репарации). Если обнаруживаются ошибки в репликации ДНК, и они не могут быть исправлены репарацией, клетка не переходит на стадию S. 2. S (cинтетическая) - когда происходит репликация ДНК. 3. G2 (постсинтетическая) - подготовка клетки к митозу, когда происходит проверка точности репликации ДНК; если обнаружены недореплицированные фрагменты или другие нарушения в синтезе, переход на следующую стадию (митоз) не происходит. 4. М (митоз) - формирование клеточного веретена, сегрегация (расхождение хромосом) и формирование двух дочерних клеток (собственно деление).

Чтобы были понятны молекулярные механизмы перехода клетки в состояние сенесцентности, я напомню вам, как происходит деление клетки.

Процесс размножения клеток называют пролиферацией . Время существования клетки от деления до деления именуют клеточным циклом . Процесс пролиферации регулируется как самой клеткой - аутокринными ростовыми факторами, - так и ее микроокружением - паракринными сигналами.

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы - это в основном ростовые факторы и межклеточные контактные сигналы. Ростовые факторы обычно имеют пептидную природу (к настоящему времени их известно около 100). Это, например, фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран, эпителиальный фактор роста, различные цитокины - интерлейкины, фактор некроза опухолей, колониестимулирующие факторы и т.д. После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл (рис. 6).

Клеточный цикл регулируется циклин-зависимыми киназами , разными для каждой стадии клеточного цикла. Они активируются циклинами и инактивируются рядом ингибиторов. Цель такой сложной регуляции - обеспечить синтез ДНК с как можно меньшим числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал. Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» цикла: если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК . Если нарушения структуры ДНК удается исправить - клеточный цикл продолжается. Если нет - клетке лучше «покончить с собой» (путем апоптоза), чтобы избежать вероятности превращения в раковую.

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами опухолей, среди которых p53 и pRB, связанные с ингибиторами циклин-зависимых киназ. Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21. Транскрипционный фактор р53 активируется при повреждениях ДНК, и функция его заключается в удалении из пула реплицирующихся клеток тех, которые являются потенциально онкогенными (отсюда и прозвище р53 - «страж генома»). Данное представление подтверждается тем фактом, что мутации р53 обнаруживают в ~50% случаев злокачественных опохолей. Другое проявление активности р53 связано с апоптозом наиболее поврежденных клеток.

Сенесценция клеток и возраст-зависимые заболевания

Рисунок 7. Взаимосвязь между старением клеток и старением организма.

Сенесцентные клетки накапливаются с возрастом и способствуют возрастным заболеваниям. Они снижают пролиферативный потенциал ткани и истощают пул стволовых клеток, что приводит к дегенеративным нарушениям ткани и снижает способность к регенерации и обновлению.

Сенесцентные клетки характеризуются специфической экспрессией генов: они секретируют воспалительные цитокины и металлопротеиназы, разрушающие межклеточный матрикс. Получается, что старые клетки обеспечивают вялотекущее старческое воспаление, а накопление старых фибробластов в коже служит причиной возрастного снижения способности к заживлению ран (рис. 7). Старые клетки также стимулируют пролиферацию и малигнизацию близлежащих предраковых клеток, благодаря секреции эпителиального фактора роста .

Сенесцентные клетки накапливаются во многих тканях человека, присутствуют в атеросклеротических бляшках, в язвах кожи, в пораженных артритом суставах, а также в доброкачественных и пренеопластических гиперпролиферативных поражениях простаты и печени. При облучении раковых опухолей некоторые клетки также переходят в состояние сенесценции, тем самым обеспечивая рецидивы заболевания.

Таким образом, клеточное старение демонстрирует эффект отрицательной плейотропии, суть которого состоит в том, что хорошее для молодого организма, может стать плохим для старого. Самый яркий пример - процессы воспаления. Выраженная реакция воспаления способствует быстрому выздоровлению молодого организма при инфекционных заболеваниях. В пожилом же возрасте активные воспалительные процессы приводят к возрастным заболеваниям. Сейчас принято считать, что воспаление играет определяющую роль практически при всех возраст-зависимых заболеваниях, начиная с нейродегенеративных.

Ученым давно было интересно, как происходит старение на клеточном уровне. Современные методы исследований дали возможность понять, как происходит клеточное старение. А также понять, есть ли надежда, что когда-нибудь человечество сможет избежать болезней, старения и смерти. Как происходит клеточное старение?

Механизм старения клеток

Исследователи изучили механизм старения клеток. Этот вопрос всегда был темой особого внимания ученых, так как они хотели узнать, почему люди болеют, стареют и умирают, а также можно ли избежать старения. Проще сказать, можно ли вылечить старость и всегда оставаться молодым.

Во время проведения исследований ученые установили, что клеточное старение происходит по причине потери клетками способности делиться и восстанавливать ткани организма. Процесс старения в клетках вызывается за счет самоускоряющегося повреждения генома, которое способствует нарушению в ДНК, что приводит к выбросу веществ, которое активизирует новые нарушения в коде ДНК.

Механизм старения стал понятен благодаря построению математической модели живой клетки организма. Ученые из университета Ньюкасла (Британия) и университета Ульма (Германия) использовали для этого последние достижения в сфере лабораторных исследований, с помощью которых и был обнаружен процесс старения клеток. Старение клеток напрямую связано с нарушением способности клетки к делению, живые ткани при этом перестают регенерироваться и выполняют свои функции все менее эффективно. Помимо этого, клеточное старение способствует хаотичному размножению клеток, а это приводит к развитию онкологических заболеваний.

Молекулярный механизм старения клеток происходит из-за существования так называемой динамической петли обратной связи, которая запускает реакцию повреждения ДНК, через несколько дней это явление приводит клетку в состояние глубокой клеточной старости.

Спираль старения, которая запущена повреждением ДНК, приводит к расстройству функций клеточных митохондрий, перерабатывающих кислород и питательные вещества в молекулы аденозинтрифосфата, который и является источником энергии для большинства биохимических процессов организма. Поврежденные митохондрии образуют большое количество химически активных частиц (свободных радикалов), они также способствуют повреждению ДНК, которое снова провоцируют выброс свободных радикалов. Таким образом, этот процесс нарастает, вскоре клетка теряет способности делиться и стареет.

Можно ли остановить старение?

Изучив механизм старения клеток, ученые пришли к выводу, что полученные в исследовании результаты помогут создать лекарства, которые способны оказать воздействие на процесс старения, происходящий в клетках. А это дает надежду, что в будущем человечество избавится от многих заболеваний, которые связаны со старением организма. Можно ли остановить старение? Вероятно, все же – нет!

Несмотря на универсальность, процессу старения трудно дать четкое определение. С возрастом происходят физиологические и структурные изменения почти во всех системах органов. При ста­рении имеют большое значение генетические и социальные фак­торы, характер питания, а также связанные с возрастом болез­ни - атеросклероз, сахарный диабет, остеоартроз. Повреждения клеток, обусловленные возрастом, также являются важным ком­понентом старения организма.

С возрастом прогрессивно страдает ряд функций клеток. Сни­жается активность окислительного фосфорилирования в мито­хондриях, синтеза ферментов и рецепторов клеток. Стареющие клетки обладают сниженной способностью к поглощению пита­тельных веществ и восстановлению хромосомных повреждений. К морфологическим изменениям в стареющих клетках относятся неправильные и дольчатые ядра, полиморфные вакуолизированные митохондрии, уменьшение эндоплазматической сети и де­формация пластинчатого комплекса. Одновременно происходит накопление пигмента липофусцина.

Старение клеток является многофакторным процессом. Он включает эндогенные молекулярные программы клеточного старения, а также экзогенные влияния, приводящие к прогресси­рующему вторжению в процессы выживаемости клеток.

Феномен клеточного старения интенсивно изучается в опытах in vitro. Показано, что в стареющих клетках происходит актива­ция специфических для старения генов, повреждаются гены - регуляторы роста, стимулируются ингибиторы роста, а также включаются и другие генетические механизмы.

Предполагают, что генные дефекты могут быть обусловлены телометрическим укорочением хромосом. Теломеры играют важную роль в стабилизации терминальных порций хромосом и прикреплении их к ядерному матриксу. Например, длина теломеров уменьшается в последних пассажах культуры клеток и в культуре клеток людей старческого возраста. Обнаружена связь между длиной теломера и активностью теломеразы.

Приобретенные повреждения клеток при старении возника­ют под действием свободных радикалов. Причинами этих повре­ждений может быть воздействие ионизирующей радиации или прогрессирующее снижение активности антиоксидантных меха­низмов защиты, например витамина Е, пероксидазы глютатиона. Повреждение клетки свободными радикалами сопровождается накоплением липофусцина, однако сам по себе пигмент не токси­чен для клетки. Кроме того, СПОЛ и свободные радикалы вызы­вают повреждение нуклеиновых кислот как в ядре, так и мито­хондриях. Мутации и уничтожение митохондриальной ДНК с воз­растом становятся просто драматическими. Свободные радикалы кислорода катализируют также образование модификаций бел­ков, включая ферменты, делая их чувствительными к поврежда­ющему действию нейтральных и щелочных протеаз, содержа­щихся в цитозоле, что ведет к дальнейшему нарушению функций клетки.

Посттрансляционные изменения внутриклеточных и внекле­точных белков также возникают с возрастом. Одна из разновидностей таких изменений - неферментное гликозилирование белков. Например, связанное с возрастом гликозилирование бел­ков хрусталика лежит в основе старческой катаракты.

Наконец, имеются данные о нарушении образования стрессорных белков in vitro у экспериментальных животных при ста­рении. Образование стрессорных белков - важнейший меха­низм защиты от различных стрессов.