» » Центробежная сила примеры. Центробежная сила

Центробежная сила примеры. Центробежная сила

В буквальном смысле эти силы выглядят как определённым способом ориентированные по отношению к центру - некой точке, равноудалённой от всех точек траектории движущегося тела. В двумерном пространстве (на плоскости) такой траекторией является окружность , а в трехмерном - тоже окружность, образованная пересечением сферической поверхности плоскостью, в общем случае не проходящей через её центр.
Все остальные траектории любого вида центром в этом смысле не обладают, и потому применительно к движущемуся по не круговым траекториям телу использование представления о центростремительной и центробежной силах не оправдано и ведёт к многочисленным недомолвкам и недоразумениям .

Центростремительная и центробежная силы

Всякое тело сопротивляется изменению своего состояния покоя или равномерного прямолинейного движения под действием внешней силы

Всякое тело стремится сохранять состояние покоя или равномерного прямолинейного движения до тех пор, пока не подействует внешняя сила.

Отголоском этой традиции и является представление о некоей силе , как о материальном факторе, реализующем это сопротивление или стремление. О существовании такой силы уместно было бы говорить, если бы, например, вопреки действующим силам, движущееся тело сохраняло бы свою скорость, но это не так.

Использование термина Центробежная сила правомочно тогда, когда точкой её приложения является не испытывающее поворот тело, а ограничивающее его движение связи. В этом смысле Центробежная сила представляет собой один из членов в формулировке Третьего закона Ньютона, антагониста Центростремительной силе, вызывающей поворот рассматриваемого тела и к нему приложенной. Обе эти силы равны по величине и противоположны по направлению, но приложены к разным телам и потому не компенсируют друг друга, а вызывают реально ощутимый эффект - изменение направление движения тела (материальной точки).

Оставаясь в инерциальной системе отсчёта , рассмотрим два небесных тела, например, компонента двойной звезды с массами одного порядка величины M 1 и M 2 , находящихся на расстоянии R друг от друга. В принятой модели эти звёзды рассматриваются как материальные точки и R есть расстояние между их центрами масс. В роли связи между этими телами выступает сила Всемирного тяготения F G :G M 1 M 2 / R 2 , где G - гравитационная постоянная. Это - единственная здесь действующая сила, она вызывает ускоренное движение тел навстречу друг другу.

Однако, в том случае, если каждое из этих тел совершает вращение вокруг общего центра масс с линейными скоростями v 1 = ω 1 R 1 и v 2 = ω 2 R 2 , то подобная динамическая система будет неограниченное время сохранять свою конфигурацию, если угловые скорости вращения этих тел будут равны: ω 1 = ω 2 = ω , а расстояния от центра вращения (центра масс) будут соотноситься, как: M 1 / M 2 = R 2 / R 1 , причём R 2 + R 1 = R , что непоcредственно следует из равенства действующих сил: F 1 = M 1 a 1 и F 2 = M 2 a 2 , где ускорения равняются соответственно: a 1 = ω 2 R 1 и a 2 = ω 2 R 2

Центростремительные силы, вызывающие движение тел по круговым траекториям равны (по модулю): F 1 =F 2 = F G . При этом первая из них является центростремительной, а вторая - центробежной и наоборот: каждая из сил в соответствие с Третьим законом является и той, и другой.

Поэтому, строго говоря, использование каждого из обсуждаемых терминов излишне, поскольку они не обозначают никаких новых сил, являясь синонимами единственной силы - силы Всемирного тяготения. То же самое справедливо и отношении действия любой из упомянутых выше связей.

Однако, по мере изменения соотношения между рассматриваемыми массами, то есть всё более значительного расхождения в движении обладающих этими массами тел, разница в результатах действия каждой из рассматриваемых тел для наблюдателя становится всё более значительной.

В ряде случаев наблюдатель отождествляет себя с одним из принимающих участие тел и потому оно становится для него неподвижным. В этом случае при столь большом нарушении симметрии в отношении к наблюдаемой картине, одна из этих сил оказывается неинтересной, поскольку практически не вызывает движения.

Переписывая Второй закон в виде F m a = 0 и заменяя второй член слева на некую силу F i = − m a , получаем новую запись Второго закона: F + F i = 0 .Здесь обе силы действуют на одно и то же тело, причём их сумма равна нулю, из чего следует, что данное тело в системе отсчёта, связанной с этим телом, покоится, хотя сама система вместе с ним движется ускоренно. Эта сила F i , ничем не отличается по своему происхождению от силы F (о чём говорит знак равенства в канонической записи закона). Существует предложение называть её Ньютоновской силой инерции . Никакого отношения к центробежной силе эта сила не имеет.

Литература

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  • С. Э. Хайкин. Силы инерции и невесомость. М.: «Наука», 1967 г.
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М.: ГИТТЛ, 1957

Ранее рассматривались характеристики прямолинейного движения: перемещение, скорость, ускорение . Их аналогами при вращательном движении являются: угловое перемещение, угловая скорость, угловое ускорение .

  • Роль перемещения во вращательном движении играет угол ;
  • Величина угла поворота за единицу времени - это угловая скорость ;
  • Изменение угловой скорости за единицу времени - это угловое ускорение .

Во время равномерного вращательного движения тело совершает движение по окружности с одинаковой скоростью, но с изменяющимся направлением. Например, такое движение совершают стрелки часов по циферблату.

Допустим, шар равномерно вращается на нити длиной 1 метр. При этом он будет описывать окружность с радиусом 1 метр. Длина такой окружности: C = 2πR = 6,28 м

Время, за которое шар полностью делает один полный оборот по окружности, называется периодом вращения - T .

Чтобы вычислить линейную скорость шара, необходимо разделить перемещение на время, т.е. длину окружности на период вращения:

V = C/T = 2πR/T

Период вращения:

T = 2πR/V

Если наш шар будет делать один оборот за 1 секунду (период вращения = 1с), то его линейная скорость:
V = 6,28/1 = 6,28 м/с

2. Центробежное ускорение

В любой точке вращательного движения шара вектор его линейной скорости направлен перпендикулярно радиусу. Нетрудно догадаться, что при таком вращении по окружности, вектор линейной скорости шара постоянно меняет свое направление. Ускорение, характеризующее такое изменение скорости, называется центробежным (центростремительным) ускорением .

Во время равномерного вращательного движения меняется только направление вектора скорости, но не величина! Поэтому линейное ускорение = 0 . Изменение линейной скорости поддерживается центробежным ускорением, которое направлено к центру окружности вращения перпендикулярно вектору скорости - a ц .

Центробежное ускорение можно вычислить по формуле: a ц = V 2 /R

Чем больше линейная скорость тела и меньше радиус вращения, тем центробежное ускорение больше.

3. Центробежная сила

Из прямолинейного движения мы знаем, что сила равна произведению массы тела на его ускорение.

При равномерном вращательном движении на вращающееся тело действует центробежная сила:

F ц = ma ц = mV 2 /R

Если наш шарик весит 1 кг , то для удержания его на окружности понадобится центробежная сила:

F ц = 1·6,28 2 /1 = 39,4 Н

С центробежной силой мы сталкиваемся в повседневной жизни при любом повороте.

Сила трения должна уравновесить центробежную силу:

F ц = mV 2 /R; F тр = μmg

F ц = F тр; mV 2 /R = μmg

V = √μmgR/m = √μgR = √0,9·9,8·30 = 16,3 м/с = 58,5 км/ч

Ответ : 58,5 км/ч

Обратите внимание, что скорость в повороте не зависит от массы тела!

Наверняка вы обращали внимание, что некоторые повороты на шоссе имеют некоторый наклон внутрь поворота. Такие повороты "легче" проходить, вернее, можно проходить с бОльшей скоростью. Рассмотрим какие силы действуют на автомобиль в таком повороте с наклоном. При этом силу трения учитывать не будем, а центробежное ускорение будет компенсироваться только горизонтальной составляющей силы тяжести:


F ц = mV 2 /R или F ц = F н sinα

В вертикальном направлении на тело действует сила тяжести F g = mg , которая уравновешивается вертикальной составляющей нормальной силы F н cosα :

F н cosα = mg , отсюда: F н = mg/cosα

Подставляем значение нормальной силы в исходную формулу:

F ц = F н sinα = (mg/cosα)sinα = mg·sinα/cosα = mg·tgα

Т.о., угол наклона дорожного полотна:

α = arctg(F ц /mg) = arctg(mV 2 /mgR) = arctg(V 2 /gR)

Опять обратите внимание, что в расчетах не участвует масса тела!

Задача №2: на некотором участке шоссе имеется поворот с радиусом 100 метров. Средняя скорость прохождения этого участка дороги автомобилями 108 км/ч (30 м/с). Каким должен быть безопасный угол наклона полотна дороги на этом участке, чтобы автомобиль "не вылетел" (трением пренебречь)?

α = arctg(V 2 /gR) = arctg(30 2 /9,8·100) = 0,91 = 42° Ответ : 42° . Довольно приличный угол. Но, не забывайте, что в наших расчетах мы не принимаем во внимание силу трения дорожного полотна.

4. Градусы и радианы

Многие путаются в понимании угловых величин.

При вращательном движении основной единицей измерения углового перемещения является радиан .

  • 2π радиан = 360° - полная окружность
  • π радиан = 180° - половина окружности
  • π/2 радиан = 90° - четверть окружности

Чтобы перевести градусы в радианы, необходимо значение угла разделить на 360° и умножить на 2π . Например:

  • 45° = (45°/360°)·2π = π/4 радиан
  • 30° = (30°/360°)·2π = π/6 радиан

Ниже в таблице представлены основные формулы прямолинейного и вращательного движения.

Святого Писания, без труда вспомнит сюжет сражения Давида с Голиафом. Сражён страшный великан был при помощи пращи. А ведь праща - совершенно реально существовавший предмет, самое что ни на есть простое устройство, оружие, которое применялось во времена, когда лук считался передовой техникой. Самые ранние, обнаруженные при раскопках артефакты, классифицированные как праща, имеют возраст в десяток тысяч лет. Надо сказать, что, несмотря на чрезвычайно простое устройство, праща не была столь безобидной. Камень, выпущенный из пращи рукой опытного метальщика, летел в сторону врага со скоростью около ста метров в секунду. Максимальная реально зафиксированная дальность броска составила более 400 метров.

На каких же физических законах основаны столь внушительные результаты? Ответ: начальную скорость камню (а позднее - металлическому снаряду в форме шара) придавала именно эта загадочная, непонятно откуда берущаяся центробежная сила. Кроме пращи, это физическое явление легло в основу создания ещё многих и многих других машин и механизмов, используемых человеком.

Описание силы с позиций физики

Очень часто люди, а иногда, страшно сказать, даже студенты технических вузов используют в разговоре такое выражение, как центростремительная сила, отождествляя его с центробежной. Безусловно, у двух терминов много общего, хотя это отнюдь не одно и то же. Чтобы получше представить себе, о каких явлениях идет речь, нужно вспомнить немного школьной физики.

Что такое инерция. Револьверная пуля весит около 9 граммов. Если подбросить её вверх примерно на метр и затем поймать рукой (скорость менее 1,0 м/с.), можно почувствовать лёгкий толчок. Та же пуля, выпущенная из оружия и летящая со скоростью около 500 м/с. с лёгкостью пробивает сосновую доску толщиной в дюйм. И наконец, кусочек космического мусора той же массы, летящий по орбите с первой космической скоростью (8 000 м/с.), как кусок масла, с лёгкостью прошьёт тяжёлый танк.

Любое тело, обладающее массой m и движущееся со скоростью V, обладает кинетической энергией :

Для подброшенной пули:

Е = 0,009∙1 2 /2=0,0045 Дж.

Для выпущенной из пистолета:

Е = 0,009∙500 2 /2=1 125 Дж.

Для космического мусора:

Е = 0,009∙8 000 2 /2=288 000 Дж

Для того чтобы движущееся тело остановить, необходимо приложить такую же энергию; чтобы неподвижное тело разогнать до такой скорости, необходимо эту же энергию затратить.

Теперь представим, что некое тело, летящее по прямой, заставляют изменить направление движения.

Изображённое на рисунке тело имеет скорость в направлении оси x - V x , изменение направления его движения придаёт ему скорость в направлении оси ординат - V y , на что, соответственно требуется затратить энергию:

Наконец, вооружившись знаниями об инерции, можно вернуться к праще. Если коротко, то это камень (груз), вращающийся по круговой траектории на нити.

Тело, обладающее массой m, не держи его нить, полетит прямо (что, собственно, и испытал на себе Голиаф), но, удерживаемое нитью, постоянно меняет своё направление. Очевидно, что это происходит под действием какой-то силы, которую и принято называть центростремительной - F цс. В рассматриваемом случае - это сила натяжения нити.

Но почему в этом случае камень не летит в руку пращника? Всему виной третий закон гениального Ньютона, который гласит, что любая сила, приложенная к предмету, порождает силу противодействия, равную по величине и противоположную по направлению. Вот так и рождается центробежная сила F цб.

Примеры из жизни

Не случайно в начале статьи рассматривается именно праща - самый простой пример действия центробежной силы, который проще простого смоделировать, попробовать и ощутить. Но кроме этого, данная физическая величина присутствует в целом ряде ежедневно окружающих нас вещей и предметов. Так, центробежная сила, работая в катушках ремней безопасности, делает поездки безопасными.

Любители рыбалки так без этой силы вообще не смогли бы заниматься любимым хобби и затем рассказывать нам небылицы. Например, заброс тяжёлой кормушки - один в один имитация боевой пращи. А спиннинг или карповая снасть в руке рыбака представляет собой не что иное, как то же самое оружие, только вместо смертоносного камня - блесна, воблер или джиг.

Как рассчитать центробежную силу

Скалярная величина центробежной силы рассчитывается по формуле:

F - искомое значение центробежной силы, Н;

m - масса тела, кг;

V - скорость движения тела, м/с.;

r - радиус вращения, м.

Примеры расчётов

Рассчитаем, с какой силой выталкивается камень из пращи: длина ремня от руки пращника до ложа 1 метр. Воин вращает своё орудие со скоростью 2 оборота в секунду. В праще лежит камень весом 200 граммов.

L = 2πR = 2∙3,14∙1=6,28 м.

Таким образом, в секунду камень пролетает 2∙L = 6,28∙2 = 12,56 м, это и есть его скорость - 12,56 м/с.

Искомая величина находится таким образом:

F = mV 2 /r = 0,2 кг∙12,56 2 /1 = 31,55 Н.

Сила, поставленная на службу

Примеров, где центробежная сила выполняет полезную работу, множество. Кроме боевого метательного оружия, она прекрасно работает в современном спорте. Техника метания молота и в меньшей степени - диска основана на придании снаряду скорости путём именно раскручивания.

Тысячи всевозможных машин имеют принцип действия, основанный на применении центробежной силы. Не нужно далеко ходить, достаточно вспомнить название одного из самых распространенных типов насосов. А название он носит «центробежный». Внутри т.н. «улитки» колесо с лопастями раскручивает какое-то рабочее тело (жидкость или газ). После чего у внешней стенки окружности насоса благодаря центробежным силам образуется область повышенного давления, а в центре улитки, где скорость вращения минимальна, - пониженного. Таким образом, транспортируемая среда, поступив в полость насоса через патрубок в центральной части, под давлением выбрасывается через выходное отверстие во внешней стенке.

И это только один из примеров. Центробежные силы работают во всевозможных очистных машинах в сельском хозяйстве. Принцип сепарации (разделения) сыпучих материалов основан на разности энергий, полученных частицами из-за разной плотности и массы.

Ну и, наконец, пример самый что ни на есть бытовой, для созерцания которого не нужно ехать ни на стадион, ни на зерноток. Достаточно посмотреть, как работает самая обычная стиральная машина-автомат на отжиме. Бельё прижимается к стенкам барабана благодаря центробежной силе, да так, что после отжима на 1000 об./мин. бельё достаётся их машины почти сухим.

Когда с ней борются

Но не всегда центробежная сила желательна. В некоторых случаях с ней приходится бороться. Детали больших размеров в станкостроении, корабельных механизмах в моторах карьерных самосвалов испытывают при вращении огромные нагрузки. Каждый более-менее тяжёлый элемент конструкции, закреплённый на вращающейся основе, стремиться оторваться и улететь в сторону, противоположную центру вращения. А крепление, например, вертолётных лопастей - вообще целая наука.

Каждый автомобилист знает, что на скользкой дороге машину сносит так же в сторону, противоположную закруглению полотна. Иногда можно заметить, как на наиболее крутых поворотах дорожники специально делают уклон к центру кривизны.

Центробежная сила в природе

Ярким примером проявления центробежной силы в природе могут служить приливы - отливы в экваториальных областях. Дело в том, что не только Луна вращается вокруг Земли. Наша планета, хоть и намного тяжелее своего спутника, но всё же немного «подтанцовывает» ему, чуть вращаясь вокруг него по небольшому радиусу. Это приводит к тому, что в двух областях - направленной к Луне и противоположной - образуются как бы горбы вод мирового океана.

К слову сказать, Луне от приливных сил досталось больше. Именно они остановили её вращение вокруг своей оси. Благодаря центробежной силе жители голубой планеты могут видеть лишь одну сторону своего естественного спутника.

Краткое резюме

Итак, центробежная сила является ответной реакцией на силу центростремительную. Скалярная величина центробежной силы прямо пропорциональна произведению массы тела на квадрат его линейной скорости и обратно пропорциональна радиусу вращения. Вектор силы проходит через центр вращения и имеет направление - от него.