» » Мендель Грегор - биография, факты из жизни, фотографии, справочная информация. Что открыл Грегор Мендель? Грегор мендель что открыл

Мендель Грегор - биография, факты из жизни, фотографии, справочная информация. Что открыл Грегор Мендель? Грегор мендель что открыл

Грегор Мендель первым приблизился к разгадке древней тайны. Он был монахом в Брюннском монастыре (ныне Брно, Чехия) и помимо преподавательской деятельности занимался на досуге опытами по скрещиванию садового гороха. Его доклад на эту тему, опубликованный в 1865 году, не встретил широкого признания. Несмотря на то что за шесть лет до этого пристальное внимание всего ученого мира привлекла теория естественного отбора, те немногие исследователи, что прочли статью Менделя, не придали ей особого значения и не связали изложенные в ней факты с теорией происхождения видов. И только в начале XX века три биолога, проводя эксперименты над разными организмами, получили схожие результаты, подтвердив гипотезу Менделя, который посмертно прославился как основоположник генетики.

Почему же Менделю удалось то, что не удавалось большинству других исследователей? Во-первых, он исследовал только простые, четко определяемые признаки - например, цвет или форму семян. Выделить и опознать простые признаки, которые могут передаваться по наследству, нелегко. Такие признаки, как высота растения, а также интеллект или форма носа человека, зависят от множества факторов, и проследить законы их наследования очень трудно. Внешне заметные и при этом независимые от других признаки встречаются довольно редко. Кроме того, Мендель наблюдал передачу признака на протяжении нескольких поколений. И что, пожалуй, самое важное, он записывал точное количество особей с тем или иным признаком и проводил статистический анализ данных.

В классических экспериментах по генетике всегда используют два сорта или более, две разновидности, или линии, одного и того же биологического вида, отличающиеся друг от друга по таким простым признакам, как окраска цветка растений или окрас меха животных. Мендель начинал с чистых линий гороха, то есть с линий, которые на протяжении нескольких поколений скрещивались исключительно друг с другом и потому постоянно демонстрировали только одну форму признака. О таких линиях говорят, что они размножаются в чистоте. Во время эксперимента Мендель скрещивал между собой особи из разных линий и получал гибриды. При этом на рыльце растения с удаленными пыльниками из одной линии он переносил пыльцу растения из другой линии. Предполагалось, что признаки разных родительских растений в гибридном потомстве должны смешаться между собой. В одном из экспериментов (рис. 4.1) Мендель скрестил чистый сорт с желтыми семенами и чистый сорт с зелеными семенами. В записи эксперимента крестик означает «скрещивается с...», а стрелка указывает на следующее поколение.

Можно было предположить, что у гибридного поколения будут желто-зеленые семена или некоторые желтые, а какие-то зеленые. Но образовались только желтые семена. Казалось бы, что признак «зеленый» совсем исчез из поколения F 1 (буквой F обозначаются поколения, от латинского слова filius - сын). Затем Мендель посадил семена из поколения F 1 и скрестил растения между собой, получив таким образом второе поколение F 2 . Интересно, что признак «зеленый», исчезнувший в первом гибридном поколении, проявился вновь: у одних растений из поколения F 2 были желтые семена, а у других зеленые. Такие же результаты дали другие эксперименты по скрещиванию растений с разными проявлениями признака. Например, когда Мендель скрещивал чистый сорт гороха с фиолетовыми цветками и чистый сорт с белыми цветами, в поколении F 1 все растения оказывались с фиолетовыми цветками, а в поколении F 2 у одних растений цветки были фиолетовые, а у других белые.


В отличие от своих предшественников, Мендель решил подсчитать точное количество растений (или семян) с тем или иным признаком. Скрещивая растения по цвету семян, он получил в поколении F 2 6022 желтых семени и 2001 зеленое семя. Скрещивая растения по окраске цветков, он получил 705 фиолетовых цветков и 224 белых. Эти цифры еще ничего не говорят, и в похожих случаях предшественники Менделя опускали руки и утверждали, что ничего разумного по этому поводу сказать нельзя. Однако Мендель заметил, что отношение этих чисел близко к пропорции 3:1, и это наблюдение подтолкнуло его к простому выводу.

Мендель разработал модель - гипотетическое объяснение того, что происходит при скрещивании. Ценность модели зависит от того, насколько хорошо она объясняет факты и предсказывает результаты экспериментов. Согласно модели Менделя, в растениях имеются некие «факторы», определяющие передачу наследственных признаков, причем каждое растение имеет по два фактора для каждого признака - по одному от каждого родителя. Кроме того, один из этих факторов может быть доминантным, то есть сильным и видимым, а другой - рецессивным, или слабым и невидимым. Желтая окраска семян должна быть доминантной, а зеленая - рецессивной; фиолетовый цвет доминантен по отношению к белому. Такое свойство «факторов наследственности» находит отражение в записи генетических экспериментов: прописная буква означает доминантный признак, а строчная - рецессивный. Например, желтую окраску можно обозначить как Ү, а зеленую как у. Согласно современной точке зрения, «факторы наследственности» - это отдельные гены, определяющие цвет или форму семян, и мы называем различные формы гена аллелями или аллеломорфами (морф - форма, аллелон - друг друга).

Рис. 4.1. Объяснение результатов, полученных Менделем. Каждое растение имеет две копии гена, определяющего цвет, но передает своим гаметам по одной из этих копий. Ген Yдоминантен по отношению к гену у, поэтому семена всех растений поколения F t с набором генов Yy желтые. В следующем поколении возможны четыре комбинации генов, три из которых дают желтые семена и одна - зеленые

На рис. 4.1 показан ход экспериментов Менделя, а также приведены выводы, к которым он пришел. Чистая линия гороха с желтыми семенами должна обладать двумя факторами Y(YY), а чистая линия гороха с семенами зеленого цвета - двумя факторами у (уу). Так как оба фактора в родительских растениях одинаковы, мы говорим, что они гомозиготны или что эти растения - гомозиготы. Каждое из родительских растений дает потомству по одному фактору, определяющему цвет семян, поэтому все растения поколения F t имеют факторы Yy. Два фактора цвета у них разные, поэтому мы говорим, что они гетерозиготны или что эти растения - гетерозиготы. Когда гетерозиготные растения скрещиваются между собой, каждое дает по два вида гамет, половина которых переносит фактор Y, а другая половина - фактор у. Гаметы объединяются случайным образом и дают четыре вида комбинаций: YY, Yy, уҮ или уу. Зеленые семена образуются только при последней комбинации, так как оба фактора в ней рецессивные; при других комбинациях получаются желтые семена. Так объясняется отношение 3:1, которое наблюдал Мендель.

МЕНДЕЛЬ (Mendel ) Грегор Иоганн (1822-84), австрийский естествоиспытатель, монах, основоположник учения о наследственности (менделизм). Применив статистические методы для анализа результатов по гибридизации сортов гороха (1856-63), сформулировал закономерности наследственности.

МЕНДЕЛЬ (Mendel ) Грегор Иоганн (22 июля 1822, Xейнцендорф, Австро-Венгрия, ныне Гинчице - 6 января 1884, Брюнн, ныне Брно, Чешская Республика), ученый-ботаник и религиозный деятель, основоположник учения о наследственности.

Трудные годы учения

Иоганн родился вторым ребенком в крестьянской семье смешанного немецко-славянского происхождения и среднего достатка, у Антона и Розины Мендель. В 1840 Мендель окончил шесть классов гимназии в Троппау (ныне г. Опава) и в следующем году поступил в философские классы при университете в г. Ольмюце (ныне г. Оломоуц). Однако, материальное положение семьи в эти годы ухудшилось, и с 16 лет Мендель сам должен был заботиться о своем пропитании. Не будучи в силах постоянно выносить подобное напряжение, Мендель по окончании философских классов, в октябре 1843, поступил послушником в Брюннский монастырь (где он получил новое имя Грегор). Там он нашел покровительство и финансовую поддержку для дальнейшего обучения. В 1847 Мендель был посвящен в сан священника. Одновременно с 1845 года он в течение 4 лет обучался в Брюннской теологической школе. Августинской монастырь св. Фомы был центром научной и культурной жизни Моравии. Помимо богатой библиотеки, он имел коллекцию минералов, опытный садик и гербарий. Монастырь патронировал школьное образование в крае.

Монах-преподаватель

Будучи монахом, Мендель с удовольствием вел занятия по физике и математике в школе близлежащего городка Цнайм, однако не прошел государственного экзамена на аттестацию учителя. Видя его страсть к знаниям и высокие интеллектуальные способности, настоятель монастыря послал его для продолжения обучения в Венский университет, где Мендель в качестве вольнослушателя проучился четыре семестра в период 1851-53, посещая семинары и курсы по математике и естественным наукам, в частности, курс известного физика К. Доплера. Хорошая физико-математическая подготовка помогла Менделю впоследствии при формулировании законов наследования. Вернувшись в Брюнн, Мендель продолжил учительство (преподавал физику и природоведение в реальном училище), однако вторая попытка пройти аттестацию учителя вновь оказалась неудачной.

Опыты над гибридами гороха

С 1856 Мендель начал проводить в монастырском садике (шириной в 7 и длиной в 35 метров) хорошо продуманные обширные опыты по скрещиванию растений (прежде всего среди тщательно отобранных сортов гороха) и выяснению закономерностей наследования признаков в потомстве гибридов. В 1863 он закончил эксперименты и в 1865 на двух заседаниях Брюннского общества естествоиспытателей доложил результаты своей работы. В 1866 в трудах общества вышла его статья "Опыты над растительными гибридами", которая заложила основы генетики как самостоятельной науки. Это редкий в истории знаний случай, когда одна статья знаменует собой рождение новой научной дисциплины. Почему принято так считать?

Работы по гибридизации растений и изучению наследования признаков в потомстве гибридов проводились десятилетия до Менделя в разных странах и селекционерами, и ботаниками. Были замечены и описаны факты доминирования, расщепления и комбинирования признаков, особенно в опытах французского ботаника Ш. Нодена. Даже Дарвин, скрещивая разновидности львиного зева, отличные по структуре цветка, получил во втором поколении соотношение форм, близкое к известному менделевскому расщеплению 3:1, но увидел в этом лишь "капризную игру сил наследственности". Разнообразие взятых в опыты видов и форм растений увеличивало количество высказываний, но уменьшало их обоснованность. Смысл или "душа фактов" (выражение Анри Пуанкаре) оставались до Менделя туманными.

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение. Во-вторых, Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК - вот логическое следствие и магистральный путь развития генетики 20 века на основе идей Менделя.

Великие открытия часто признаются не сразу

Хотя труды Общества, где была опубликована статья Менделя, поступили в 120 научных библиотек, а Мендель дополнительно разослал 40 оттисков, его работа имела лишь один благосклонный отклик - от К. Негели, профессора ботаники из Мюнхена. Негели сам занимался гибридизацией, ввел термин "модификация" и выдвинул умозрительную теорию наследственности. Однако, он усомнился в том, что выявленные на горохе законы имеет всеобщий характер и посоветовал повторить опыты на других видах. Мендель почтительно согласился с этим. Но его попытка повторить на ястребинке, с которой работал Негели, полученные на горохе результаты оказалась неудачной. Лишь спустя десятилетия стало ясно почему. Семена у ястребинки образуются партеногенетически, без участия полового размножения. Наблюдались и другие исключения из принципов Менделя, которые нашли истолкование гораздо позднее. В этом частично заключается причина холодного приема его работы. Начиная с 1900, после практически одновременной публикации статей трех ботаников - Х. Де Фриза, К. Корренса и Э. Чермака-Зейзенегга, независимо подтвердивших данные Менделя собственными опытами, произошел мгновенный взрыв признания его работы. 1900 считается годом рождения генетики.

Вокруг парадоксальной судьбы открытия и переоткрытия законов Менделя создан красивый миф о том, что его работа оставалась совсем неизвестной и на нее лишь случайно и независимо, спустя 35 лет, натолкнулись три переоткрывателя. На самом деле, работа Менделя цитировалась около 15 раз в сводке о растительных гибридах 1881, о ней знали ботаники. Более того, как выяснилось недавно при анализе рабочих тетрадей К. Корренса, он еще в 1896 читал статью Менделя и даже сделал ее реферат, но не понял в то время ее глубинного смысла и забыл.

Стиль проведения опытов и изложения результатов в классической статье Менделя делают весьма вероятным предположение, к которому в 1936 пришел английский математический статистик и генетик Р. Э. Фишер: Мендель сначала интуитивно проник в "душу фактов" и затем спланировал серию многолетних опытов так, чтобы озарившая его идея выявилась наилучшим образом. Красота и строгость числовых соотношений форм при расщеплении (3:1 или 9:3:3:1), гармония, в которую удалось уложить хаос фактов в области наследственной изменчивости, возможность делать предсказания - все это внутренне убеждало Менделя во всеобщем характере найденных им на горохе законов. Оставалось убедить научное сообщество. Но эта задача столь же трудна, сколь и само открытие. Ведь знание фактов еще не означает их понимания. Крупное открытие всегда связано с личностным знанием, ощущениями красоты и целостности, основанных на интуитивных и эмоциональных компонентах. Этот внерациональный вид знания передать другим людям трудно, ибо с их стороны нужны усилия и такая же интуиция.

Судьба открытия Менделя - задержка на 35 лет между самим фактом открытия и его признанием в сообществе - не парадокс, а скорее норма в науке. Так, спустя 100 лет после Менделя, уже в период расцвета генетики, подобная же участь непризнания в течение 25 лет постигла открытие Б. мобильных генетических элементов. И это несмотря на то, что она, в отличие от Менделя, была ко времени своего открытия высоко авторитетным ученым и членом Национальной Академии наук США.

В 1868 Мендель был избран настоятелем монастыря и практически отошел от научных занятий. В его архиве сохранились заметки по метеорологии, пчеловодству, лингвистике. На месте монастыря в Брно ныне создан музей Менделя; издается специальный журнал "Folia Mendeliana".

Б. Володин

ЧТО О НЕМ ЗНАЛИ, КОГДА ОН ЖИЛ

Он жил сто пятьдесят лет назад.
Он жил в чешском городе Брно, который тогда называли на немецкий лад Брюнном, потому что Чехия входила в состав тогдашней Австро-Венгерской империи.

Он и сейчас стоит там, учитель Мендель... Этот мраморный памятник в 1910 году был сооружен в Брно на средства ученых всего мира.

В брненской реальной школе, где он работал, было около тысячи учеников и двадцать учителей. Из этих двадцати учителей у тысячи мальчишек-"реалистов" одним из самых любимых был именно он - преподаватель физики и естествознания Грегор Мендель, "патер Грегор", то есть "отец Грегор".
Его называли так потому, что он, учитель Мендель, был еще и монахом. Монахом брненского монастыря святого Томаша.
О нем тогда знали, что он был сыном крестьянина, – даже много лет спустя после того, как он уехал из своей родной деревни Хинчице, в его речи сохранился чуть шепелявый говорок местности, где прошло его детство.
Знали, что он был очень способным и всегда блестяще учился – в сельской школе, потом в окружной школе, потом в гимназии. Но у родителей Менделя не было денег, чтобы дальше платить за его учение. И он никуда не мог поступить на службу, потому что был сыном простого крестьянина. Чтобы пробить себе дорогу, Иоганну Менделю (с рождения его звали Иоганном) пришлось поступить в монастырь и по церковному обычаю принять другое имя – Грегор.
Он поступил в монастырь святого Томаша и стал учиться в богословской школе. И там тоже, проявил блестящие способности и невероятное усердие. Он должен был стать доктором богословия – ему совсем немного оставалось до этого. Но экзаменов на степень доктора богословия патер Мендель не стал сдавать, потому что карьера богослова его не интересовала.
Он добился другого. Добился, чтоб его направили учителем в гимназию маленького города Зноймо, на юге Чехословакии.
В этой гимназии он стал преподавать не закон божий, а математику и греческий язык. Однако и это его не удовлетворяло. С юности у него была другая привязанность: он очень любил физику и естествознание и много времени тратил на их изучение.
Путь самоучки – тернистый путь. Через год после того, как он стал преподавать в Зноймо, Мендель попытался сдать экстерном экзамены на звание учителя физики и естествознания.
Он провалился на этих экзаменах, потому что, как у всякого самоучки, знания его были отрывочны.
И тогда Мендель добился еще одного: он добился, что монастырское начальство послало его в Вену, в университет.
В ту пору все преподавание в Австрии находилось в руках церкви. Церковному начальству было важно, чтобы монахи-учителя обладали необходимыми знаниями. Потому-то Менделя и послали в университет.
Он проучился в Вене два года. И все эти два года он посещал занятия только по физике, по математике и по естественным дисциплинам.
Он снова проявил себя удивительно способным – его даже взяли на работу помощником ассистента на кафедру знаменитого физика-экспериментатора Христиана Допплера, открывшего важный физический эффект, названный в его честь "Допплер-эффектом".
И еще Мендель работал в лаборатории замечательного австрийского биолога Коллара.
Он прошел настоящую научную школу. Он мечтал заниматься научными исследованиями, но ему приказали вернуться в монастырь святого Томаша.
Ничего нельзя было поделать. Он был монахом и должен был подчиняться монастырской дисциплине. Мендель вернулся в Брно, стал жить в монастыре и преподавать экспериментальную физику и естествознание в реальной школе.
Он был одним из самых любимых учителей этой школы: во-первых, потому, что очень хорошо знал предметы, которые преподавал, и еще потому, что он умел удивительно интересно и просто объяснять самые сложные физические и биологические законы. Он объяснял их, иллюстрируя свои объяснения опытами. Он был монахом, но, говоря ученикам о явлениях природы, никогда не ссылался на бога, божью волю и сверхъестественные силы. Явления природы монах Мендель объяснял как материалист.
Он был человеком веселым и добрым.
В монастыре монах Грегор занимал тогда должность "патера кюхенмайстера" – главного над кухней. Помня о своей голодной юности, он приглашал к себе в гости учеников победней и подкармливал их.
Но ученики любили бывать у него совсем не потому, что учитель угощал их чем-то вкусным. Мендель выращивал в монастырском саду редкие для тех мест фруктовые деревья и красивые цветы – было чему подивиться.
Еще учитель изо дня в день вел наблюдения за погодой и за изменениями на Солнце – это тоже было интересно. Один из его учеников стал потом профессором метеорологии и писал в воспоминаниях, что любовь к этой науке привил ему учитель Мендель.
Ученики знали, что в углу сада под самыми окнами одного из монастырских зданий отгорожен маленький участок – всего тридцать пять на семь метров. На том участке учитель Мендель выращивал совсем неинтересное: обычный горох разных сортов. Этому гороху учитель уделял, право же, слишком много труда и внимания. Что-то он с ним делал... Кажется, скрещивал... Об этом он не рассказывал ученикам ничего.

СЛАВА НЕ ТОРОПИТСЯ

Он умер, и довольно скоро жители Брно стали забывать о том, что в их городе жил человек по имени Грегор Мендель. Только ученики его помнили – патер Грегор был хорошим учителем.
И вдруг шестнадцать лет спустя после его смерти, в 1900 году, к Менделю пришла слава. О нем заговорил весь мир.
Было так.
В 1900 году трое ученых, исследовавших явления наследственности, вывели из своих опытов законы, по которым при скрещивании разных растений и животных признаки передаются по наследству потомству. И когда эти ученые, независимо один от другого, стали готовить для печати свои труды, то, просматривая литературу, каждый из них неожиданно узнал, что эти законы уже открыты учителем из города Брно Грегором Менделем. Открыты в тех опытах с горохом, который рос на крохотном участке в углу монастырского сада.
Учитель ничего не рассказывал мальчишкам из реальной школы, но в Брно существовало общество любителей природы. На одном из заседаний общества Грегор Мендель сделал доклад "Опыты над растительными гибридами". Он рассказал в нем о работе, на которую ушло целых восемь лет.
Конспект доклада Менделя был напечатан в журнале и разослан в сто двадцать библиотек разных городов Европы.
Почему же только через шестнадцать лет ученые обратили внимание на эту работу?
Может быть, никто прежде не открывал журнала? Не читал доклада?
Почему слава великого ученого так не торопилась прийти к Менделю?
Сначала нужно узнать, что же именно он открыл.

О ЧЕМ ПОВЕДАЛ САДОВЫЙ ГОРОХ

Дети похожи на пап и мам. Одни – больше на пап. Другие – больше на мам. Третьи – и на папу и на маму, или на бабушку, или на дедушку. Дети животных тоже похожи на родителей. Дети-растения – тоже.
Все это люди заметили очень давно.
Очень давно ученые знали о существовании наследственности.
Но науке мало знать, что признаки родителей передаются по наследству их потомкам. Она обязана ответить на самые каверзные вопросы: "Почему это происходит?", "Как происходит?"


Законы Менделя открыты на горохе, но их можно видеть на многих растениях. Скрещивали два вида крапивы. Посмотри, как выглядят листья у родителей, принадлежавших к разным видам, у их детей – гибридов крапивы – и внуков.

Многие ученые ломали голову над загадкой наследственности. Пришлось бы очень долго пересказать, какие были у них предположения, как блуждали исследователи разных времен, пытаясь понять суть сложного явления.
Но вот за сто лет до Менделя петербургский ботаник академик Кельрейтер стал скрещивать два разных сорта гвоздики. Он заметил, что у первого поколения гвоздик, выращенного из семян, полученных при скрещивании, одни признаки, например, окраска цветов, такие, как были у растения-отца, другие, например, махровые цветы, как у растения-матери. Смешанных признаков не бывает. Но самое интересное: у второго поколения – у части потомков гибридов – распускались не махровые цветы – появлялись признаки растения-дедушки или растения-бабушки, которых у родителей не было.
Такие же опыты проводили на протяжении ста лет многие исследователи – французы, англичане, немцы, чехи. Все они подтверждали, что у первого поколения растений-гибридов господствует признак одного из родителей, а участи растений-внуков проявляется признак бабушки или дедушки, у их родителя "отступивший".
Ученые пытались выяснить, по каким же законам признаки "отступают" и проявляются вновь. Они выращивали на опытных участках сотни растений-гибридов, описывали, как передаются потомству признаки – все сразу: форма цветов и листьев, величина стебля, расположение листьев и цветов, форма и окраска семян и так далее, – но никаких четких закономерностей вывести им не удавалось.
В 1856 году за работу взялся Мендель.


Вот что увидел Мендель в первом, втором и третьем, поколении гибридов гороха. Он получил их, скрещивая растения с красными цветами и растения с белыми цветами.

Для своих опытов Мендель выбрал разные сорта гороха. И решил следить за передачей не всех сразу, а лишь одной пары признаков.
Подобрал по нескольку пар растений с противоположными признаками, например, горох с желтыми и горох с зелеными зернами, с красными и белыми цветами.
Он обрывал на несозревших цветах гороха пыльники, чтобы растения не опылялись сами, а затем наносил на пестики растений с желтыми зернами пыльцу растений с зелеными зернами и на пестики растений с зелеными зернами – пыльцу растений с желтыми.
Что получилось? Потомки всех растений принесли желтые зерна. Признак одного из родителей господствовал у них у всех.


На этом рисунке хорошо видно, что разные признаки (окраска и морщинистость горошка), передаваемые потомству, друг с другом не связаны.

На следующий год Мендель дал этим растениям возможность опылиться собственной пыльцой и, чтобы в опыте не произошло никакой случайности, накрыл цветы бумажными колпачками-изоляторами. Ведь может же быть так, что жуки занесут чужую пыльцу на пестик?.. Изоляторы охраняли цветы от этого. Когда в стручках созрели зерна, оказалось, что три четверти этих зерен – желтые, а одна четверть – зеленые, такие, как были не у родителей, а у бабушки или дедушки.
На следующий год Мендель снова посеял эти зерна. И снова оказалось, что в стручках гибридных растений, выращенных из желтых зерен, три четверти зерен имеют желтую окраску, а четверть – зеленую, такую, какая была уже не у растений – бабушки и дедушки, а у прабабушки или прадедушки. И с окраской зерен и с их формой, и с окраской цветов и расположением их на стебле, и с длиной стебля, и с другими признаками происходило одно и то же. Каждый признак передавался потомству, строго подчиняясь одним и тем же правилам. И передача одного признака не зависела от передачи другого.
Вот и все, что показали опыты. Как видите, Мендель на большом количестве растений проследил то, что было известно и раньше.
Однако он сделал больше своих предшественников: он объяснил увиденное.

КЕМ ЖЕ ОН БЫЛ?

Он был учителем: давал в школе уроки, ходил с учениками на экскурсии, собирал растения для гербариев.
Он был монахом: ведал монастырской кухней, а потом и всем монастырским хозяйством.

Таким он был в годы, когда работал над открытием законов наследственности.

Но, сидя вечерами за письменным столом, устланным листочками с записями наблюдений, учитель Мендель становился кибернетиком. Да, да, теперь есть такая область науки – кибернетика, изучающая, как управляются, как регулируются процессы, происходящие в природе.
В кибернетике существует группа задач, условно называемых "задачами черного ящика". Смысл их таков: некие сигналы поступают в прибор неизвестной конструкции. В приборе – в "черном ящике" – они перерабатываются и выходят в измененном виде.
Известно, какие сигналы поступали и как они изменились.
Нужно выяснить, как устроен прибор.
Именно такую задачу и предстояло решить учителю из Брно.
Менделю было известно, какими признаками обладали растения-родители. Ему стало известно, как эти признаки передавались потомкам, как одни из них господствовали, а другие то отступали, то появлялись вновь.
Он знал еще одно: признаки передавались через пыльцу и яйцеклетки, из которых развивались семена растений. Ни пыльца, ни яйцеклетки не имели – как ни рассматривай их в микроскоп – ни стеблей, ни цветов, но из них получались совсем непохожие желтые или зеленые зерна – семена. Из семян вырастали похожие на них стебли, затем распускались цветы тон или иной окраски.
И Мендель – впервые в истории науки – понял, что от растений-родителей растениям-детям через пыльцу и яйцеклетки передаются не сами признаки, не окраска и форма цветов и семян, а нечто другое – невидимые глазу частицы, благодаря которым эти признаки появляются. Он назвал эти частицы наследственными задатками.
Он понял, что любое из растений-родителей передает своему потомку по одному задатку каждого признака. Эти задатки не сливаются, не образуют новых задатков. Эти задатки "равноправны": может проявиться один, и может проявиться другой.
Задатки не исчезают. Если в первом поколении проявился один задаток, то у части растений второго поколения может проявиться другой. Более того: даже у части потомков растений второго поколения и у потомков их потомков тоже проявляются задатки, унаследованные от растения-прадеда.
Но тут возникает еще одни вопрос. Если задатки никуда не исчезают, значит, у каждого следующего поколения, казалось бы, должно накапливаться по множеству задатков одного и того же признака, полученного от отцов, матерей, дедушек, бабушек, прадедушек и прабабушек. А поскольку эти задатки материальны, это значит, что половые клетки, клетки пыльцы растений и яйцеклетки из поколения в поколение должны были бы увеличиваться в размере, если бы в них в геометрической прогрессии все время увеличивалось количество задатков.
Ничего подобного не происходило...
И тогда, чтобы объяснить это, Мендель предположил, что каждая половая клетка несет всегда только по одному задатку каждого признака, а при оплодотворении яйца, при формировании клетки, из которой разовьется зародыш, в ней оказываются два задатка.
А когда формируется новая половая клетка, то эти задатки, видимо, расходятся, и в каждой половой клетке снова оказывается только один.
И Мендель на основе своих опытов доказал еще, что задаток одного признака передается независимо от задатка другого признака. Ведь зерна растений гороха могут иметь окраску, какая была у растения-дедушки, например, желтую, а форму – какая была у растения-бабушки.
Все это Мендель доказал математическим путем, Все его доказательства были очень точными, таких задач в ту пору никто не умел решать. А поэтому его предположения показались современникам фантастикой.
...Мендель сделал доклад в обществе естествоиспытателей города Брно.
Журнал с его докладом вышел в свет и попал в сто двадцать библиотек университетов разных городов Европы.
Он был прочитан, видимо, многими серьезными естествоиспытателями. Но в ту пору биологи не имели точных знаний о том, как происходит деление клеток, из каких удивительных событий состоит этот процесс.
И работа Менделя была никем не понята. Работа Менделя была забыта...

Шли годы. В конце 70-х годов XIX века биологи научились окрашивать клеточные ядра.
И тогда было обнаружено, что перед делением клеток в ядрах выявляются особые тельца – "хромосомы" (по-гречески это слово означает "окрашивающиеся тельца"). Наблюдая над развитием оплодотворенной клетки, биологи предположили, что хромосомы имеют отношение к передаче наследственных признаков.
А в 1900 году другими учеными были заново открыты законы Менделя. Потом были снова прочитаны его работы. И оказалось, что, не видя того, что происходит в ядрах клеток, Мендель создал теорию передачи наследственных задатков. Так сто лет назад учитель физики и биологии из чешского города Брно положил начало новой науке – генетике, науке о наследственности.
Генетика – наука очень важная. Она распознает, как происходят наследственные изменения животных и растений. А ведь только зная суть таких сложных процессов, можно выводить новые породы животных и новые сорта растений, предупреждать многие наследственные болезни у людей.
За долгие годы в науке о наследственности было много событий. В ней возникало немало теорий, и немало теорий было в ней опровергнуто. Но то, что понял скромный и гениальный брненский учитель, осталось незыблемым.

Какой вклад в биологию , австрийского естествоиспытателя, ученого-ботаника и религиозного деятеля, монаха, основоположника учения о наследственности, Вы узнаете из этой статьи.

Грегор Мендель открытия

ХХ столетие ознаменовалось сенсационным открытием в области биологии. Трое ученых-ботаника Чермак, де Фриз и Корренс заявили, что 35 лет тому назад некий чешский монах и ученый Грегор Мендель, который был никому неизвестен, открыл законы наследования отдельных признаков.

Стоит отметить, что Мендель родился в небогатой крестьянской семье садовода. Его родители не располагали средствами, дабы дать сыну достойное образование. Поэтому юноша окончил только гимназию и мечтал об университете.

Однажды он пошел в аббатство и принял монашеский сан. Он преследовал одну цель – знания. В монастыре была богатейшая библиотека, и он получил возможность обучаться в университете. К тому же Грегор увлекался биологией, а около его кельи была грядка. И он задумал совершить опыты по скрещиванию растений. В качестве подопытного выступил горох. Для своих опытов, монах выбрал 7 пар сортов этого культурного растения. Каждая пара гороха имела свое отличие. Например, семена первой пары имели гладкую структуру, а вторая морщинистую; у одного стебель был не больше 60 см, а у второго достигал 2 м; окраска цветка у одного сорта была белой, а у другой пары – пурпурной.

Первые три года Мендель высеивал выбранные сорта, дабы убедиться в том, что они не имеют примесей. Дальше начались опыты по скрещиванию. В ходе экспериментов он выявил, что одно из растений является доминантным и его признаки подавляли особенности второго растения. Данный процесс Мендель назвал «рецессивным». Так был открыт первый закон наследственности в биологии . На следующее лето он скрестил полученный красноцветные гибриды с первичным сортом красноцветного гороха. И каково было его удивления, когда растение зацвело и цветки оказались белого цвета. Данное явление, проявление белого цвета спустя одного поколение, Мендель назвал «расщеплением признаков». Так был открыт второй закон наследственности в биологии. К сожалению, его открытие не имело никакого успеха. Только спустя 140 лет человечество оценило его эксперименты в биологии по достоинству.

1. Законы Менделя

2. Хромосомная теория наследственности

3. Молекулярные основы наследственности

4. Гены в хромосомах. Мутации

1. Законы Менделя

Прогресс современной генетики вплоть до открытия молекулярных основ наследственности обеспечила в основном работа генетиков с качественными полиморфизмами, поскольку закономерности наследования этих признаков достаточно просты и более доступны для генетического анализа. Именно с генетической основы качественных признаков мы и начнем изложение, а более сложные механизмы наследования количественных признаков рассмотрим несколько позже, тем более что в основе наследования и тех и других лежат одни и те же закономерности, впервые открытые Грегором Менделем.

Долгое время материальный субстрат наследственности представлялся гомогенным веществом. Считалось, что наследственное вещество родителей смешивается у потомства подобно двум взаиморастворимым жидкостям. В соответствии с этой точкой зрения гибриды, то есть организмы, полученные в результате объединения наследственного материала различающихся форм, должны представлять собой нечто промежуточное между родителями. И действительно, многие гибриды соответствуют таким представлениям.

Однако в конце XIX в. некоторые исследователи наблюдали у гибридов такую изменчивость, которую нельзя было объяснить с точки зрения концепции о неделимости и гомогенности наследственных задатков. Одним из этих исследователей был Грегор Мендель. Г.Мендель первым показал, что наследственные задатки не смешиваются, а передаются из поколения в поколение в виде неизменных дискретных единиц. Наследственные единицы передаются через мужские и женские половые клетки - гаметы. У каждой особи наследственные единицы встречаются парами, тогда как в гаметах находится лишь по одной единице из каждой пары.

Г. Мендель назвал единицы наследственности "элементами". В 1900 г., когда законы Менделя были открыты повторно и получили признание, единицы наследственности были названы "факторами". В 1909 г. датский ученый В. Иогансен дал им другое имя - "гены", а в 1912 г. американский генетик Т. Морган показал, что гены находятся в хромосомах.

С чего же начинал свои исследования Г. Мендель? Успех Г. Менделя во многом обусловлен удачным выбором экспериментального объекта. Г. Мендель работал с различными сортами гороха. По сравнению с другими растениями горох обладает рядом преимуществ для проведения экспериментов по скрещиванию.

Во-первых, сорта гороха четко различаются по ряду признаков (это означает, что Г. Мендель экспериментировал с качественными признаками, полиморфизмами).

Во-вторых, горох является самоопыляющимся растением, тем самым поддерживается чистота сорта, то есть сохранение признака из поколения в поколение.

В-третьих, можно путем искусственного опыления скрещивать растения и получать нужные гибриды. Гибриды также могут давать потомство, то есть являются плодовитыми, что, кстати, встречается не всегда. Иногда гибриды при отдаленном скрещивании бесплодны.

Г. Менделю удалось подобрать такие пары контрастирующих признаков, которые, как это было установлено позже, обладают простым типом наследования. Г. Менделя интересовали такие признаки, как форма семян (гладкая или морщинистая), окраска семян (желтая или зеленая), окраска цветков (белые или окрашенные) и некоторые другие.

Подобные опыты по гибридизации растений не раз проводились и до Г. Менделя, но никто не смог получить таких всеобъемлющих данных, а главное, усмотреть в них закономерности наследственности. Следует особо остановиться на тех моментах, которые обеспечили Г. Менделю успех, поскольку его исследование можно считать образцом проведения всякого научного эксперимента. Прежде чем начать основные эксперименты, Г. Мендель провел предварительное исследование экспериментального объекта и тщательно спланировал все эксперименты. Основным принципом исследования была поэтапность - все внимание сначала концентрировалось на одной переменной, что упрощало анализ, затем Т. Мендель приступал к анализу другой. Все методики строжайше соблюдались, чтобы не вносить искажения в результаты; полученные данные тщательно регистрировались. Г. Мендель провел множество экспериментов и получил достаточное количество данных для обеспечения статистической достоверности результатов. В выборе же экспериментального объекта Г. Менделю, действительно, во многом повезло, поскольку на наследовании отобранных им признаков не сказывались некоторые более сложные закономерности, открытые позднее.

Изучая результаты скрещивания растений с альтернативными признаками (например, семена гладкие - семена морщинистые, цветки белые - цветки окрашенные), Г. Мендель обнаружил, что гибриды первого поколения (F1), полученные с помощью искусственного опыления, не являются промежуточными между двумя родительскими формами, а в большинстве случаев соответствуют одной из них. Например, при скрещивании растений с окрашенными и белыми цветками все потомство первого поколения имело окрашенные цветки. Тот признак родителя, которым обладали растения первого поколения, Г. Мендель назвал доминантным (от латинского dominans - господствующий). В приведенном примере доминантным признаком является наличие окраски у цветков.

От экспериментально полученных гибридов уже путем самоопыления Г. Мендель получил потомство второго поколения (F2) и обнаружил, что эти потомки не являются одинаковыми: часть из них несет признак того родительского растения, который не проявился у гибридов первого поколения. Таким образом, признак, отсутствовавший в поколении F1, вновь проявился в поколении F2. Г. Мендель сделал вывод, что этот признак присутствовал в поколении Fl в скрытом виде. Г. Мендель назвал его рецессивным (от латинского recessus -- отступление, удаление). В нашем примере рецессивным признаком будут белые цветки.

Г. Мендель провел целую серию аналогичных опытов с разными парами альтернативных признаков и всякий раз тщательно подсчитывал соотношение растений с доминантными и рецессивными признаками. Во всех случаях анализ показал, что отношение доминантных признаков к рецессивным в поколении F2 составляло примерно 3:1.

В третьем поколении (F3), полученном так же путем самоопыления растений из поколения F2, оказалось, что те растения из второго поколения, которые несли рецессивный признак, дали нерасщепляющееся потомство; растения с доминантным признаком частично оказались нерасщепляющимися (константными), а частично дали такое же расщепление, как и гибриды F1 (3 доминантных на 1 рецессивный).

Заслуга Г. Менделя в том, что он понял: такие соотношения признаков в потомстве могут быть только следствием существования обособленных и неизменяющихся единиц наследственности, передаваемых с половыми клетками от поколения к поколению. Г. Мендель ввел буквенные обозначения для доминантного и рецессивного факторов, причем доминантные обозначались большими буквами, а рецессивные - маленькими. Например: А - цветки окрашенные, а - цветки белые; В - семена гладкие, b - семена морщинистые.

Выводы Менделя сводились к следующему:

Поскольку исходные сорта являются чистыми (не расщепляются), это означает, что у сорта с доминантным признаком должно быть два доминантных фактора (АА), а у сорта с рецессивным признаком - два рецессивных (аа).

Половые клетки содержат только один фактор (у доминантного - А, у рецессивного - а).

Растения первого поколения F1 содержат по одному фактору, полученному через половые клетки от каждого из родителей, то есть А и а (Аа).

В поколении F1 факторы не смешиваются, а остаются обособленными.

Один из факторов доминирует над другим.

Гибриды F1 образуют с равной частотой два рода половых клеток: одни из них содержат фактор А, другие - а.

При оплодотворении женская половая клетка типа А будет иметь равные шансы соединиться как с мужской половой клеткой, несущей фактор А, так и с мужской клеткой, несущей фактор а. То же справедливо и для женских половых клеток типа а.

В своей работе Г. Мендель не сформулировал никаких законов, которые сейчас широко известны под именем законов Г. Менделя. За него это сделали другие исследователи, которые повторно открыли менделевские закономерности. Тем не менее, основополагающие законы генетики по праву носят имя их первооткрывателя.

Первый закон Менделя, или закон расщепления, формулируется так. При образовании гамет происходит разделение пары наследственных родительских факторов, так что в каждую гамету попадает только один из них. Согласно этому закону, признаки данного организма детерминируются парами внутренних факторов.

Самое главное в открытии Г. Менделя - это демонстрация того, что гибриды F1, несмотря на внешнее проявление лишь одного признака, образуют гаметы более чем одного типа, которые с равной частотой несут как доминантный, так и рецессивный факторы. Прежде считалось, что гибриды, которые на практике часто представляют собой промежуточные формы, образуют половые клетки, так же обладающие промежуточной конституцией. Г. Мендель показал, что наследственные единицы постоянны и дискретны. Они передаются в неизменном виде из поколения в поколение. Они не изменяются, а лишь перегруппировываются.

Эксперименты Г. Менделя по скрещиванию растений с одной парой альтернативных признаков являются примером моногибридного скрещивания.

Установив закономерности расщепления при скрещиваниях по одной паре альтернативных признаков, Г. Мендель перешел к изучению наследования двух пар таких признаков.

Скрещивание особей, несущих две пары различающихся признаков (например, гладкие и одновременно желтые семена и морщинистые и одновременно зеленые семена), носит название дигибридного скрещивания.

Допустим, что одно родительское растение несет доминантные признаки (гладкие желтые семена), а другое - рецессивные признаки (морщинистые зеленые семена). Г. Мендель уже знал, какие признаки доминантны, и то, что в поколении F1 все растения имели гладкие желтые семена, не было удивительно. Г. Менделя интересовало расщепление признаков во втором поколении F2.

Соотношение разных сочетаний признаков оказалось таким:

– гладких желтых - 9,

– морщинистых желтых - 3,

– гладких зеленых - 3,

– морщинистых зеленых - 1,

– то есть 9:3:3:1.

Таким образом, в поколении F2 появилось два новых сочетания признаков: морщинистые желтые и гладкие зеленые. На основании этого Г. Мендель сделал заключение, что наследственные задатки родительских растений, которые объединились в поколении F1, в последующих поколениях разделяются и ведут себя независимо - каждый признак из одной пары может сочетаться с любым признаком из другой пары. Это открытие Г. Менделя получило название второго закона Менделя, или принципа независимого распределения.

Расщепление при дигибридном скрещивании также можно себе представить в виде таблицы, если доминантные факторы обозначить буквами А и В, а рецессивные - а и b. Тогда родительские формы будут ААВВ и aabb, их гаметы - АВ и ab, а гибриды первого поколения F1 - АаВb. Соответственно у этих гибридов возможны четыре типа гамет, что и представлено в таблице 3.3.

Запись такого рода (в виде таблицы) носит название решетки Пеннета. Она позволяет свести к минимуму ошибки, которые могут возникнуть при составлении всех возможных сочетаний гамет.

Наиболее важное положение, следующее из второго закона Менделя, состоит в том, что наследственные факторы скрещиваемых сортов при образовании гамет могут образовывать новые сочетания, или рекомбинироватъся.

Значение открытий Менделя, к сожалению, не было оценено при его жизни. Вероятно, это объяснялось тем, что в то время еще не удалось определить структуры в гаметах, через которые осуществляется передача наследственных факторов от родителей к потомкам. Только к концу XIX в. в связи с повышением разрешающей способности микроскопов стали вестись наблюдения за поведением клеточных структур во время оплодотворения и деления клеток, что привело к созданию хромосомной теории наследственности.