» » Круговорот углерода. Принципы и значение

Круговорот углерода. Принципы и значение

Нужно отметить тот факт, что абсолютно вся жизнь на Земле имеет в своем основании химические элементы углеродного типа. Каждая составляющая, которая принадлежит живому организму, имеет строение скелета углеродного типа. Словом, углерод с нами везде и всюду.

К тому же, атомы, относящиеся, непосредственно, к углероду, непрерывно осуществляют миграцию из одной области биосферы, которая принадлежит более узкой оболочке земли и на которой есть жизнь, в совершенно иную. Если основываться на примерах, то круговорот представленного элемента в природе можно проконтролировать, но только на этапе динамики.

Наиболее важные и значимые запасы углерода представляются в виде диоксида углерода, которые, так или иначе распространены в атмосфере. Именно поэтому, стоит изучить все те составляющие углекислого газа, которые содержатся в атмосфере.

Важным этапом является то, что растения осуществляют процесс поглощения молекул, после чего и происходит превращение атома в самые разные воссоединения органического типа. Этот процесс является неотъемлемой частью структуры всех растений на земле.

Помимо всего этого, углерод способен оставаться и производить все важные процессы до тех пор, пока растение не придет к своему концу жизни. Как правило, в таком случае, все молекулы идут напрямую в пищу в виде редуцента. Стоит напомнить, что редуцент, в свою очередь, является тем организмом, который питается омертвевшими составляющими органического типа, после чего идет полное разрушение его до самых элементарных соединений антибазисной категории.

Так, на завершающем этапе, представленный химический элемент возвращается в среду в вариации газа углекислой категории. Обозначение, которого известно всем – общепринятая формула СО2.

Стоит не забывать о том, что растения могут быть поглощены животными травоядного класса. На таком этапе, элемент возвращается либо обратно в атмосферу, либо же животные травоядного класса подвергаются съедению более хищными видами фауны. В первом случае, процесс дыхания осуществляется тогда, когда животное разлагается на самом последнем этапе.

Второй процесс может быть осуществим только после того, как углерод возвратится сразу же в живую среду. Растения также могут просто погибнуть и в завершении, оказаться под земной корой. Если такой процесс все же осуществился, то растения преобразуются в топливо ископаемого типа, к примеру, в уголь.

Если же исходные элементы углекислого газа просто растворятся в воде морского типа, то может произойти следующее:

  • Химический элемент возвращается обратно в живую среду. Именно эта вариация совместного обмена газами между океаном и атмосферой, происходит очень часто. Точно с таким же успехом, представленный химический элемент может войти в строение растений или же животного организма – обитателя морских просторов.
  • В случае если химический элемент войдет в структуру отложений осадочного типа, то он просто вымоется из живой среды и не усвоится. В процессе всего того времени, пока существует планета Земля, углерод всегда замещался углекислым газом, который в свою очередь попадал в атмосферу при извержениях вулканического типа.

На сегодняшний день, ко всем перечисленным факторам прибавились еще и все те выбросы, которые непосредственно образуются при процессе сжигания топлива ископаемого класса. В последнее время ощутимым камнем преткновения является то, что правительства различных стран уже несколько лет пытаются прийти к международному соглашению в углекислого газа.

Но ученые еще не могут быть уверены в том, что процесс накопления углекислого газа в живой среде можно приостановить одними лишь посадками растений и обширных лесопосадок. Надо отметить, что такой процесс как круговорот углерода в живой среде еще не является до конца открытым. Ученые постоянно работают над этим, и с каждым годом в науке происходят еще более удивительные открытия.

Всем известны законы сохранения энергии и сохранения материи.

Атомы различных химических элементов переходят из одного соединения в другое, но ни материя, ни энергия не исчезают: они участвуют только в своеобразных круговоротах.

Одним из таких круговоротов, обусловленных наличием жизни на Земле и действием солнечной энергии, является круговорот углерода .

Воздух у поверхности Земли содержит ничтожное количество (6,03 процента) углекислого газа, или, иначе, углекислоты. Благодаря хлорофиллу в зеленых частях растений происходит образование богатых энергией веществ за счет соединения углекислоты воздуха и воды. Таким образом, углекислый газ постоянно связывается и удаляется из атмосферы.

И тут может возникнуть вопрос: а не наступит ли такой момент, когда воздух лишится углекислоты и растения не смогут жить на Земле?

На этот вопрос можно ответить точным подсчетом. Общее количество углекислоты в земной атмосфере равно приблизительно 1 500 миллиардам тонн. В этом количестве углекислоты содержится 410 миллиардов тонн углерода. Кстати, в разведанных запасах каменного угля углерода гораздо больше.

Годовое производство пищевого сахара во всем мире содержит около 10 тысяч тонн углерода. Стало быть, сахарное производство могло бы связать всю углекислоту воздуха за 41 миллион лет! И тогда жизнь зеленых растений прекратилась бы, а вслед за этим погибли бы от голода и остальные живые существа. Но это никогда не может произойти, потому что одновременно со связыванием углерода идет и обратный процесс - его освобождение.

Когда растение умирает, тело его становится достоянием бесчисленных и вездесущих бактерий. Происходят процессы брожения и гниения; они приводят к тому, что весь связанный углерод освобождается и в виде углекислоты возвращается в атмосферу.

Часть богатых энергией углесодержащих соединений попадает в пищу животным. Поедая сахароподобиые вещества - крахмал, клетчатку и прочее, они используют находящуюся в них энергию, а углерод в виде углекислоты возвращают в атмосферу.

Но случается иногда и так, что большие количества углерода надолго выходят из круговорота: иначе значительные массы растительного вещества скопляются в таких условиях, при которых разложение их микроорганизмами (гниение) не происходит. Так образуется, например, торф на дне болота, где без доступа воздуха происходит обугливание, то есть накопление углерода. Подобным образом под наслоением песка и глин обугливались массы растительных остатков и образовали каменный уголь.

Образование нефти в результате разложения животных и растительных остатков также связывает углерод.

Весьма значительные количества углерода и с ним энергии оказываются упрятанными глубоко в недрах земли, где они ждут человека, который извлечет эти богатства на поверхность земли. Сжигая уголь и торф, мы освобождаем энергию и возвращаем атмосфере соответственное количество углекислого газа. Он снова связывается растениями и вновь входит в общий круговорот углерода.

Кроме образования каменного угля, торфа и нефти, существует еще один процесс, который сопровождается «пленением» больших количеств углерода: он заключается в образовании гигантских отложений мела и известняка. Огромные массы морских животных - кораллы, моллюски и т. д. - связывают растворенный в воде кальций с углекислотой: образуют раковины и другие виды наружных скелетов жителей моря. Умершие морские животные устилают своими скелетами-раковинами дно морей и океанов. В результате возникают мощные отложения мела, известняка и со дна морей поднимаются коралловые рифы. Эти процессы совершаются в продолжение многих миллионов лет. Там, где когда-то шумели волны, сейчас поднимаются целые горы из известняка и мела. Эти горы являются огромными запасами связанной углекислоты.

Круговорот углерода. Масса углекислого газа (СО2) в атмосфере оценивается в 1012 тонн.

Приход углекислого газа включает: 1) дыхание живых организмов; 2) разложение отмерших организмов растений и животных микроорганизмами, процесс брожения; 3) антропогенные выбросы при сжигании топлива; 4) вырубку лесов.

Расход углекислого газа включает: 1) фиксацию углекислого газа из атмосферы при фотосинтезе с освобождением кислорода; 2) потребление части углерода животными, питающимися растительной пищей; 3) фиксацию углерода в литосфере (образование органогенных пород – уголь, торф, горючие сланцы, а также почвенных компонентов, как гумуса); 4) фиксацию углерода в гидросфере (образование известняков, доломитов).

Постепенное возрастание содержания углекислого газа в атмосфере в сочетании с другими причинами привело к «парниковому эффекту», влияющему на тепловой баланс, на климат нашей планеты.

Как осуществляется переход от одного соединения углерода к другому:

переход от CO2 к органическим соединениям: все растения на земле поглощают углекислый газ и с помощью энергии света производят органические вещества (фотосинтез). То же самое делают водоросли в водной среде. Т.о. углерод находится в структуре растения.

переход от органических соединений обратно к CO2: здесь возможны 2 пути:

путь1: участие микроорганизмов в круговороте углерода: растение погибает, служит пищей для редуцентов (грибы и бактерии). Т.о., роль микроорганизмов в круговороте углерода - перерабатывание органических веществах до неорганических.

Этот путь может быть немного длиннее, если растение съедается животными (консументами 1-го порядка, затем они поедаются консументами 2-го порядка и т.д.) - углерод возвращается в атмосферу в виде CO2 за счет дыхания животных или в случае их смерти за счет деятельности редуцентов.

путь 2: растения погибают и оказываются в слое земли (под землей). Так образуется ископаемое топливо - нефть, торф,уголь.

Углерод может накапливаться на дне морей и океанов в виде известняка (останки погибших водных организмов)

Если мы рассматриваем перемещение углерода из атмосферы в живые организмы и обратно, то более точно такой круговорот называется “Круговорот углерода в биосфере”.

Если углерод перешел из атмосферы в состав отложений или топлива, то это уже “Круговорот углерода в биогеосфере”.

68. Взаимоотношения м/о и ратсений.

здесь, конечно, в первую очередь необходимо отметить тесный симбиоз бобовых растений и клубеньковых бактерий, описанный нами в разделе о круговороте азота.

Корни растений в процессе жизнедеятельности выделяют некоторое количество органических соединений: кислоты, сахара, спирты и иногда даже аминокислоты. На поверхности корней и в почве, непосредственно примыкающей к корням растений, содержится много питательных веществ, и микроорганизмы здесь усиленно развиваются. Слой почвы, примыкающий к корням и находящийся под влиянием деятельности корневой системы растений, называется ризосферой. В ризосфере различают три зоны: 1) поверхность корней, наиболее богатую микробами; 2) непосредственно прилегающий к поверхности корней тончайший слой почвы; 3) зону собственно ризосферы, расположенную на расстоянии 0,5-1 мм от поверхности корня. В ризосфере имеется гораздо больше питательных для микробов веществ, чем вне ризосферы.

В районе ризосферы микробов содержится в десятки, сотни раз больше, чем вне зоны деятельности корней. Даже такие автотрофные бактерии, как нитрифицирующие, в ризосфере встречаются в гораздо большем количестве, чем в остальной почве. Количество микроорганизмов в ризосфере изменяется в зависимости от фазы развития растения. Общее количество их возрастает от начала прорастания семени до цветения. Во время цветения число их падает. Но разные группы и виды микроорганизмов имеют свой максимум развития на корнях. Так, грибы, актиномицеты и клетчаткоразлагающие бактерии в большом числе встречаются во втором периоде развития растения.

В ризосфере обычно больше бесспоровых бактерий, а из них преобладают различные виды псевдомонас, радиобактеров, микобактерий и др. В ризосфере различных растений может наблюдаться специфическая микрофлора, т. е. преобладание одних видов микробов над другими.

Микробы ризосферы, питаясь корневыми выделениями, сами подготовляют питательные вещества для растений путем разложения растительных остатков, гумуса, выделения различных физиологически активных веществ.

Свою микрофлору имеют и наземные части растений - листья, стебли. На них также приспособились существовать особые виды микробов, например: Bact. herbicola, имеющая желтый пигмент, молочнокислые и флюоресцирующие бактерии, дрожжи, плесени. Пищей им служат некоторые вещества, выделяемые растениями на поверхность эпидермиса.

Эти микроорганизмы, называемые эпифитными, размножаются на семенах. Правильно сохраняющиеся семена с нормальной всхожестью имеют определенный состав эпифитной микрофлоры, так что по эпифитной микрофлоре можно определить качество посевных семян.

69. взаимоотнош м/о и животных .БОЛЬШЕ НЕ НАШЛА

Ученые долго не могли понять, каким образом всосанная пиявкой кровь становится для нее пищей. Чужая кровь с ее сложными химическими веществами должна сначала измениться, а потом уже вещества в более простом виде могут быть усвоены клетками пиявки. У животных и у человека в кишечном тракте вырабатываются особые вещества - ферменты, благодаря которым и происходит пищеварение. В кишечнике пиявок этих веществ нет. Что же оказалось? В кишечнике пиявок постоянно живет, сильно размножаясь, бактерия псевдомонас гирудинис. Эта бактерия является благодетелем пиявки. Она помогает переваривать всосанную кровь, выделяя соответствующие вещества, и эта же бактерия, выделяя свои фитонциды, убийственные для других микробов, оказывается единственной полновластной хозяйкой в кишечнике пиявок и не допускает никакого другого бактериального загрязнения. Вот почему кишечник пиявки совершенно чистый, от сосущей кровь пиявки никогда не заболеешь заразной болезнью. Недаром научная медицина пользуется пиявками при лечении многих болезней.

Углерод является одним из самых необходимых для жизни компонентов. В состав органического вещества он включается в процессе фотосинтеза (рис.1). Затем основная его масса поступает в пищевые цепи животных и накапливается в их телах в виде различного рода углеводов.

Главную роль в круговороте углерода играет атмосферный и гидросферный фонды углекислого газа . Этот фонд пополняется при дыхании растений и животных, а также при разложении мертвой органики. Некоторая часть углерода ускользает из круговорота в захоронения. Однако человек в последнее время достаточно успешно разрабатывает эти захоронения, возвращая в круговорот жизни углерод и другие важные для жизни элементы, накопленные за миллионы лет. Хотя это приводит к ряду отрицательных для нас последствий, но как знать, может быть, именно эту миссию мы должны были выполнить для биосферы.

Например, известно, что увеличение содержания и понижение содержанияв атмосфере приводит к усилению фотосинтеза. Может быть, после того, как мы очистим планету от современных форм жизни (в том числе и от своего присутствия на ней), начнется бурный этап развития новых более совершенных форм, которые сейчас не могут выдержать конкуренции. Ведь была же когда-то эпоха анаэробной жизни на земле. “Неприятным” продуктом их жизнедеятельности был кислород, накопление которого практически погубило эту форму жизни. Теперь ее следы можно обнаружить лишь в недрах болот, да в глубоководных впадинах. Но зато было дано начало новым более совершенным аэробным организмам, которые научились «нейтрализовывать» кислород и даже использовать его химическую активность для получения свободной энергии.

Рис.1

Фотосинтезирующий зеленый пояс и карбонатная система моря поддерживают постоянный уровень в атмосфере. Но за последние 100 лет содержаниепостоянно растет из-за новых антропогенных поступлений и сведения лесов. Полагают, что в начале промышленной революции (1800 г) в атмосфере Земли присутствовало около 0,029 %. В 1958 г., когда были проведены первые точные измерения, - 0,0315 %, в 1980 – 0,0335 %. Когда доиндустриальный уровень будет превышен вдвое (2050 г), ожидается повышение температуры в среднем на 1,5…4.5 градуса. Это связано в первую очередь с парниковым эффектом, к которому приводит повышенное содержание углекислого газа в атмосфере. Если в 20-м веке уровень моря поднялся на 12 см, то в 21-м веке нас может ожидать нарушение стабильности полярных ледяных шапок, что приведет к их таянию и катастрофическому подъему уровня мирового океана. По некоторым прогнозам в 2050 году под водой может оказаться Нью-Йорк и большая часть Западной Европы.

На фоне этого происходит потеря углекислоты из почвенного фонда, что вызвано окислением гумуса в почве после уничтожения лесов при последующем использовании этих земель для сельского хозяйства или строительства городов.

Круговорот азота

Азот входит в состав аминокислот, являющихся основным строительным материалом для белков. Хотя азот требуется в меньших количествах, чем, например, углерод, тем не менее дефицит азота отрицательно сказывается на продуктивности живых организмов.

Основным источником азота является атмосфера (рис.2), откуда в почву, а затем в растения азот попадает только в форме нитратов, которые являются результатом деятельности организмов-азотофиксаторов (отдельные виды бактерий, сине-зеленых водорослей и грибов), а также электрических разрядов (молний) и других физических процессов. Остальные соединения азота не усваиваются растениями.

Второй источник азота для растений - результат разложения органики, в частности, белков. При этом в начале образуется аммиак, который преобразуется бактериями-нитрификаторами в нитриты и нитраты.

Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрификаторов, разлагающих нитраты до свободного азота и кислорода.

Значительная часть азота, попадая в океан (в основном со сточными континентальными водами), частично используется водной растительностью, а затем по пищевым цепям через животных возвращается на сушу. Небольшая часть азота выпадает из круговорота, уходя в осадочные соединения. Однако эта потеря компенсируется поступлением азота в воздух с вулканическими газами, а также с индустриальными выбросами. Если бы наша цивилизация достигла такой технической мощи, что смогла бы блокировать все вулканы на Земле (я не сомневаюсь, что подобные проекты обязательно возникли бы), то при этом из-за прекращения поступлений углерода, азота и других веществ, от голода могло бы погибнуть больше людей, чем страдает сейчас от извержений вулканов.

Рис.2

Антропогенный азот поступает в природу в основном в форме азотных удобрений. Их количество примерно равно природной фиксации азота в атмосфере, но ниже биологической фиксации.

В природных экосистемах порядка 20 % азота - это новый азот, полученный из атмосферы путем азотофиксации. Остальные 80 % возвращаются в круговорот вследствие разложения органики. В агросистемах из азота, поступившего на поля с удобрениями, очень небольшая часть используется повторно, большая же часть теряется с собираемым урожаем, а также в результате выщелачивания (выноса водой) и денитрификации.

Лишь прокариоты, безъядерные, самые примитивные микроорганизмы могут превращать биологически бесполезный газообразный азот в формы, необходимые для построения и поддержания живой протоплазмы. Когда эти микроорганизмы образуют взаимовыгодные ассоциации с высшими растениями, фиксация азота значительно усиливается. Растения представляют бактериям подходящее местообитание (корневые клубеньки), защищают микробы от излишков кислорода и поставляют им необходимую высококачественную энергию. За это растение получает легкоусвояемый фиксированный азот. Мечта современных специалистов по генной инженерии - создать самоудобряющиеся сорта зерновых культур, которые имели бы на корнях клубеньки с азотофиксирующими бактериями, аналогичные клубенькам на корнях бобовых растений. Полагают, что это позволило бы совершить существенный прорыв в сельском хозяйстве. Однако как знать, не нарушит ли подобное увеличение природной фиксации свободного азота того хрупкого баланса притока и оттока азота в атмосфере, который обеспечивает стабильность концентрации азота в воздухе, которым мы дышим.

В биосфере нашей планеты происходит множество сложных процессов, вызванных жизнедеятельностью организмов, воздействием человека и эволюционными изменениями, происходящими в толще недр и в глубинах океанов. Основным из них является круговорот углерода. Без него невозможна жизнь на Земле.

По большому счету, круговорот углерода представляет собой глобальный механизм, отвечающий за усвоение и выделение в атмосферу Усвоение углерода всем нам известно в качестве фотосинтеза, и за эту часть отвечают растения. Выделение/возвращение углекислоты происходит посредством ее выдыхания живыми организмами, работы промышленных предприятий и процессов разложения

Схема круговорота углерода позволит более полно представить этот процесс, состоящий из двух этапов:

  • Усвоение углекислого газа (CO 2) растениями, микроскопическими живыми организмами и последующее преобразование его в более сложные основные химические соединения
  • Возвращение углекислоты в атмосферу посредством дыхания живых существ и иными путями.

Однако круговорот углерода представляет более сложный процесс. Так, после смерти организмов часть из них перерабатывается бактериями и действительно возвращается в атмосферу за довольно короткий срок. Но часть останков превращается в мертвую органическую массу.

Именно эти останки органики через несколько сотен лет будут преобразованы, и в итоге превратятся в уголь, нефть или торф. Данные ископаемые будут использованы человеком в различных целях, и углерод из них будет возвращен в атмосферу.

Отдельно хочется остановиться на процессе возвращения CO 2 в круговорот углерода.

Жиры. Расщепление жиров различного происхождения возможно благодаря участию в этом процессе микроорганизмов, обладающих ферментами, направленными на расщепление этого соединения. В результате образуется глицерин и высшие кислоты жирового ряда. Глицерин распадается на (ПВК). Она, в зависимости от условий, превратится в воду, кислоту или спирт, а в воздух будет выделена молекула углерода.

Углеводы. Эти вещества являются основными носителями клетчатки, которая

усваивается и перерабатывается лишь некоторыми микроорганизмами. В процессе ее переработки образуется глюкоза, которую окисляют практически все виды грибков и бактерий. В результате глюкоза будет расщеплена на воду и углекислый газ. Это - не единственный вариант. Процесс окисления может привести к образованию метана, но с обязательным выделением углерода.

В связи с тем, что все процессы неодинаковы по срокам своего протекания, выделяют два типа круговорота данного вещества в биосфере:

  • Геологический (формирование полезных ископаемых) - может исчисляться тысячами и миллионами лет.
  • и разложение растений и животных) - очень активный процесс, который может занимать от нескольких дней до нескольких лет.

Безусловно, представленное здесь описание является весьма поверхностным и не отражает всей сути химических и иных процессов, благодаря которым на планете поддерживается круговорот углерода.