» » Представляют симбиоз грибов и водорослей грибы. Бактерии, грибы, водоросли и простейшие животные имеют много общего, что является еще одним доказательством эволюции

Представляют симбиоз грибов и водорослей грибы. Бактерии, грибы, водоросли и простейшие животные имеют много общего, что является еще одним доказательством эволюции

В предыдущей главе мы узнали о взаимоотношениях растений с микробами, выгодных для обеих сторон и называемых симбиозом. Рассмотрим подробнее некоторые стороны этого союза.

Бобовые растения могут образовывать сахара в процессе фотосинтеза, но неспособны усваивать атмосферный азот. Клубеньковые бактерии, напротив, хорошо справляются с этой задачей, но не могут осуществлять синтез сахаров, потому что не имеют хлорофилла. Но когда эти два организма объединяются и производят обмен вырабатываемых продуктов, их жизнь обеспечена.

На корнях ольхи также встречаются клубеньки, в которых живут микробы, усваивающие азот из воздуха. Это тоже пример симбиоза, как и у бобовых растений.

Чрезвычайно интересные растения - лишайники. В полярной тундре это почти единственная пища растительноядных животных. Они интересны тем, что представляют сочетания грибов и водорослей: среди клеток грибов живут более мелкие клетки зеленых или сине-зеленых водорослей.

В теле лишайников того или иного вида обычно находится какой-то один постоянный вид водоросли. Правда, у некоторых лишайников, произрастающих в альпийском поясе, имеются два вида водорослей, относящихся к совершенно различным группам (один вид к зеленым, другой - к сине-зеленым водорослям), и здесь мы встречаемся уже с тройным симбиозом: гриб+зеленая водоросль+сине-зеленая водоросль. При этом сине-зеленая водоросль играет особую роль, так как она обеспечивает углеродное питание остальным членам системы за счет фотосинтеза и усваивает азот из атмосферы.

Лихенологам (лихенология - наука о лишайниках) удалось выделить из лишайников обоих партнеров - и гриб и водоросль - и выращивать их отдельно в чистых культурах. Из таких чистых культур они осуществили обратный "синтез" этих организмов в лишайники, что схематически изображено на рисунке.

С помощью радиоактивного углерода 14 C было доказано, что углеводной пищей лишайников обеспечивают водоросли. Последние связывают углекислый газ в процессе фотосинтеза, из углекислоты и воды вырабатывают сахара и переправляют их грибным клеткам. В одном из опытов было установлено, что уже по прошествии 45 мин после поступления радиоактивного углерода в грибных клетках оказалось 60% углерода, прошедшего через процесс фотосинтеза.

Шведский исследователь К. Мосбах из Лундского университета так описывает скорость синтеза лишайниками сравнительно сложной гирофоровой кислоты. Уже через минуту после поступления радиоактивной углекислоты в ее составе обнаружен углерод 14 C. Это можно объяснить тем, что радиоактивный углерод сначала был поглощен клетками водорослей и затем в ходе реакций фотосинтеза был включен в состав молекул сахаров. Молекулы сахаров были переданы в грибные клетки лишайника и там под влиянием ферментов сначала разложились на более простые соединения с двухатомным углеродом, а затем при содействии других ферментов из них образовалась гирофоровая кислота, содержащая в своей молекуле 24 атома углерода. Весь путь атомов радиоактивного углерода можно упрощенно представить в виде следующей схемы:


Сложные процессы фотосинтеза, разложения и повторного синтеза биохимик провел бы по многим этапам и использовал бы для осуществления отдельных химических реакций по меньшей мере 10 ферментов. Но в клетках микроорганизмов все эти операции совершаются меньше чем за минуту; через минуту первые продукты - молекулы гирофоровой кислоты - уже готовы. Сколь примитивен и несовершенен автоматизированный конвейер на наших фабриках в сравнении с "производством" этого вещества в природе! При этом нельзя забывать, что в то же время и в тех же клетках в безупречной гармонии идут сотни других химических реакций!

Водоросли в лишайниках способны осуществлять процесс фотосинтеза при внешней температуре -5° С, а в некоторых случаях даже при температуре -24° С.

Как показали опыты лихенологов, водоросль снабжает своего грибного "партнера" также витаминами, а сине-зеленые водоросли - еще и азотной пищей. Гриб со своей стороны поставляет водорослям водные растворы минеральных солей и обеспечивает защиту от неблагоприятных воздействий внешней среды.

Тем не менее создается впечатление, что водоросли являются своего рода пленниками и подневольной рабочей силой у грибов. При отделении партнеров друг от друга грибы нуждаются в "искусственном" питании, тогда как зеленые и сине-зеленые водоросли - вполне самостоятельные организмы и сами синтезируют все необходимые органические соединения.

Немало в природе и других примеров сожительства микробов с иными организмами. На корнях деревьев в почве живут гифы грибов, проникающие в ткани корней. Грибы - постоянные спутники этих деревьев. Оказывается, их жизнь на корнях имеет большое значение для древесных пород. Растения выделяют в почву через корни углеводы, используемые грибами. Гифы проникают и внутрь корней, но растение регулирует их активность в корневой системе, причем верхушечные клетки гиф иногда растворяются веществами, содержащимися в выделениях корней. Растения в свою очередь используют вещества, находящиеся в гифах, и, таким образом, грибы в известной мере способствуют их питанию. Такое сожительство грибов с растениями называется микоризой. Эта связь хорошо известна грибникам, собирающим плодовые тела микоризных грибов - белых, маслят, лисичек. Плодовые тела вырастают из грибницы (сплетения гиф, находящиеся в почве в тесном контакте с корнями деревьев). Поэтому белый гриб мы чаще всего находим под дубами, подберезовик - под березами, а подосиновик - под осинами.

Фото симбиоза грибов с корнями

Ярким примером симбиоза грибов является микориза - содружество грибов и высших растений (различных деревьев). При таком «сотрудничестве» выигрывает и дерево, и гриб. Поселяясь на корнях дерева, гриб выполнят функцию всасывающих волосков корня, и помогает дереву усваивать питательные вещества из почвы. При таком симбиозе от дерева гриб получает готовые органические вещества (сахара), которые синтезируются в листьях растения при помощи хлорофилла.

Кроме того, при симбиозе грибов и растений грибница вырабатывает вещества типа антибиотиков, которые защищают дерево от различных болезнетворных бактерий и патогенных грибов, а также стимуляторы роста типа гиббереллина. Отмечено, что деревья, под которыми растут шляпочные грибы, практически, не болеют. Кроме того, дерево и гриб активно обмениваются витаминами (в основном, группы В и РР).

Многие шляпочные грибы образуют симбиоз с корнями различных видов растений. Причем установлено, что каждый вид дерева способен образовать микоризу не с одним видом гриба, а с десятками разных видов.

На фото Лишайник

Другим примером симбиоза низших грибов с организмами других видов являются лишайники, которые представляют собой союз грибов (в основном аскомицетов) с микроскопическими водорослями. В чем же проявляется симбиоз грибов и водорослей, и как происходит такое «сотрудничество»?

До середины XIX века считалось, что лишайники являются отдельными организмами, но в 1867 году русские ученые-ботаники А. С. Фаминцын и О. В. Баранецкий установили, что лишайники - не отдельные организмы, а содружество грибов и водорослей. От этого союза выигрывают оба симбионта. Водоросли с помощью хлорофилла синтезируют органические вещества (сахара), которыми питается и грибница, а грибница снабжает водоросли водой и минеральными веществами, которые она высасывает из субстрата, а также защищает их от высыхания.

Благодаря симбиозу гриба и водоросли лишайники живут в таких местах, где не могут отдельно существовать ни грибы, ни водоросли. Они заселяют знойные пустыни, высокогорные районы и суровые северные регионы.

Лишайники являются еще более загадочными созданиями природы, чем грибы. В них меняются все функции, которые присущи отдельно живущим грибам и водорослям. Все процессы жизнедеятельности в них протекают очень медленно, они медленно растут (от 0,0004 до нескольких мм в год), и так же медленно старятся. Эти необычные создания отличаются очень большой продолжительностью жизни - ученые предполагают, это возраст одного из лишайников в Антарктиде превышает 10 тысяч лет, а возраст самых обычных лишайников, которые встречаются везде, не менее 50-100 лет.

Лишайники благодаря содружеству грибов и водорослей намного выносливее мхов. Они могут жить на таких субстратах, на которых не могут существовать ни один другой организм нашей планеты. Их находят на камне, металле, костях, стекле и многих других субстратах.

Лишайники до сих пор продолжают удивлять ученых. В них обнаружены вещества, которых больше нет в природе и которые стали известны людям только благодаря лишайникам (некоторые органические кислоты и спирты, углеводы, антибиотики и др.). В состав лишайников, образованных симбиозом грибов и водорослей, также входят дубильные вещества, пектины, аминокислоты, ферменты, витамины и многие другие соединения. Они накапливают различные металлы. Из более 300 соединений, содержащихся в лишайниках, не менее 80 из них нигде больше в живом мире Земли не встречаются. Каждый год ученые находят в них все новые вещества, не встречающиеся больше ни в каких других живых организмах. В настоящее время уже известно более 20 тысяч видов лишайников, и ежегодно ученые открывают еще по несколько десятков новых видов этих организмов.

Из этого примера видно, что симбиоз не всегда является простым сожительством, а иногда рождает новые свойства, которых не было ни у одного из симбионтов в отдельности.

В природе таких симбиозов великое множество. При таком содружестве выигрывают оба симбионта.

Установлено, что стремление к объединению больше всего развито у грибов.

Вступают грибы в симбиоз и с насекомыми. Интересным содружеством является связь некоторых видов плесневых грибов с муравьями-листорезами. Эти муравьи специально разводят грибы в своих жилищах. В отдельных камерах муравейника эти насекомые создают целые плантации этих грибов. Они специально готовят почву на этой плантации: заносят кусочки листьев, измельчают их, «удобряют» своими испражнениями и испражнениями гусениц, которых они специально содержат в соседних камерах муравейника, и только потом вносят в этот субстрат мельчайшие гифы грибов. Установлено, что муравьи разводят только грибы определенных родов и видов, которые нигде в природе, кроме муравейников, не встречаются (в основном, грибы родов фузариум и гипомицес), причем, каждый вид муравьев разводит определенные виды грибов.

Муравьи не только создают грибную плантацию, но и активно ухаживают за ней: удобряют, подрезают и пропалывают. Они обрезают появившиеся плодовые тела, не давая им развиться. Кроме того, муравьи откусывают концы грибных гиф, в результате чего на концах откусанных гиф скапливаются белки, образуются наплывы, напоминающие плодовые тела, которыми муравьи затем питаются и кормят своих деток. Кроме того, при подрезании гиф мицелий грибов начинает быстрее расти.

«Прополка» заключается в следующем: если на плантации появляются грибы других видов, муравьи их сразу удаляют.

Интересно, что при создании нового муравейника будущая матка после брачного полета перелетает на новое место, начинает копать ходы для жилища будущей своей семьи и в одной из камер создает грибную плантацию. Гифы грибов она берет из старого муравейника перед полетом, помещая их в специальную подротовую сумку.

Подобные плантации разводят и термиты. Кроме муравьев и термитов, «грибоводством» занимаются жуки-короеды, насекомые-сверлильщики, некоторые виды мух и ос, и даже комары.

Немецкий ученый Фриц Шаудин обнаружил интересный симбиоз наших обычных комаров-кровососов с дрожжевыми грибками актиномицетами, которые помогают им в процессе сосания крови.

Все живые организмы на планете поделены на царства. В основу классификации было взято наличие ядра. Есть царство прокариотов, не имеющих ядра. К ним относят бактерии и сине-зеленые водоросли (цианеи). К царству эукариотов относятся те организмы, которые имеют ядро: грибы, растения и животные. Несмотря на то что бактерии, грибы, растения (водоросли и высшие), животные составляют отдельные царства, между ними есть и общие черты.

Бактерии и цианеи относят к прокариотам. Их основными отличиями являются:

  • отсутствие четко оформленного ядра;
  • отсутствие мембранных органоидов;
  • наличие мезосом (своеобразные выпячивания мембраны в середину клетки);
  • мелкие рибосомы, по сравнению с эукариотами;
  • у бактерий одна хромосома, у цианобактерий несколько хромосом, которые находятся в цитоплазме;
  • отсутствие ядрышек;
  • нет митохондрий;
  • клеточная стенка у бактерий состоит из муреина, а у цианей из целлюлозы;
  • жгутики отличаются простотой строения и малым диаметром;
  • полового процесса нет, размножение происходит с помощью деления.

При неблагоприятных условиях многие микроорганизмы образуют споры, которые могут лежать годами в ожидании подходящих условий для жизни и развития. Растения и грибы также образуют споры, но они им необходимы для размножения. Есть микробы, которые питаются так же, как и растения, и являются автотрофами, а некоторые питаются как животные и являются гетеротрофами. В отличие от других живых организмов, чья жизнь без наличия кислорода невозможна, существуют микроорганизмы, которые способны проживать в анаэробной среде, и кислород, наоборот, для них губителен.

Бактерии являются самыми многочисленными существами на планете, и большинство из них до сих пор не изучено.

Царство растений

В основу классификации положено их основное отличие ─ это автотрофное питание. Они способны перерабатывать неорганические вещества в органические. Для этого им необходима солнечная энергия. Это свойственно и цианобактериям. Благодаря растениям и цианобактериям воздух на планете обогащается кислородом, который так необходим другим живым организмам. Растения являются источником пищи для многих других организмов. Их разделяют на два подцарства: водоросли и высшие. Водоросли не имеют корня, стебля и листьев в отличие от высших форм.

Отдельное место занимают примитивные водоросли (пиррофитовые), у которых в клетках в хромосомах отсутствуют гистоны, по своей структуре они близки к нуклеоиду бактерий. Клеточная стенка некоторых водорослей состоит из хитина, как у животных и грибов. Красные водоросли отличаются от остальных видов тем, что их клетки не имеют жгутиков. Имеются отличия в особенностях строения и биохимических процессах.

Царство грибов

Долгое время ученые спорили по поводу того, выделять грибы в отдельное царство или нет. В результате долгих споров их все же выделили отдельно, так как они имеют много общего и с растениями, и с животными.

Способ питания у них такой же, как и у животных ─ гетеротрофный. Так же, как и у животных, у них отсутствуют пластиды и в клеточной стенке есть хитин. В результате обменных процессов образуется мочевина. Грибы, так же как и растения, поглощают питательные вещества путем всасывания. Они неподвижны и имеют способ роста такой же, как и у растений.

Некоторые грибы размножаются как бактерии ─ бесполо, некоторые как растения ─ вегетативным путем, некоторые как животные ─ половым. Многие из них, как и микробы, перерабатывают отмершие живые организмы, тем самым играют роль «санитаров». Многие из них приносят пользу и применяются в производстве антибиотиков, гормонов, витаминов.

В зависимости от того, как они потребляют органические вещества, их делят на три вида:

Лишайники

Многие ученые настаивают на том, чтобы выделить лишайники в отдельное царство. На это есть несколько причин. Они могут быть симбионтами:

  • гриба и водоросли;
  • бактерий гриба и водорослей.

По внешнему виду их делят на три группы:

  • корковые (которые растут на камнях и прочно срастаются с поверхностью);
  • листоватые (прикрепляются к поверхности с помощью ножки);
  • кустистые (прикрепляются к почве, деревьям, кустарникам в виде кустиков).

Тело лишайника называется слоевищем, которое у разных видов отличается по размерам, окраске, форме и по строению. Слоевище может быть от нескольких сантиметров до метра.

Растут лишайники очень медленно, но длительность жизни может быть от сотни до тысячи лет.

В результате симбиоза получается единый организм. Причем гифы гриба тесно переплетаются с клетками водорослей. Таким образом, в лишайнике сочетаются два совершенно разных организма по строению и способу питания. Грибы, составляющие симбиоз с водорослями, отдельно в природе не встречаются, а вот виды водорослей, участвующих в симбиозе, можно встретить и как отдельно живущий организм.

У лишайников уникальный способ питания: грибы всасывают растворенные минералы, а цианобактерии образуют органику и участвуют в процессе фотосинтеза. Размножаться лишайники могут как спорами, так и делением слоевища.

Чувствительность лишайников к загрязненной окружающей среде делает их индикаторами чистоты. Многие виды используют для питания животных и в медицинских целях.

Царство животных

Царство животных подразделяют на два подцарства: простейшие и многоклеточные. Несмотря на то что простейшие состоят из одной клетки, так же как и бактерии, они имеют все характеристики, свойственные животным. Есть виды простейших, которые на свету питаются автотрофно, а при его отсутствии переходят на гетеротрофное. Размножаться простейшие могут как бесполым способом ─ делением клетки, так и половым ─ конъюгация.

Общее у животных и растений ─ это обмен веществ и строение клеток. Основное отличие ─ это способ питания. Животные – гетеротрофы, то есть они питаются уже готовыми органическими соединениями и не способны синтезировать неорганические вещества. В большинстве своем они подвижны.

Более сложное строение клетки эукариотов говорит о том, что эти усовершенствования они получали в результате эволюции. А одновременное существование на земле как прокариот, так и эукариот говорит о том, что биологические процессы свойственны всем формам жизни. Все живые организмы живут в полном взаимодействии друг с другом, и исчезновение хотя бы одного из видов привело бы к необратимым последствиям. На планете есть место всем видам экологической цепочки.

На вопрос люди кто знает кто и когда с учёных рассмотривал тайну лишайников? заданный автором Невропатолог лучший ответ это Лишайники - необычные растения. У них нет ясно выраженных листьев и стеблей, расселяются они при помощи спор. Тайну лишайника - "растения-сфинкса", как называл его К. А. Тимирязев, - ученые долго не могли разгадать. Наконец, удалось установить, что лишайники вовсе не самостоятельные организмы, а.. . сочетание гриба с водорослью! Оказывая друг на друга благотворное влияние, эти два растения слились настолько полно, что получился своеобразный организм. Столь поразительному факту некоторые ученые даже отказывались верить. Но их сомнениям пришел конец, когда удалось осуществить "искусственный синтез" лишайника из составляющих его гриба и водоросли.Польза, которую гриб получает от сожительства с водорослью, очевидна. Водоросль питает себя и своего сожителя органическими веществами, которые синтезирует при помощи животворных солнечных лучей из углекислого газа, поглощаемого из воздуха или воды.Грибы же доставляют водорослям минеральные соли. Кроме того, пронизывая гифами места своего произрастания и оплетая водоросли, они помогают им удержаться на твердой поверхности почвы, коры деревьев, скал, защищают их от холода и засухи. Именно поэтому так живучи лишайники, так легко переносят они и изнуряющую жару, и морозы.Такое сожительство различных организмов, основанное на взаимной пользе, часто встречается в природе. Оно получило название симбиоза.

Ответ от Марина Карпухина (Масько) [гуру]
А у них есть тайна?



Ответ от Простоватый [гуру]
Впервые лишайники были описаны Теофрастом в 3 в. до н. э. Он знал только два их вида - уснею и рочеллу. В 18 веке К. Линней описал 80 лишайников, которых посчитал мхами. Выделил лишайники в отдельную группу растений шведский учённый в 19 веке Э. Ахариус, который основал новое направление в ботанике- лихенологию, т. е. науку о лишайниках. 2Двойная природа лишайников была открыта в 1867 году С. Швендером. На сегодняшний день лихенологами обнаружено 25 000 тысяч видов этих растений, отличающихся крайне медленным ростом и поразительной способностью выживать в самых суровых условиях. Лишайники- наземные растения, и распространены они на суше повсеместно, от жарких тропических пустынь, где приходится терпеть 60-градусный зной, до лишённых растительности арктических и антарктических пустынь, где необходимо выдерживать 50-градусные морозы (к слову, в Антарктиде встречается до 350 видов лишайников). Происхождение лишайников скрыто мраком тайны. Отдаленно напоминает процесс их становления поиск гифами гриба клеток водоросли. Учёные провели эксперимент с грибом - микобионтом лишайника кладония гребешковая. Грибные нити жадно опутывали всё подряд, включая стеклянные шарики, по форме и размерам напоминавшие клетки водорослей. Всего учёные использовали в эксперименте клетки 13 водорослей, включая свободноживущие виды, ничего общего с грибами не имеющие. Гифы кладонии оплели их всех Внешнее строение лишайников.Тело лишайников представлено слоевищем, или талломом. Различают листоватые и кустистые. Внешний вид лишайников чрезвычайно разнообразен. Они могут напоминать тончайшую плёнку, выстилающую камни и поверхность скал. Но не редки тела в виде палочек, листочков, кустиков, башенок, запутанных «бород» , сказочных карликовых кубков. Тело некоторых лишайников усеяно как бы ягодами (органами размножения) или покрыто мельчайшими чешуйками (филлокладиями) . Само тело носит название слоевища, или по- латыни таллома. По строению слоевища различают несколько основных типов морфологической организации лишайников. Накипные, называемые иногда корковыми, имеют плёнкообразное слоевище, которое плотно срастается с субстратом, стелется по его поверхности. субстратом может служить что угодно: камни, стволы деревьев, поверхность каких- либо строений, оголённая поверхность почвы. Листовое слоевище имеют более сложноорганизованные лишайники. Их тела, чётко разделяемые на внутренние слои, имеют форму пластинок- листьев, стелющихся по субстрату и закрепляющихся на нём с помощью пучков специализированных грибных нитей – ризоидов или ризин.В виде столбиков, веточек, палочек и вытянутых лент растут кустистые лишайники, закреплённые на субстрате только у своего основания. Грибные нити слагают собой внешний (корковый) и внутренние слои таллома, превращаясь в плотную массу. Это защитные слои, в которых находятся водоросли. Гриб оберегает растение от перепадов температур, пересыхания, избыточной освещённости. В целом водоросли в этом симбиозе играют роль листьев, а гриб- роль корней. То есть растения занимаются фотосинтезом и вырабатывают органику, которую поглощает гриб, а тот подводит к водорослям воду, кислород и помогает усваивать минеральные вещества. активно лишайники поглощают металлы, которые и придают им разные расцветки, служа исходным сырьём для синтеза лишайниковых кислот. Последние специфическими сложными веществами, нигде больше в природе не встречающимися, кроме как в тканях слоевища лишайников. Размножаются лишайники спорами, как грибы, кусочками слоевища. Споры многих видов лишайников созревают в специальных органах, т. н. сумках. Споры образуются грибом, причём процесс их распространения протекает так, что они разбрасываются в дальнейшем вместе с клетками водоросли. После прорастания споры грибные гифы немедленно опутывают водоросль, чтобы симбиоз вновь восстановился,

  1. Гриб- поглощает минеральные вещества, выделяет углекислоту и воду (для водоросли), вырабатывает ряд веществ стимклирующих развитие водоросли.
  2. Водоросль- вырабатывает улеводы, которые потребляет гриб.

    В результате имеем "взаимовыгодное сотрудничество"- симбиоз

  3. просвятительские
  4. Симбиотические. Больше у меня нет слов:)

Существует несколько теорий, объясняющих взаимоотношения и водоросли в лишайниках, хотя еще не - biofine.ru

Практическое значение лишайников состоит в том, что они используются для медицинских препаратов, красителей, в парфюмерной промышленности как обладающие ароматическими свойствами. Они служат индикаторами загрязнения воздуха, имеют определенное кормовое значение, особенно для северных оленей. Съедобны также некоторые лишайники, произрастающие в степной и пустынной зонах, например Aspicilia esculenta, содержащий до 55-65 % оксалата кальция. У лишайника Romalina duriaci, произрастающего на нижних мертвых ветвях деревьев Acacia tortilis, белка составляет 7,4 %, а углеводы составляют более половины - 55,4 % массы лишайника, в том числе усвояемых - 28,7 %.

В литературе описана также ассоциация лишайника Usnea strigosa с насекомыми Lanelognatha theraiis, которая, видимо, строится на биологической роли лишайниковых кислот.

Взаимоотношения гриба и водоросли в теле лишайника

Отдел лишайники

Отдел лишайники занимают особое место в растительном мире. Их строение очень своеобразно. Тело, называемое слоевищем, состоит из двух организмов — гриба и водоросли, живущих как один организм, В составе некоторых видов лишайников обнаружены бактерии. Такие лишайники представляют собой тройной симбиоз.

Слоевище образовано переплетением гиф гриба с клетками водорослей (зеленых и сине-зеленых).

срез тела листоватого лишайника" width="489" height="192" title="Поперечный срез тела листоватого лишайника" />

Живут лишайники на скалах, деревьях, почве, как на Севере, так и в тропических странах. Разные виды лишайников имеют различную окраску - от серой, желтоватой, зеленоватой до бурой и черной. В настоящее время известно более 20 000 видов лишайников. Изучает лишайники наука, которая называется лихенологией (от греч. «лейхен» - лишайник и «логос» - наука).

По морфологическим признакам (внешнему виду) лишайники делятся на три группы.

  1. Накипные, или корковые, прикрепляющиеся к субстрату очень плотно, образуя корку. Эта группа составляет около 80% всех лишайников.
  2. Листоватые, представляющие собой пластинку, похожую на пластинку листа, слабо прикрепленную к субстрату.
  3. Кустистые, представляющие собой свободные маленькие кустики.

Лишайники - очень неприхотливые растения. Они в самых бесплодных местах. Их можно встретить на голых скалах, высоко в горах, где не живут другие растения. Растут лишайники очень медленно. Например, «олений мох» (ягель) за год вырастает всего на 1 - 3 мм. Живут лишайники до 50 лет, а некоторые до 100 лет.

Размножаются лишайники вегетативно, кусочками слоевища, а также особыми группами клеток, появляющихся внутри их тела. Эти группы клеток образуются во множестве. Тело лишайника разрывается под давлением их разросшейся массы, и группы клеток разносятся ветром и дождевыми потоками.

Лишайники в природе и в хозяйственной деятельности играют важную роль. Лишайники являются первыми растениями, которые поселяются на скалах и им подобных бесплодных местах, где другие растения жить не могут. Лишайники разрушают поверхностный слой скалы и, отмирая, образуют слой гумуса, на котором уже могут поселяться другие растения.

Значение для жизнедеятельности лишайников

Чаще всего в качестве неверного ответа указывают, что грибы, входящие в лишайника, обеспечивают половое размножение водоросли.

Обмен веществ у лишайников также особенный, не сходный ни с водорослями, ни с грибами. Лишайники образуют особые вещества, больше нигде в природе не встречающиеся. Это лишайниковые кислоты . Некоторые из них обладают стимулирующим, или антибиотическим, действием, например, усниновая кислота. Вероятно, поэ­тому ряд лишайников издавна применялся в народной медицине как противовоспалительное, вяжущее или тони­зирующее средство - отвары «исландского мха», напри­мер.

Благодаря сочетанию в одном организме гриба и во­доросли лишайники обладают рядом уникальных свойств.

Во-первых , это их способность расти там, где никакое другое растение не может поселиться и выжить: на камнях и скалах в самых суровых условиях Арктики или высоко­горий, на беднейших почвах тундр, торфяных болотах, на песках, на таких малопригодных для жизни предметах, как стекло, железо, кирпичи, черепица, кости. Лишайники находили на смоле, фаянсе, фарфоре, коже, картоне, ли­нолеуме, древесном угле, войлоке, полотняных и шелковых тканях и даже на старинных пушках! Именно лишайники первыми осваивают непригодную для других организмов среду обитания, например вулканические лавы, разлагая их. За это лишайники получили название «пионеров рас­тительности» Они прокладывают дорогу другим растени­ям. Вслед за лишайниками поселяются мхи и зеленые травянистые растения Лишайники легко переносят пяти­десятиградусные морозы в тундре, а в пустынях Азии и Африки - шестидесятиградусную жару. Легко переносят они и сильное высыхание.

Вторая особенность лишайников - их крайне медлен­ный рост. Ежегодно лишайник вырастает на один-пять миллиметров. Необходимо оберегать лишайниковый по­кров тундры, хвойных боров. Если его нарушить, он вос­станавливается очень долго. маленький срок - около десяти лет. Лишенный такого покрова, тонкий слой почвы в тундре или сосняках подвергается эрозии, а это ведет к гибели и другой растительности.

Средний возраст лишайников от тридцати до восьми­десяти лет, а отдельные экземпляры, как это удалось уста­новить по косвенным данным, доживают до шестисот лет. Имеются сведения, что некоторые лишайники насчитыва­ют даже около двух тысяч лет. Наряду с секвойей и ости­стой сосной лишайники можно считать самыми долгоживущими организмами.

Лишайники очень чувствительны к чистоте окружаю­щего воздуха . Если в воздухе содержится значительная концентрация углекислого и особенно сернистого газа, лишайники исчезают. Эту их особенность предлагается использовать для оценки чистоты воздуха в городах и промышленных районах.

Своеобразие формы тела, обмена веществ, особеннос­тей роста, мест обитания позволяет считать лишайники, несмотря на их двойственную природу, самостоятельными организмами.

Симбиоз гриба и водоросли

Итак, в лабораториях, в стерильных пробирках и колбах с питательной средой поселились изолированные симбионты лишайников.Имея в распоряжении чистые культуры лишайниковых партнеров, ученые решились на самый дерзкий шаг - синтез лишайника в лабораторных условиях.Первая удача на этом поприще принадлежит Е. Томасу, который в 1939 году в Швейцарии получил из мико- и фотобионтов лишайник кладония крыночковидная с хорошо различимыми плодовыми телами. В отличие от предыдущих исследователей, Томас выполнял синтез в стерильных условиях, что внушает доверие к полученному им результату. К сожалению, его попытки повторить синтез в 800 других опытах не удались.

Любимый объект исследования В. Ахмаджяна, принесший ему всемирную славу в области лишайникового синтеза, - кладония гребешковая. Этот лишайник широко распространен в Северной Америке и получил простонародное название "британские солдаты": его ярко-красные плодовые тела напоминают алые мундиры английских солдат времен войны североамериканских колоний за независимость.Небольшие комочки изолированного микобионта кладонии гребешковой смешивали с фотобионтом, извлеченным из того же лишайника. Смесь помещали на узкие слюдяные пластинки, пропитанные минеральным питательным раствором и закрепленные в закрытых колбах. Внутри колб поддерживали строго контролируемые условия влажности, температуры и освещенности. Важным условием эксперимента было минимальное количество питательных веществ в среде. Как же вели себя лишайниковые партнеры в непосредственной близости друг к другу? Клетки водоросли выделяли особое вещество, которое "приклеивало" к ним гифы гриба, и гифы сразу начинали активно оплетать зеленые клетки. Группы водорослевых клеток скреплялись ветвящимися гифами в первичные чешуйки. Следующим этапом было дальнейшее развитие утолщенных гиф поверх чешуек и выделение ими внеклеточного материала, а в результате - образование верхнего корового слоя. Еще позже дифференцировались водорослевый слой и сердцевина, совсем как в слоевище природного лишайника. Эти опыты были многократно воспроизведены в лаборатории Ахмаджяна и всякий раз приводили к появлению первичного лишайникового слоевища.

В 40-е годы XX века немецкий ученый Ф. Тоблер обнаружил, что для прорастания спор ксантории настенной требуются добавки стимулирующих веществ: экстрактов из древесной коры, водорослей, плодов сливы, некоторых витаминов или других соединений. Было сделано предположение, что в природе прорастание некоторых грибов стимулируется веществами, поступающими из водоросли.

Примечательно, что для возникновения симбиотических отношений оба партнера получать умеренное и даже скудное питание, ограниченные влажность и освещение. Оптимальные условия существования гриба и водоросли отнюдь не стимулируют их воссоединение. Более того, известны случаи, когда обильное питание (например, при искусственном удобрении) вило к быстрому росту водорослей в слоевище, нарушению связи между симбионтами и гибели лишайника.

Если рассматривать срезы лишайникового слоевища под микроскопом, видно, что чаще всего водоросль просто соседствует с грибными гифами. Иногда гифы тесно прижимаются к водорослевым клеткам. Наконец, грибные гифы либо их ответвления могут более или менее глубоко проникать внутрь водоросли. Эти выросты называются гаусториями.

Совместное существование накладывает отпечаток и на строение обоих лишайниковых симбионтов. Так, если свободноживущие синезеленые водоросли родов носток, сцитонема и других образуют длинные, иногда ветвящиеся нити, то у тех же водорослей в симбиозе нити либо скручены в плотные клубочки, либо укорочены до единичных клеток. Кроме того, у свободноживущих и лихенизированных синезеленых водорослей отмечают различия в размерах и расположении клеточных структур.Зеленые водоросли также изменяются в симбиотическом состоянии. Это, в первую очередь, касается их размножения. Многие из зеленых водорослей, живя "на свободе", размножаются подвижными тонкостенными клеточками - зооспорами. В слоевище зооспоры, обычно, не образуются. Вместо них появляются апланоспоры - относительно маленькие клетки с толстыми стенками, хорошо приспособленные к засушливым условиям. Из клеточных структур зеленых фотобионтов наибольшим изменениям подвергается оболочка. Она тоньше, чем у тех же водорослей "на воле", и имеет ряд биохимических различий. Очень часто внутри симбиотических клеток наблюдают жироподобные зернышки, которые после изъятия водоросли из слоевища исчезают. Говоря о причинах этих различий, можно предположить, что они связаны с каким-то химическим воздействием грибного соседа водоросли.Сам микобионт также испытывает воздействие водорослевого партнера. Плотные комочки изолированных микобионтов, состоящие из тесно переплетенных гиф, внешне совсем не похожи на лихенизированные грибы. Внутреннее строение гиф тоже различно. Клеточные стенки гиф в симбиотическом состоянии значительно тоньше.

Итак, жизнь в симбиозе побуждает водоросль и гриб менять свой внешний облик и внутреннее строение.

Что же получают сожители друг от друга, какую пользу извлекают из совместного существования? Водоросль снабжает гриб, своего соседа по лишайниковому симбиозу, углеводами, полученными в процессе фотосинтеза.Водоросль, синтезировав тот или иной углевод, быстро и почти целиком отдает его своему грибному "сожителю". Гриб получает от водоросли не только углеводы. Если синезеленый фотобионт фиксирует атмосферный азот, существует быстрый и устойчивый отток образовавшегося аммония к грибному соседу водоросли. Водоросль же, очевидно, просто получает возможность широко расселяться по Земле. По словам Д. Смита, "наиболее частая у лишайников водоросль, требуксия, очень редко живет вне лишайника. Внутри же лишайника она распространена, пожалуй, шире, чем любой род свободноживущих водорослей. за занятие этой ниши - снабжение гриба-хозяина углеводами".

Литература

Лишайники - википедия

Биохимические особенности[править]

Большинство внутриклеточных продуктов, как фото-(фико-), так и микобионтов не являются специфичными для лишайников. Уникальные вещества (внеклеточные), так называемые лишайниковые , формируются исключительно микобионтом и накапливаются в его гифах. Сегодня известно более 600 таких веществ, например, усниновая кислота, мевалоновая кислота. Нередко, именно эти вещества оказываются решающими в формировании окраски лишайника. Лишайниковые кислоты играют важную роль в выветривании, разрушая субстрат.

Водный обмен[править]

Лишайники не способны к регуляции водного баланса, поскольку у них нет настоящих корней для активного поглощения воды и защиты от испарения. Поверхность лишайника может удерживать воду на короткое время в форме жидкости или пара. В условиях вода быстро теряется на поддержание метаболизма и лишайник переходит в фотосинтетически неактивное состояние, при котором вода может составлять не более 10 % массы. В отличие от микобионта, фотобионт не может долго находиться без воды. Сахар трегалоза играет важную роль в защите жизненно важных макромолекул, таких как ферменты, мембранные элементы и ДНК. Но лишайники нашли способы предотвращения полной потери влаги. У многих видов наблюдается утолщение коры, чтобы обеспечить меньшую потерю воды. Способность поддерживать воду в жидком состоянии очень важна в холодных районах, поскольку замёрзшая вода не пригодна для использования организмом.

Время, которое лишайник может провести высушенным, зависит от вида, известны случаи «воскрешения» после 40 лет в сухом состоянии. Когда поступает пресная вода в форме дождя, росы или влажности, лишайники быстро переходят в активное состояние, возобновляя метаболизм. Оптимально для жизнедеятельности, когда вода составляет от 65 до 90 процентов от массы лишайника. Влажность в течение дня может изменяться в зависимости от темпов фотосинтеза, как правило, она наиболее высока с утра, когда лишайники смачиваются росой.

Рост и продолжительность жизни[править]

Описанный выше ритм жизни является одной из причин для очень медленного роста большинства лишайников. Иногда лишайники растут всего лишь на несколько десятых миллиметра в год, в основном менее чем на один сантиметр. Другой причиной медленного роста является то, что фотобионт, составляя нередко менее 10 % объёма лишайника, берёт на себя обеспечение микобионта питательными веществами. В хороших условиях, с оптимальными влажностью и температурой, например в туманных или дождливых тропических лесах, лишайники растут на несколько сантиметров в год.

Ростовая зона лишайников у накипных форм находится по краю лишайника, у листоватых и кустистых - на каждой верхушке.

Лишайники являются одними из самых долгоживущих организмов и могут достигать возраста нескольких сотен лет, а в некоторых случаях - более 4500 лет, как например Rhizocarpon geographicum , живущий в Гренландии.

Размножение[править]

Лишайники размножаются вегетативным, бесполым и половым путём.

Особи микобионта размножаются всеми способами и в то время, когда фотобионт не размножается или размножается вегетативно. Микобионт может, как и другие грибы, также размножаться половым и собственно бесполым путем. Половые споры в зависимости от того, относится микобионт к сумчатым или базидиальным грибам, называются аско- или базидиоспорами и образуются соответственно в асках (сумках) или базидиях .