» » Цианобактерии совмещают в одной клетке фотосинтез и фиксацию атмосферного азота. Общая характеристика цианобактерий: строение клетки, таллома, способы размножения Отличие цианобактерий особенности самое основное

Цианобактерии совмещают в одной клетке фотосинтез и фиксацию атмосферного азота. Общая характеристика цианобактерий: строение клетки, таллома, способы размножения Отличие цианобактерий особенности самое основное

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Крымский Агротехнологический Университет

Агрономический факультет

РЕФЕРАТ

н а тему:

Выполнила: Глазова А.В.

Проверила: Иванова-Ханина Л.В.

Симферополь 2014 г.

1. Общие сведения о цианобактериях

2. Строение цианобактерий

3. Распространение цианобактерий

4. Роль в природе

Список литературы

1. Общие сведения о цианобактериях

Цианобактерии, или сине-зеленые водоросли (лат. Cyanobacteria) - обширная группа грамотрицательных бактерий крупных размеров, отличительной особенностью которых является способность к фотосинтезу. Цианобактерии - это наиболее сложно устроенные и дифференцированные прокариоты. Так как эти организмы по своей физиологии имеют много общих черт с эукариотическими водоростями, то согласно некоторым классификациям, цианобактерии рассматриваются в составе растений как сине-зеленые водоросли. В настоящее время в альгологии известно более 150 родов и около 1000 видов цианобактерий, бактериологи насчитывают около 400 штаммов.

Цианобактерии распространены в морях и пресных водоемах, почвенном покрове, могут участвовать в симбиозах (лишайники). Весомую часть фитопланктона водоемов составляют водоросли данной группы. Они способны образовывать толстые многослойные покровы на субстрате. Редкие виды обладают токсичностью и условно-патогенны для человека. Сине-зеленые водоросли основные элементы, вызывающие «цветение» воды, что приводит к массовой гибели рыб, отравлениям животных и людей. Для некоторых видов характерна редкая комбинация свойств: способность к фотосинтезу и одновременно фиксации азота из атмосферного воздуха.

2. Строение цианобактерий

В строении цианобактерий имеются характерные особенности. Эти организмы отличаются разнообразной морфологией. Общее в структуре любого вида сине-зеленых водоростей - это слизистая оболочка (гликокаликс из пептидогликанов) и отсутствие жгутиков. Слизистую оболочку покрывает наружная мембрана. Размеры клеток цианобактерий могут быть от 1 мкм до 100 мкм. Цвет разных видов меняется от салатового до темно-синего в связи со способностью изменять соотношение фотосинтетических пигментов в клетке соответственно спектральному составу света.

Цианобактерии - одноклеточные организмы, могут формировать колонии, известны нитчатые формы. Размножение осуществляется посредством бинарного деления, возможно множественное деление. Продолжительность жизненного цикла при благоприятных условиях составляет 6-12 часов.

Внутреннее строение . В клетке каждого организма имеется полноценный аппарат для осуществления фотосинтеза с выделением кислорода. Энергия, полученная посредством фотосинтеза, используется для продуцирования органических веществ из СО 2 . По способу питания подавляющее большинство сине-зеленых водоростей являются облигатными фототрофами. Но они могут в течение короткого периода времени существовать за счет расходования накопленного на свету гликогена.

Рис. 1. Морфология цианобактерий: 1)Gloeocapsa; 2)Nostoc; 3) Anabaena; 4) Oscillatoria, 5) Lyngbya;

Специализированные клетки: А) гормогонии; б) гетероцисты

3. Распространение цианобактерий

Цианобактерии широко распространены в самых разнообразных экологических нишах по всему земному шару, за что получили название космополитных организмов. Такое широкое распространение связано с биологическими свойствами цианобактерии -- специфическим метаболизмом, высокой устойчивостью к изменению таких параметров среды, как температура, влажность, освещенность, засоленность, ультрафиолетовое и радиационное облучение и т.д. Цианобактерии обитают в тундре, в снегах и льдах, в пустынях, в горячих исто чниках с температурой до 80С, в засоленных озерах и почве. В незаселенных местообитаниях они начинают сукцессию и образуют почвенный слой.

Цианобактерии осваивают различные субстраты в водной и наземной среде, способны осуществлять метаболизм в темноте, в течение десятков лет сохраняют жизнеспособность в высушенном состоянии и оживают при увеличении влажности субстрата или воздуха в течение нескольких минут. Все это указывает на большую филогенетическую древность группы.

Цианобактерии водоемов. Водная среда является для цианобактерий первичным и естественным местообитанием. Они широко распространены в морях и в различных континентальных водоемах: в соленых и пресных, со стоячей и проточной, с чистой и загрязненной водой, в холодных и горячих источниках, однако по разнообразию морские формы уступают пресноводным (Кондратьева, 1996). В водоемах повсеместно распространены и планктонные, и бентосные формы цианобактерий. Массовое развитие цианобактерий часто является причиной «цветения» воды, причем в зонах с более теплым климатом «цветение» бывает более бурным. Это явление отмечено не только для пресных, но и для соленых водоемов. Среди цианобактерий континентальных соленых водоемов не встречены морские виды или они составляют очень незначительный процент. В таких водоемах встречаются в основном пресноводные формы, способные выдерживать высокие концентрации солей. Обитатели соленых водоемов условно могут быть подразделены на три группы. Первые - типичные представители соленых водоемов, которые никогда не встречаются в пресных. Вторая группа -- обитатели пресных вод, приспособившиеся к жизни в соленых водоемах. И третья группа -- обычные обитатели пресных водоемов, иногда заносимые в соленые и способные переносить высокие концентрации солей.

Цианобактерии термальных источников. Термальные источники, то есть водоемы, температура которых не зависит от температуры окружающей среды и составляет свыше 30С, также являются местом обитания цианобактерии. Цианобактерии способны обитать также в местах со значительной концентрацией сероводорода, где они осуществляют аноксигенный фотосинтез. Отмечено присутствие цианобактерии в грязях и минеральных источниках (Андреюк и др., 1990).

Цианобактерии почв . Цианобактерии широко распространены в почвенных биоценозах. Они принимают участие в накоплении органического вещества и азота, перераспределении различных почвенных элементов, в формировании и разрушении» минеральных субстратов. Цианобактерии заселяют как поверхность, так и различные горизонты почв и поэтому могут считаться первыми гумусообразователями. Они первыми поселяются на голых скалах при отсутствии какого-либо начального органического субстрата. Это возможно благодаря способности цианобактерии к фиксации атмосферного азота. Таким образом, они подготавливают субстрат для дальнейшего заселения его другими организмами. На вновь образуемых, поверхностях цианобактерии являются поставщиками энергетического материала; для гетеротрофных организмов, первым звеном, формирующейся пищевой цепи будущего биоценоза. В почвах наиболее широко представлены цианобактерии из, порядков Chroococcales, Nostocales u Oscillatoriales. Массовое скопление их на, поверхности почвы также носит название «цветение». Распределение цианобактерии в различных типах почв зависит от совокупности ряда факторов -- климата, материнской породы и растительного покрова. Почвенные формы чрезвычайно-засухоустойчивы. Так, вид Nostoc commune обладает способностью к восстановлению жизненных функций через 107 лет (Андреюк и др., 1990). Цианобактерии постоянно присутствуют в поднятой с почв пыли, что является одним из путей их распространения. Возможность жить на поверхности почвы дает цианобактериям их способность противостоять интенсивному солнечному свету путем выработки специальных приспособлений -- темных слизистых чехлов и особой пигментной системы.

Некоторые виды этих организмов участвуют в освоении склонов вулканов. Обычно они обнаруживаются на самых ранних этапах колонизации вулканической лавы, причем среди этих форм встречаются как образующие,так и не образующие гетероцисты.

4. Роль в природе

Цианобактерии, по общепринятой версии, явились «творцами» современной кислородсодержащей атмосферы на Земле, что привело к «кислородной катастрофе» -- глобальному изменению состава атмосферы Земли, произошедшему в самом начале протерозоя (около 2,4 млрд лет назад) которое привело к последующей перестройке биосферы и глобальному гуронскому оледенению. В настоящее время, являясь значительной составляющей океанического планктона, цианобактерии стоят в начале большей части пищевых цепей и производят значительную часть кислорода (вклад точно не определен: наиболее вероятные оценки колеблются от 20 % до 40 %). Цианобактерия Synechocystis стала первым фотосинтезирующим организмом, чей геном был полностью расшифрован.

В настоящее время цианобактерии служат важнейшими модельными объектами исследований в биологии. Им приписывают целебные и оздоравливающе свойства, которые, однако, в настоящее время не нашли подтверждения. Рассматривается возможное применение цианобактерий в создании замкнутых циклов жизнеобеспечения, а также как массовой кормовой или пищевой добавки.

Цианобактерии обладают способностью к азотфиксации, что делает их весьма перспективными продуцентами белка. В цитоплазме клеток откладывается продукт, близкий к гликогену. Такие представители цианобактерий, как носток, спирулина, триходесмиум съедобны и непосредственно употребляются в пищу. Носток образует на бесплодных землях корочки, которые разбухают при увлажнении. В Японии местное население использует в пищу пласты ностока, образующиеся на склонах вулкана и называет их ячменным хлебом Тенгу (Тенгу - добрый горный дух).Спирулина (Spirulina platensis) происходит из Африки -- района озера Чад.Spirulina maxima растет в водах озера Тескоко в Мексике. Еще ацтеки собирали ее с поверхности озер и употребляли в пищу.Из спирулины делали галеты представлявшие собой высушенную массу спирулины.

Анализ показал, что в спирулине содержится 65% белков (больше, чем в соевых бобах), 19% углеводов, 6% пигментов, 4% липидов, 3% волокон и 3% золы. Для белков характерно сбалансированное содержание аминокислот. Клеточная стенка этой водоросли хорошо переваривается.

Спирулину можно культивировать в открытых прудах или в замкнутой системе из полиэтиленовых труб. Урожайность очень высокая: получают до 20 г сухой массы водоросли с 1 м 2 в день, это выше, чем выход пшеницы, примерно в 10 раз.

Отечественная фармацевтическая промышленность выпускает препарат «Сплат» на основе цианобактерии Spirulina platensis. Он содержит комплекс витаминов и микроэлементов и применяется как общеукрепляющее и иммуностимулирующе средство

цианобактерия морфология природный кислород

Список литературы

1. Емцев В.Т. Микробиология: Учебник для вузов / Емцев В.Т Мишустин Е.Н. - 5-е изд.; перераб. и доп. - М.Дрофа.2005. - 448 с.

2. Гусев М.В. Микробиология: Учебник для вузов. - 4-е изд., - М.: Академия, 2007. - 464 с.

3. Асонов Н.Р. Микробиология: Учебник -4-е изд., перераб. и доп.- М.: КолосC, 2005.-352с.

Размещено на Allbest.ru

Подобные документы

    Систематика и географическое распространение донского ерша, его размножение и развитие, хозяйственное значение и влияние антропогенных факторов. Различия между выловленными группами донского ерша в разных местах и его репродуктивные особенности.

    дипломная работа , добавлен 17.02.2015

    Распространение песца, социальная структура и размножение животного, его значение и разведение. Внешний вид, образ жизни и питания песца, факторы, влияющие на численность и распространение. Осенняя смена волосяного покрова у песца в природных условиях.

    курсовая работа , добавлен 24.10.2009

    Изучение особенностей класса аскомицетов отдела грибов, основными признаками, которых является формирование в результате полового процесса сумок (асков). Строение клетки гриба, размножение, образ жизни и распространение. Общие сведения об эуроциевых.

    курсовая работа , добавлен 16.01.2011

    контрольная работа , добавлен 23.08.2016

    Цианобактерии, их способность к оксигенному фотосинтезу. Строение клеточной стенки стрептококков. Распространение грибов, их виды, особенности и хозяйственное значение. Водоросли, плауновидные, папоротники, лилейные, бобовые и злаковые растения.

    контрольная работа , добавлен 07.09.2011

    Раздел энтомологии, посвященный изучению стрекоз. Фауна стрекоз Южной Америки. Общие черты питания стрекоз в водной и воздушной среде, их размножение и развитие. Основные способы откладывания яиц. Личинки типа наяд. Значение стрекоз для человека.

    реферат , добавлен 16.05.2013

    Характеристика семейства Розоцветные, сведения о редких видах на территории Пензенской области. Распространение и принципы охраны растений, рекомендации по их сохранению. Различия в морфологии плодов и в основных хромосомных числах подсемейств.

    дипломная работа , добавлен 22.09.2009

    Схема строения и основные функции органов размножения быка, сперматогенез. Особенности строения мошонки, схема строения придатка. Микроструктура стенки извитого канальца семенника. Строение семенного канатика, спермиопроводов, мочеполового канала.

    реферат , добавлен 12.11.2016

    Распространение и особенности морфологии окуня. История исследования и степень изученности бассейна р. Печора. Изменчивость речного окуня, его питание и размножение. Гидрографическая сеть в Республике Коми. Методы сбора ихтиологического материала.

    курсовая работа , добавлен 17.10.2013

    Бесполое размножение и его формы: деление надвое, шизогония, образование спор, почкование. Мейоз - важный этап жизненных циклов, включающих половое размножение. Партеногенез и гермафродитизм. Получение идентичных потомков при помощи процесса клонирования.

Общие сведения. Цианобактерии (цианеи) - фототрофные прокариоты, традиционно называемые синезелеными водорослями (Cyanophyta). Название «цианобактерии» широко употребляется в микробиологической литературе, в то время как в ботанической чаще сохраняется название «синезеленые водоросли». Благодаря большой изменчивости признаков в зависимости от условий среды число видов, указываемых разными авторами для этого отдела, резко отличается (200…2000).

Цианобактерии - водные в основном пресноводные), реже почвенные организмы. Организация клеток, наличие муреина в клеточной стенке, близость генетических свойств, способность фиксировать азот - все это сближает их с бактериями. Однако между ними существуют различия: более высокий уровень дифференциации тела; пигментная система (аналогичная таковой у эукариотических красных водорослей и существенно отличающаяся от системы фототрофных бактерий); фотосинтез с выделением кислорода. Эти признаки, а также водный образ жизни сближают цианобактерии с эукариотическими водорослями.

Цианобактерии - древнейшие из известных нам организмов, появившиеся около 3 млрд. лет тому назад. Остатки их находят в строматолитах протерозоя. С появлением цианобактерий в атмосфере начал накапливаться молекулярный кислород, создавая условия, необходимые для эволюции организмов, получающих энергию за счет аэробного дыхания.

Строение. К цианобактериям относят одноклеточные, колониальные и нитчатые фототрофные организмы (рис.1). Для них характерно полное отсутствие подвижных жгутиковых стадий и полового процесса. Хлоропластов нет; фотосинтетические пигменты находятся в мембранах, расположенных в цитоплазме.

Рис. 1. Цианобактерия носток: а - слизистые сливовидные колонии; б - нитчатые талломы цианобактерии (1) в общей слизи (3), видны гетероцисты (2)

Клетки имеют довольно толстые многослойные клеточные стенки, основной компонент которых - муреин. В клеточных стенках есть поры, через которые соединяются протопласты соседних клеток. Клеточные стенки обычно одеты слизистым чехлом, предохраняющим их от высыхания и облегчающим скользящее движение клеток и нитей.

Цитоплазма лишена вакуолей с клеточным соком, окрашена в периферических частях (хроматоплазма) и бесцветна в центре (центроплазма). В хроматоплазме расположены фотосинтезирующие одиночные тилакоиды. Их мембраны содержат хлорофилл a и каротиноиды. На поверхности тилакоидов локализованы в виде гранул - фикобилисом - дополнительные пигменты фикобилины: синие - фикоцианин и аллофикоцианин и красный - фикоэритрин. В отличие от растений тилакоиды не отграничены от цитоплазмы мембранами, отсутствует и хлорофилл b. Преобладание тех или иных пигментов и определяет окраску цианобактерий - от сине-зеленой до фиолетовой и красноватой или почти черной. Фотосинтез аэробный с выделением кислорода. В центральной части клеток находится нуклеоид обычного для прокариота строения. В цитоплазме имеются включения запасных веществ: гликогена, волютина. Белка цианофицина. Вакуолей с клеточным соком нет. Имеются газовые вакуоли, или псевдовакуоли. У ряда нитчатых форм наблюдаются образование гетероцист - крупных клеток, в которых происходит фиксация азота (рис.1). При этом тилакоиды разрушаются, формируются новые плотно упакованные мембранные концентрические и сетчатые структуры; исчезают фикобилины, принимающие участие в реакциях выделения кислорода при фотосинтезе. Создаются анаэробные условия. Необходимые для фиксации азота ферментом нитрогеназой. Образование гетероцист, как и азотфиксация, подавляется присутствием связанного азота, особенно аммиаком и нитратами. Функционирующие гетероцисты подавляют процесс перехода соседних вегетативных клеток в гетероцисты, таким образом, регулируется распределение гетероцист вдоль нити.

Цианобактерии способны образовывать споры - акинеты - крупные клетки с толстыми оболочками и запасом питательных веществ. Они могут выдержать высыхание и затем прорастают, каждая в новую особь.

Размножение. Вегетативное размножение у одноклеточных и колониальных происходит в результате деления клеток пополам после удвоения и расхождения хромосомы; у нитчатых - распадением нити.

Распространение и значение. Распространены цианобактерии повсеместно, среди них преобладают водные, главным образом пресноводные, но есть морские и почвенные организмы. Благодаря миксотрофности (способности сочетать одновременно различные типы питания - авто - и гетеротрофность) и возможности азотфиксации диапазон условий, в которых они способны обитать, чрезвычайно широк. Цианобактерии первыми заселяют обнаженные после вулканических извержений или ядерных взрывов скалы, создавая органическое вещество, формируя почвы; вступают в симбиоз с грибами (образуя самые выносливые лишайники), мхами, папоротниками. Цианобактерии развиваются в воде горячих источников и на ледниках. Пустынные почвы - такыры - обязаны им своим образованием.

Значение цианобактерий велико как в природе, так и в жизни людей. Их массовое развитие в планктоне медленно текущих рек, озер, прудов вызывает «цветение» воды. Особенно резко увеличивается их численность в загрязненных водоемах, куда поступают органические вещества, и удобрения с полей, в почти стоячей, хорошо прогреваемой воде мелко водных водохранилищ. При отмирании и гниении клеток цианей выделяются токсичные вещества, вода приобретает неприятный запах и становится непригодной для питья, происходит массовая гибель рыбы - так называемый замор - настоящее бедствие в прудовом рыбном хозяйстве. Отмирающие цианобактерии благодаря газовым вакуолям всплывают на поверхность и образуют маслянистую грязно-зеленую пленку, не пропускающую воздух.

Массовое развитие красного от избытка фикоэритрина Trichdesmium erythraeum дало название Красному морю. Морские виды цианей фиксируют около 1/4 всего поглощаемого морем азота.

Цианобактерии используются в качестве зеленого удобрения Анабена (Anabena oryza, A.cylindrica и другие виды) в симбиозе с папоротником азолла обладает способностью фиксировать азот атмосферы. Внесенные в почву перед посевом, они повышают урожайность риса на 50%. Действие продолжается в течение двух лет и эквивалентно использованию 60 кг/га азотного удобрения.

Некоторые виды спирулины (Spirulina maxima и др.), нити которой скручены в правильную спираль, содержат 60…80 % протеинов от сухой массы, а также физиологически активные вещества, йодсодержащие гормоны и простагландины.

Более 2000 лет используют спирулину в пищу африканцы в районе оз. Чад. Современная медицина рекомендует спирулину и препараты из нее в качестве биодобавок. Цианобактерии имеют в жизни человека как положительное (азотфиксация, съедобность), так и отрицательное значение (порча воды, гибель рыбы, засорение фильтров водозаборных сооружений).

Наличие жестких клеточных оболочек. Образование в большинстве случаев слизистых обверток.

Отсутствие типичных ядер, ДНК лежит в центре клетки свободно.

Локализация фотосинтетических пигментов в тилакоидах при отсутствии хлоропластов; тилакоиды содержат хлорофилл а .

Присутствие разнообразных включений: газовых вакуолей (обеспечение плавучести), цианофициновых гранул (фиксация азота), полифосфатных тел (фиксация фосфора).

Цианобактерии включают одноклеточные и многоклеточные формы (рис. 3.5, 3.6).

Рис. 3.6. Строение клетки (по Тарасенко Е.В., 2013) А - гетеротрофная бактерия;

Б - цианобактерия 1 - жгутик; 2 – рибосомы 70S; 3 - включения; 4 - мезосомы; 5 - ДНК; 6 - оболочка; 7 - мембрана; 8 - фотосинтезирующая мембрана (тилакоиды)

3.4. Подимперия ядерные, или эукариоты (Eucaryota)

(от греч. эу - хорошо, полностью и греч. karyon - ядро) - организмы, клетки которых содержат оформленные ядра. К эукариотам относятся все высшие животные, растения, а также одноклеточные и многоклеточные водоросли, грибы, простейшие.

Сравнение эукариот и прокариот :

Согласно современным представлениям, прокариоты вместе с предками эукариот относятся к наиболее древним организмам и имеют общее происхождение. Довод в пользу единого происхождения клеток прокариот и эукариот заключается в принципиальном сходстве их генетического аппарата. Различия показаны в таблицах 3.1, 3.2.


Таблица 3.1

Сравнение прокариот и эукариот

Признак Прокариоты Эукариоты
Размер клеток Диаметр 0,5-5 мкм Диаметр обычно до 50 мкм.
Капсула Имеется у некоторых бактерий Отсутствует
Клеточная стенка У бактерий содержит муреин, у цианобактерий - целлюлозу, пектиновые вещества, немного муреина. У растений - целлюлозная стенка, у грибов - хитиновая, у животных клеток клеточной стенки нет
Плазмалемма Имеется Имеется, в животной клетке - плазмалемма с гликокаликсом
Наличие ядра Отсутствие Наличие ядра
Ядерный материал (хромосомы) ДНК - короткие кольцевые молекулы ДНК - длинные линейные молекулы, связанные с гистонами и включают кодирующие участки (экзоны) и некодирующие области (интроны)
Кодирующая часть ДНК 98% ДНК 1,5-3% ДНК, остальное количество - избыточная ДНК
ДНК цитоплазмы ДНК цитоплазмы представлена плазмидами (маленькие кольцевые хромосомы в цитоплазме) ДНК цитоплазмы локализована в митохондриях и хлоропластах
Ядрышки Отсутствие Имеются
Организация генома Имеется до 1,5 тыс. генов От 5 до 200 тыс. генов (у человека - около 25 тыс.)
Цитоплазма Движение отсутствует Движение имеется
Безмембранные органоиды Рибосомы Мельче, чем у эукариот, - 70S. Обычно свободные, но могут быть связаны с мембранными структурами. Крупные, 80S, в свободном состоянии или связаны с мембранами гранулярной ЭПС. В пластидах и митохондриях содержатся рибосомы 70S.
Клеточный центр Отсутствие Имеется в клетках животных, грибов, низших растений
Одномембранные органеллы Отсутствие. Их функции выполняют выросты клеточной мембраны ЭПС, аппарат Гольджи, вакуоли, лизосомы, пероксисомы и т. д.
Двухмембранные органеллы Отсутствие Митохондрии - у всех эукариотов; пластиды - у растений
Мезосома Участвует в делении клетки и в метаболизме Отсутствует
Жгутики Простого строения, не содержат микротрубочек. Диаметр 20 нм Сложного строения, содержат микротрубочки (подобные микротрубочкам центриолей) Диаметр 200 нм
Вакуоли Отсутствие В растительной клетке с клеточным соком (мембрана - тонопласт), в грибной клетке – множество мелких вакуолей, подобных растительным, в животной клетке – пищеварительные, сократительные, выделительные, фагоцитарные и аутофагоцитарные.

Таблица 3.2

Сравнение жизнедеятельности прокариот и эукариот

Признак Прокариоты Эукариоты
Аэробное клеточное дыхание У бактерий - в мезосомах; у цианобактерий - на цитоплазматических мембранах Происходит в митохондриях
Фотосинтез Хлоропластов нет. Фотосинтез у цианобактерий происходит на фотосинтетических мембранах В хлоропластах, содержащих специальные мембраны, собранные в граны
Фагоцитоз и пиноцитоз Отсутствует (из-за наличия жесткой клеточной стенки) Свойствен клеткам животных, у грибов и растений отсутствует
Спорообразование Часть представителей способна образовывать споры из клетки для перенесения неблагоприятных условий среды, поскольку имеют толстую стенку. Спорообразование свойственно растениям и грибам. Споры предназначены для размножения
Способы деления клетки Бинарное поперечное деление, редко - почкование. Митоз и мейоз отсутствуют Митоз, мейоз, амитоз
Передача генетической информации Горизонтальная (от клетки к клетке) путем конъюгации, трансформации и трансдукции. Вертикальная передача генетической информации от родителям к потомкам

Сходства клеток

Большинство клеток - растений и грибов (кроме клеток животных), подобно клеткам прокариот, окружено твердой клеточной стенкой. Однако химический их состав различен.

В клетке эукариот есть ядро и все органоиды, свойственные в клетке: эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи.

Цианобактерии - изобретатели оксигенного фотосинтеза и создатели кислородной атмосферы Земли - оказались еще более универсальными «биохимическими фабриками», чем ранее считалось. Выяснилось, что они могут совмещать в одной и той же клетке фотосинтез и фиксацию атмосферного азота - процессы, ранее считавшиеся несовместимыми.

Цианобактерии , или, как их раньше называли, синезеленые водоросли, сыграли ключевую роль в эволюции биосферы. Именно они изобрели наиболее эффективный вид фотосинтеза - оксигенный фотосинтез, идущий с выделением кислорода. Более древний аноксигенный фотосинтез, идущий с выделением серы или сульфатов, может происходить только в присутствии восстановленных соединений серы (таких как сероводород) - веществ достаточно дефицитных. Поэтому аноксигенный фотосинтез не мог обеспечить производство органики в количестве, необходимом для развития разнообразных гетеротрофов (потребителей органики), включая животных.

Цианобактерии научились использовать вместо сероводорода обычную воду, что обеспечило им широкое распространение и огромную биомассу. Побочным результатом их деятельности стало насыщение атмосферы кислородом. Без цианобактерий не было бы и растений, ведь растительная клетка - результат симбиоза нефотосинтезирующего одноклеточного организма с цианобактериями. Все растения осуществляют фотосинтез при помощи особых органелл - пластид , которые суть не что иное, как симбиотические цианобактерии. И не ясно еще, кто главный в этом симбиозе. Некоторые биологи говорят, пользуясь метафорическим языком, что растения - всего лишь удобные «домики» для проживания цианобактерий.

Цианобактерии не только создали биосферу «современного типа», но и по сей день продолжают ее поддерживать, производя кислород и синтезируя органику из углекислого газа. Но этим не исчерпывается круг их обязанностей в глобальном биосферном круговороте. Цианобактерии - одни из немногих живых существ, способных фиксировать атмосферный азот, переводя его в доступную для всего живого форму. Азотфиксация абсолютно необходима для существования земной жизни, а осуществлять ее умеют только бактерии, и то далеко не все.

Главная проблема, с которой сталкиваются азотфиксирующие цианобактерии, состоит в том, что ключевые ферменты азотфиксации - нитрогеназы - не могут работать в присутствии кислорода, который выделяется при фотосинтезе. Поэтому у азотфиксирующих цианобактерий выработалось разделение функций между клетками. Эти виды цианобактерий образуют нитевидные колонии, в которых одни клетки занимаются только фотосинтезом и не фиксируют азот, другие - покрытые плотной оболочкой «гетероцисты» - не фотосинтезируют и занимаются только фиксацией азота. Эти два типа клеток, естественно, обмениваются между собой производимой продукцией (органикой и соединениями азота).

До недавнего времени считалось, что совместить фотосинтез и азотфиксацию в одной и той же клетке невозможно. Однако 30 января Артур Гроссман и его коллеги из (Вашингтон, США) сообщили о важном открытии, показывающем, что ученые до сих пор сильно недооценивали метаболические способности цианобактерий. Оказалось, что живущие в горячих источниках цианобактерии рода Synechococcus (к этому роду относятся примитивные, древние, чрезвычайно широко распространенные одноклеточные цианобактерии) ухитряются совмещать в своей единственной клетке оба процесса, разделяя их во времени. Днем они фотосинтезируют, а ночью, когда концентрация кислорода в микробном сообществе (циано-бактериальном мате) резко падает, переключаются на азотфиксацию.

Открытие американских ученых не стало полной неожиданностью. В прочтенных за последние годы геномах нескольких разновидностей Synechococcus были обнаружены гены белков, связанных с азотфиксацией. Не хватало только экспериментальных подтверждений того, что эти гены действительно работают.

Положение цианобактерий в системе живого мира

Определение 1

Цианобактерии – это группа прокариотических организмов, способная участвовать в процессах фотосинтеза.

Цианобактерии обладают чертами, характерными для разных царств живых организмов. Долгое время их относили к низшим растениям, но по мере расширения знаний о эукариотической и прокариотической клеточной организации, синезеленые водоросли (цианобактерии) стали относить к бактериям.

Для классификации цианобактерий используют:

  • закономерности развития культуры;
  • постоянные морфологические признаки;
  • особенности клеточного строения;
  • нуклеотидная характеристика и величина генома;
  • особенности углеродного и азотного обмена и т.д.

Морфология, жизненный цикл цианобактерий

Цианобактерии – это грамотрицательные организмы, включающие одноклеточные, многоклеточные и колониальные формы. У многоклеточных форм единицей структуры является специфическая нить - трихом, или филамент.

Трихомы могут быть простыми, состоящими из одного ряда клеток или ветвящимися. Различают истинное и ложное ветвление.

При истинном ветвлении клетки нити делятся в разных плоскостях, при этом образуются однорядные нити с однорядными боковыми ветвями или многорядные трихомы. При ложном ветвлении происходит соединение или прикрепление нитей под углом друг к другу.

Во время жизненного цикла цианобактерии могут формировать короткие нити или единичные дифференцированные клетки, выполняющие разные функции :

  • необходимые в процессе размножения (гормогонии, баеоциты);
  • для выживания в неблагоприятных условиях (акинеты, или споры);
  • для фиксации азота в аэробных условиях (гетероцисты).

Характерной чертой как одноклеточных, так и многоклеточных форм является способность к скользящему движению.

Способы размножения цианобактерий:

  • бинарное деление;
  • почкование;
  • множественное деление;
  • с помощью обрывков трихома;
  • гормогониями

В клетках цианобактерий хорошо развита система внутрицитоплазматических мембран в виде тилакоидов. В них расположены компоненты фотосинтетического аппарата (искл. род Gloeobacter).

Замечание 1

Характерная особенность цианобактерий – способность к бескислородному фотосинтезу. Активность I фотосистемы сохраняется, в то время как II фотосистема отключается. В качестве экзогенных доноров электронов используются восстановленные соединения серы, водород, некоторые сахара, органические кислоты.

Синтез АТФ осуществляется благодаря циклическому электронному транспорту, который связан с I фотосистемой. Способность переключаться с одного типа фотосинтеза на другой при изменении условий является доказательством гибкости светового метаболизма цианобактерий, что имеет важное экологическое значение.

Большинство цианобактерий – облигатные фототрофы. В темноте наблюдается активный эндогенный метаболизм. В этом случае субстратом выступает запасенный ранее гликоген. Возможно получение энергии в темноте за счет гликолиза. У некоторых цианобактерий обнаружена способность к хемогетеротрофному росту.

Для построения клетки цианобактерии нуждаются в минимальном количестве неорганических веществ:

  • углекислота;
  • молекулярный азот, нитратные и аммонийные соли;
  • минеральные соли, служащие источником магния, серы, фосфора, железа;
  • вода.

Цианобактерии проявляют азотфиксирующую активность, которая зависит от содержания в среде молекулярного кислорода и связанного азота.

Основные таксономические группы цианобактерий

Согласно с Международным кодексом номенклатуры бактерий выделяют пять порядков цианобактерий:

  • Порядок Chroococcales. Одноклеточные . Размножаются бинарным делением или почкованием. Характерно образование чехлов вокруг клеток.
  • Порядок Pleurocapsales. Одноклеточные. Размножаются множественным делением или бинарным и множественным делением поочередно.
  • Порядок Oscillatoriales . Многоклеточные нитчатые. Трихомы состоят из ряда вегетативных клеток, неветвящиеся.
  • Порядок Nostocales. Многоклеточные нитчатые. Трихомы состоят из ряда вегетативных клеток, встречаются гетероцисты и акинеты, неветвящиеся.
  • Порядок Stigoneomatales. Признаки, характерные для пор. Nostocales. Вегетативные клетки способны делиться в нескольких плоскостях, в результате чего формируются нити с истинным ветвлением или многорядные трихомы.