» » Общая формула азотсодержащих органических соединений.

Общая формула азотсодержащих органических соединений.

Азот, как и кислород, часто входит в состав органических веществ, и его соединения необходимы для живых организмов.

Соединения, содержащие азот, отличаются большим разнообразием, чем кислородсодержащие. Это связано с тем, что у азота валентность выше и при этом он имеет три гибридных состояния, подобно атому углерода. Соединения с одинарной связью С-Ы называются амины, с двойной связью С=Ы - имины, с тройной связью С=К - нитрилы.

Существенное отличие азота от кислорода заключается в том, что азот может входить в органические соединения как в восстановленном, так и в окисленном состоянии. Электроотрицательность азота (х = 3,0) выше, чем у углерода (х = 2,5), и ниже, чем у кислорода (х = 3,5). Если азот связан с углеродом и водородом, то его степень окисления -3. В соединениях, содержащих нитрогруппу -Ж) 2 , азот связан с кислородом и углеродом и находится в степени окисления +3. Органические соединения с окисленным азотом содержат внутренний запас окислителя. При наличии нескольких нитрогруп в молекуле соединение становится взрывчатым. К веществам такого типа принадлежит 2,4,6-тринитротолуол (тротил).

Восстановленный азот придает органическим соединениям те же свойства, что и кислород: полярность, основность и кислотность, способность

образовывать водородные связи. Однако полярность азотсодержащих соединений меньше, а водородные связи слабее, чем у кислородсодержащих. Поэтому по некоторым физическим свойствам амины оказываются между углеводородами и спиртами. В то время как все спирты при обычных условиях являются жидкостями, некоторые амины газообразные вещества:

Азот в состоянии вр 3 -гибридизации - хороший донор электронной пары. Поэтому, как мы уже знаем, амины проявляют довольно сильные основные свойства. В меньшей мере донорные свойства выражены у азота в состоянии $р 2 -гибридизации. Кислотные свойства азотсодержащих органических соединений гораздо слабее, чем кислородсодержащих. Но при участии электронов азота в сопряжении с тг-электронам и углерода кислотные свойства проявляются.

Один из классов азотсодержащих веществ - амины. Так называются азотсодержащие органические вещества, в которых атом азота соединен с углеводородными радикалами и соответствующим числом атомов водорода. В зависимости от числа радикалов различают:

  • - первичные амины ЯМН 2 ;
  • - вторичные амины КИ/ЫН;
  • - третичные амины КК"К"Ы.

Следует обратить внимание, что понятия первичных, вторичных и третичных аминов не совпадают с соответствующими понятиями для спиртов.

Различают гомологические ряды предельных, непредельных и ароматических аминов. Здесь также имеется различие в терминологии, если сравнивать спирты и амины. В ароматических спиртах гидроксогруппа должна быть связана с атомом углерода в радикале, а не в ароматическом цикле. В случае азотсодержащих соединений вещество с группой ЫН 2 , связанной с ароматическим циклом, тоже считается амином.

Амины с небольшой молекулярной массой представляют собой жидкие или газообразные вещества, хорошо растворимые в воде. Они имеют неприятный запах, напоминающий запах аммиака. Специфический запах рыбы также связан с присутствием аминов. У высших аминов появляются те же особенности, какие отмечались у спиртов и кислот, - растворимость в воде уменьшается и появляется поверхностная активность.

Получение аминов. Один из способов получения аминов аналогичен получению спиртов. Это реакции галогенпроизводных углеводородов с аммиаком, идущие по механизму нуклеофильного замещения:

Амин здесь не может оказаться непосредственным продуктом реакции, так как образующийся хлороводород реагирует с ним как с основанием.

давая соль амина. Для выделения свободного амина полученную соль обрабатывают щелочью:

Галогенпроизводное углеводорода реагирует не только с аммиаком, но и с первичным амином. При этом образуется вторичный амин, а на следующей стадии - третичный амин:

Амины получаются также гидрогенизацией нитрилов:

Ароматические амины получаются восстановлением нитросоединений. В качестве восстановителей используются металлы в кислой среде:

Этот ароматический амин называется анилин. Реакция восстановления нитросоединений открыта Н. Н. Зининым в 1842 г. В промышленности нитробензол восстанавливают водородом на никелевом катализаторе при ~300°С. Анилин стал очень важным промежуточным продуктом, применяемым для производства красителей, полимеров, лекарств и др. Мировое производство анилина - свыше 1 млн т в год.

Химические свойства аминов. Амины относятся к числу веществ, способных гореть с образованием С0 2 , Н 2 0 и азота Ы 2 .

Как основания амины подобны аммиаку, от которого производятся замещением водорода на углеводородные радикалы. Эти радикалы влияют на силу оснований. Воздействие индуктивного и мезомерного эффектов на основные свойства в целом противоположно их воздействию на кислотные свойства. Предельные спирты по кислотным свойствам слабее воды, а предельные амины по основным сильнее аммиака; фенолы по кислотным свойствам значительно сильнее спиртов, а анилин по основным свойствам значительно слабее предельных аминов.

В предельных аминах +/-эффект радикала повышает электронную плотность на азоте, поэтому увеличивается способность азота отдавать электронную пару для образования донорно-акцепторной связи. В анилине электронная пара азота участвует в сопряжении с ароматическими тт-электронами и становится менее доступной для образования донорноакцепторной связи. Поэтому вещества располагаются в следующий ряд по ослаблению основных свойств:

предельные амины > ЫН 3 > ароматические амины.

Пример 22.15. В каком направлении смещено равновесие реакции между этил- амином и гидрохлоридом анилина?

Решение. Этиламин более сильное основание, чем анилин. Поэтому равновесие смещено в сторону образования анилина:

Амины в качестве оснований реагируют с ионами металлов, образуя комплексные соединения. Ион металла выступает акцептором электронной пары азота, как и в случае реакций с аммиаком. Известно очень много комплексных соединений металлов (/-блока с разнообразными аминами. При смешивании растворов сульфата меди и метиламина образуется интенсивно окрашенный раствор более чистого синего оттенка, чем в случае реакции с аммиаком (параграф 210):

диамины типа гШ 2 СН 2 СН 2 1Н 2 дают более прочные комплексы, чем моноамины, так как каждая молекула имеет два донорных атома азота и присоединяется двумя донорно-акцепторными связями.

Первичные амины под действием азотистой кислоты (или нитрита натрия в кислой среде) дезаминируются, превращаясь в спирты:

В первичных и вторичных аминах водород аминогруппы замещается на углеводородные радикалы при реакциях с галогенпроизводными (см. получение аминов). Амин с галогенангидридом дает амид кислоты, в котором имеется радикал, связанный с азотом:

Третичные амины присоединяют галогенпроизводные углеводородов с образованием четырехзамещенных (четвертичных) солей аммония:

Это кристаллические, хорошо растворимые в воде вещества. В отличие от обычных солей аммония они не гидролизуются и не разлагаются щелочами.

В анилине и других ароматических аминах группа ЫН 2 проявляет положительный мезомерный эффект, ускоряя реакции электрофильного замещения в ароматическом радикале. Анилин обесцвечивает бромную воду, образуя при этом белый осадок триброманилина.

Амины - органические производные аммиака NH 3 , в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы:

Простейший представитель - метиламин:

Классификация. Амины классифицируют по двум структурным признакам:

  • по количеству радикалов, связанных с атомом азота, различают: первичные (один радикал), вторичные (два радикала), третичные (три радикала) (табл. 7.2);
  • по характеру углеводородного радикала амины подразделяются на алифатические (жирные) - производные алканов, ароматические и смешанные (или жирноароматические).

Таблица 7.2

Номенклатура аминов. Названия большинства аминов образуются из названий углеводородного радикала (радикалов в порядке увеличения) и суффикса -амин. Первичные амины также часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH 2 . Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:

Аминокислотами называются соединения, молекулы которых содержат одновременно амино- и карбоксильную группы. Простейшим представителем их является аминоуксусная кислота (глицин):

В составе молекулы аминокислоты могут содержаться несколько карбоксильных или аминогрупп, а также другие функциональные группы. В зависимости от положения аминогруппы по отношению к карбоксилу различают альфа- (а), бетта- (Р), гамма- (у), дельта- (Д), элсмлол-аминокислоты (е) и т.д.:


2-аминопропановая кислота (сс-аминопропиновая, аланин);


Альфа-аминокислоты играют важнейшую роль в процессах жизнедеятельности живых организмов, так как являются теми соединениями, из которых строится молекула любого белка. Все а-аминокислоты, часто встречающиеся в живых организмах, имеют тривиальные названия, которые обычно и употребляются. (Представители некоторых альфа-аминокислот приведены в табл. 7.3.)

Таблица 7.3

Аминокислоты - твердые кристаллические вещества с высокой температурой плавления, при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Важнейшим химическим свойством амнокислот является межмолекулярное взаимодействие а-аминокислот, которое приводит к образованию пептидов. При взаимодействии двух а-аминокислот образуется дипептид. Межмолекулярное взаимодействие трех а-аминокислот приводит к образованию трипептида и т.д. Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь СО-NH - пептидной связью.

Аминокислоты находят применение во многих сферах. Их используют в качестве пищевых добавок. Так, лизином, триптофаном и треонином обогащают растительные белки, а метионин включают в блюда из сои. При выработке пищевых продуктов аминокислоты находят применение в роли усилителей вкуса и добавок. Благодаря выраженному мясному вкусу широко используется L-энантиомер мо- нонатриевой соли глутаминовой кислоты. Глицин добавляют как подсластитель, бактериостатическое вещество и антиоксидант. Являясь не только структурными элементами белков и других эндогенных соединений, аминокислоты имеют большое функциональное значение, некоторые из них выступают в качестве нейромедиаторных веществ, другие нашли самостоятельное применение в качестве лекарственных средств. Аминокислоты применяются в медицине в качестве парентерального (т.е., минуя желудочно-кишечный тракт) питания больных, с заболеваниями пищеварительных и других органов. Их также применяют для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота и т.п.). Аминокислоты применяются в животноводстве и ветеринарии для питания и лечения животных, а также в микробиологической, и химической промышленности.

Лекция: Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

Амины, особенности их строения

Вам уже известно, что молекулы органических соединений состоят из атомов углерода, водорода и кислорода. Но среди них есть и такие, которые содержат атомы азота. Именно азотсодержащие органические соединения, такие как аминокислоты, белки и нуклеиновые кислоты, являются основой жизни на Земле. Самыми простыми азотсодержащими соединениями являются амины.

Амины – это органические соединения, являющиеся производными аммиака, в молекуле которых один или несколько атомов водорода замещены на углеводородные радикалы (R).

Исходя из данного утверждения, т.е. по числу аминогрупп NH 2 амины подразделяются на:

    первичные,

    вторичные и

    третичные.

Атом азота в молекуле амина всегда готов предоставить свою неподеленную электронную пару другому атому, поэтому он является донором. Таким образом, связь катиона водорода с атомом азота в молекуле амина происходит с помощью донорно-акцепторного механизма. Исходя из этого, амины, как и аммиак, обладают достаточно выраженными основными свойствами.

В зависимости от типа радикала, связанного с атомом азота, амины подразделяются на:

    алифатические (CH 3 -N<) и

    ароматические (C 6 H 5 -N<).

Изомерия алифатических аминов:

Алифатические амины, иначе называемые предельными, являются более сильными основаниями, чем аммиак. Это обусловлено тем, что в аминах углеводородные заместители имеют положительный индуктивный (+I) эффект. Так же, из - за этого, на атоме азота возрастает электронная плотность. Данный процесс заметно облегчает его взаимодействие с катионом Н + .

Изомерия ароматических аминов:

Ароматические амины проявляют более слабые основные свойства по сравнению с аммиаком. Это объясняется тем, что неподеленная электронная пара атома азота сдвигается в сторону ароматической π-системы бензольного кольца. Впоследствии, электронная плотность на атоме азота постепенно снижается.

Химические свойства аминов

Наличие электронной пары на атоме азота наделяет амины основными свойствами. Первичные предельные амины, в силу более сильных основных свойств, взаимодействуют с водой несколько лучше аммиака. В свою очередь, основность вторичных предельных аминов больше первичных. Проявление основных свойств третичными аминами не так однозначно, потому что атом азота в них, нередко экранирован углеводородными радикалами, что мешает проявлению его основных свойств.

    Амины вступают в обратимые реакции с водой. Водный р-р аминов является щелочной средой, что является следствием диссоциации образующихся оснований. Общий вид реакции выглядит следующим образом:

RNH 2 + H 2 O <-> RNH 3 + + OH -

    Свободные предельные амины и их водные р-ры взаимодействуют с кислотами с образованием солей. К примеру:

CH 3 NH 2 + H 2 SO 4 → HSO 4

C 6 H 5 NH 2 + HCl → Cl

    Соли аминов представляют собой аналоги солей аммония и являются твердыми веществами. Они хорошо растворяются в воде и плохо в неполярных органических растворителях. В реакциях с щелочами при нагревании из солей аминов высвобождаются свободные амины:

[CH 3 NH 3 ]Cl + NаОH CH 3 NH 2 + Cl + H 2 O

    Первичные предельные амины взаимодействуют с азотистой кислотой с образованием спиртов, газообразного азота N 2 и воды:

RNH 2 + HNO 2 ROH + N 2 + H 2 O

Это качественная реакция первичных предельных аминов и применяется для их различения от вторичных и третичных.

Вторичные амины в такой же реакции образуют масляные жидкости с запахом - N -нитрозамины:

R 2 NH + HO-N=O R 2 N-N=O + H 2 O

Третичные амины с азотистой кислотой не взаимодействуют.

  • Амины вступают в реакции нуклеофильного замещения:

CH 3 CH 2 Br + CH 3 CH 2 NH 2 → (CH 3 CH 2 ) 2 NH 2 + Br - CH 2 CH 3

  • Взаимодействие первичных и вторичных аминов с карбоновыми кислотами приводит к их ацилированию, в результет образуются важнейшие органические соединения амиды:

    Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

4C n H 2n+3 N + (6n+3)O 2 → 4nCO 2 + (4n+6)H 2 O

Рассмотрим характерные химические свойства анилина (аминобензола) - простейшего ароматического амина. Аминогруппа в молекуле данного вещества непосредственно соединена с ароматическим кольком. Основные свойства анилина намного слабее алифатических аминов. Поэтому реакция анилина с водой и слабыми кислотами (например, угольной) не идёт.

    Анилин реагирует с сильными и средними неорганическими кислотами с образованием фениламмония. К примеру:

С 6 Н 5 N Н 2 + HCl → С 6 Н 5 N Н 3 С l

Соли фениламмония C 6 H 5 NH 3 + хорошо растворимы в воде, но не­растворимы в неполярных органических растворителях.

    Аминогруппа ароматических аминов, в частности анилина, втянутая в ароматическое кольцо снижает электронную плотность на атоме азота, но увеличивает ее в ароматическом ядре. Поэтому реакции электрофильного замещения (с галогенами) протекают значительно легче, особенно в орто- и пара- положениях. К примеру, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Это качественная реакция на анилин.

    Анилин реагирует с азотистой кислотой при t 0 0 С, образуются соли диазония, имеющие большое практическое значение и применяемые для синтеза азокрасителей и других соединений:

C 6 H 5 NH 2 + KNO 2 + 2HCl → + Cl - + KCl + 2H 2 O

Продуктами приведенной реакции являются хлорид фенилдиазония, хлорид калия и вода.

При проведении реакции данного типа при высокой t выделяется азот, а анилин превращается в фенол:

C 6 H 5 NH 2 + NaNO 2 + H 2 SO 4 → C 6 H 5 -OH + N 2 + NaHSO 4 + H 2 O

    Алкилирование анилина галогенпроизводными углеводородов образует вторичные и третичные амины.

Химические свойства аминокислот

Аминокислоты - органические соединения, молекулы которых имеют две функциональные группы – амино (-NH 2) и карбокси- (-COOH).

Общая формула аминокислот: (NH2)xR(COOH)y, где x и y чаще всего равны 1 или 2.

Наличие в молекулах данных соединений амино- и карбокси- групп объясняет химические свойства аминокислот, схожие с аминами и карбоновыми кислотами. Поэтому аминокислоты проявляют основные свойства, характерные для соединений, содержащих аминогруппы и ксилотные свойства, характерные для соединений, содержащих карбоксильную группу. Следовательно, аминокислоты - амфотерные органические соединения.

  • В реакциях с щелочами аминокислоты проявляют кислотные свойства:

H 2 N-СH 2 -СООН + NаOН → H 2 N-СH 2 -СООН - Nа + + H 2 O

  • В реакциях этерификации со спиртами также проявляют кислотные свойства:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

    В реакциях с сильными кислотами проявляют основные свойства:

NH 2 CH 2 COOH + HCl → + Cl -

    Реакция с азотистой кислотой протекает как в случаях с первичными аминами:

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

    Алкилирование аминокислоты:

NH 2 CH 2 COOH + CH 3 I → + I -

    В реакциях друг с другом аминокислоты образуют дипептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-. К примеру, в реакции глицина и аланина образуется дипептид глицилаланин:

Проведение данной реакции без соблюдения специфических условий синтеза приведет к образованию не глицилаланина, а аланилглицина.




Аминокислоты являются основными структурными компонентами молекул белка и в свободном виде появляются в продовольственных товарах в процессе распада белка.

Амиды аминокислот содержатся в растительных Продуктах в качестве естественной составной части. Например, в капусте и спарже находится амид аспарагина (0,2-0,3%).

Аммиачные соединения встречаются в продовольственных товарах в малых количествах в виде аммиака и его производных. Аммиак является конечным продуктом распада белков. Значительное количество аммиака и аминов указывает на гнилостное разложение белков продовольственных товаров. Поэтому при исследовании свежести мяса и рыбы определяют содержание в них аммиака. К производным аммиака относятся моноамины CH 3 NH 2 , диметиламины (CH 3) 2 NH и триметиламины (CH 3) 3 N, которые обладают специфическим запахом. Метиламин имеет запах, сходный с аммиаком. Диметиламин - газообразное вещество с запахом селедочного рассола, образуется в основном при гниении белков рыбы и других продуктов. Триметиламин - газообразное вещество, содержащееся в значительном количестве в селедочном рассоле. В концентрированном виде обладает запахом аммиака, но в слабых концентрациях имеет запах гнилой рыбы.

Нитраты - соли азотной кислоты. В продовольственных товарах содержатся в незначительных количествах, за исключением тыквы и кабачков.

Нитриты добавляют в небольших количествах при посоле мяса и в колбасный фарш для придания мясу розового цвета. Нитриты обладают высокой токсичностью, поэтому применение их в пищевой промышленности лимитируется (в мясной колбасный фарш добавляют раствор нитрита из расчета не более 0,005% массы мяса).

Белки имеют наиболее важное из азотсодержащих соединений значение для питания человека. Они являются наиболее важными органическими соединениями, входящими в состав живых организмов. Еще в прошлом веке, изучая состав различных животных и растений, ученые выделили вещества, которые по некоторым свойствам напоминали яичный белок: так, при нагревании они свертывались. Это и дало основание назвать их белками. Значение белков как основы всего живого было отмечено еще Ф. Энгельсом. Он писал, что там, где есть жизнь, обнаруживаются белки, а где присутствуют белки, там отмечены признаки жизни.

Таким образом, термином «белки» назван большой класс органических высокомолекулярных азотсодержащих соединений, присутствующих в каждой клетке и определяющих ее жизнедеятельность.

Химический состав белков. Химический анализ показал наличие во всех белках (в %): углерода - 50-55, водорода - 6-7, кислорода - 21-23, азота - 15-17, серы - 0,3-2,5. В отдельных белках обнаружены фосфор, йод, железо, медь и некоторые макро- и микроэлементы в различных количествах.

Для определения химической природы мономеров белка проводят гидролиз - длительное кипячение белка с сильными минеральными кислотами или основаниями. Наиболее часто применяют 6N HN0 3 и кипячение при 110°С в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют метод хроматографии. Наконец, природу выделенных мономеров выясняют с помощью определенных химических реакций. В результате было установлено, что исходными составными частями белков являются аминокислоты.

Молекулярная масса (м.м.) белков от 6000 до 1 000 000 и выше, так, м.м. белка альбумина молока - 17400, глобулина молока - 35200, яичного альбумина - 45000. В организме животных и растений белок встречается в трех состояниях: жидком (молоко, кровь), сиропообразном (яичный белок) и твердом (кожа, волосы, шерсть).

Благодаря большой м.м. белки находятся в коллоидном состоянии и диспергированы (распределены, рассеяны, взвешаны) в растворителе. Большинство белков относится к гидрофильным соединениям, способны вступать во взаимодействие с водой, которая связывается с белками. Такое взаимодействие называется гидратацией.

Многие белки под влиянием некоторых физических и химических факторов (температура, органические растворители, кислоты, соли) свертываются и выпадают в осадок. Этот процесс называется денатурацией. Денатурированный белок теряет способность к растворению в воде, растворах солей или спирте. Все продовольственные товары, переработанные с помощью высоких температур, содержат денатурированный белок. У большинства белков температура денатурации составляет 50-60 °С. Свойство белков денатурироваться имеет важное значение, в частности, при выпечке хлеба и получении кондитерских изделий. Одно из важных свойств белков - способность образовывать гели при набухании в воде. Набухание белков имеет большое значение при производстве хлеба, макаронных и других изделий. При «старении» гель отдает воду, при этом уменьшается в объеме и сморщивается. Это явление, обратное набуханию, называется- синерезисом.

При неправильном хранении белковых продуктов может происходить более глубокое разложение белков с выделением продуктов распада аминокислот, в том числе аммиака и углекислого газа. Белки, содержащие серу, выделяют сероводород.

Человеку требуется 80-100 г белков в сутки, в том числе 50 г животных белков. При окислении 1 г белка в организме выделяется, 16,7 кДж, или 4,0 ккал.

Аминокислоты - это органические кислоты, у которых атом водорода ос-углеродного атома замещен на аминогруппу NH 2 . Следовательно, это ос-аминокислота с общей формулой

Следует отметить, что в составе всех аминокислот имеются общие группировки: - СН 2 , -NH 2 , -СООН, а боковые цепи аминокислот, или радикалы (R), различаются. Химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации аминных и карбоксильных групп, а также групп, входящих в состав радикалов. Другими словами, они являются амфотермными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы протонов).

Все аминокислоты в зависимости от структуры разделены на несколько групп

Из 20 аминокислот, которые участвуют в построении белков, не все обладают одинаковой биологической ценностью. Некоторые аминокислоты синтезируются организмом человека, и потребность в них удовлетворяется без поступления извне. Такие аминокислоты называются заменимыми (гистидин, аргинин, цистин, тирозин, аланин, серии, глутаминовая и аспарагиновая кислоты, пролин, оксипролин, глицин). Другая часть аминокислот не синтезируется организмом и они должны поступать с пищей. Их называют незаменимыми (триптофан). Белки, содержащие все незаменимые аминокислоты, называются полноценными, а если отсутствует, хотя бы одна из незаменимых кислот - белок является неполноценным.

Классификация белков. В основу классификации белков положены их физико-химические и химические особенности. Белки делят на простые (протеины) и сложные (протеиды). К простым относят белки, которые при гидролизе дают только аминокислоты. К сложным - белки, состоящие из простых белков и соединений небелковой группы, называемой простетической.

К протеинам относятся альбумины (молока, яиц, крови), глобулины (фибриноген крови, миозин мяса, глобулин яиц, туберин картофеля и др.), глютелины (пшеницы и ржи), продамины (глиадин пшеницы), склеропротеины (коллаген костей, эластин соединительной ткани, кератин волос).

К протеидам относятся фосфопротеиды (казеин молока, вителлин куриного яйца, ихтулин икры рыб), которые состоят из белка и фосфорной кислоты; хромопротеиды (гемоглобин крови, миоглобин мышечной ткани мяса), представляющие собой соединения белка глобина и красящего вещества; глюколротеиды (белки хрящей, слизистых оболочек), состоящие из простых белков и глюкозы; липопротеиды (белки, содержащие фосфатид) входят в состав протоплазмы и хлорофилловых зерен; нуклеопротеиды содержат нуклеиновые кислоты и играют важную для организма роль в биологическом отношении.

Аминокислоты, соединяясь друг с другом, образуют белки – важнейшие азотсодержащие органические вещества, без которых немыслима жизнь. Они входят в состав клеток живых организмов. Белки являются не только строительным материалом организмов, но и регулируют все биохимические процессы. Нам известна огромная роль биокатализаторов – ферментов. Их основу составляют белки.

Характеристика белков

Без ферментов прекращаются реакции, следовательно, прекращается и сама жизнь. Белки являются главными участниками процессов роста, развития, размножения организмов, наследования признаков. Обмен веществ, процессы дыхания, работа желёз, мышц происходят с участием белков.

Входящие в состав аминокислот аминогруппы и карбоксильные группы противоположны друг другу по свойствам. Поэтому молекулы аминокислот взаимодействуют друг с другом. При этом аминогруппа одной молекулы реагирует с карбоксильной группой другой:

NH2-CH2-CO- OH + H -NH-CH2-COOH => NH2-CH2-CO-NH-CH2-COOH + H2O

Молекулы белков обладают высокой молекулярной массой, превышающей 5000. Некоторые белки имеют молекулярную массу свыше 1 000 000 и состоят из многих тысяч остатков аминокислот. Так, гормон инсулин состоит из 51 остатка различных аминокислот, а белок синего дыхательного пигмента виноградной улитки содержит около 100 тыс. аминокислотных остатков.

Растительные организмы синтезируют все необходимые аминокислоты. В организмах животных и человека могут быть синтезированы только некоторые из них. Их называют заменимыми. Девять аминокислот поступают в организм только с пищей. Их называют незаменимыми. Недостаток в организмы хотя бы одной из аминокислот приводит к серьёзным заболеваниям. Например, недостаток в пище лизина вызывает нарушение кровообращения, ведёт к снижению гемоглобина, истощению мышц, снижению прочности костей.

Состав белка

Последовательность соединения аминокислотных остатков в молекулах белков называют первичной структурой белков. Она является основой строения белка.

В молекулах присутствуют атомы кислорода, которые имеют не поделенные электронные пары, и атомы водорода, связанные с электроотрицательными атомами азота.

Между отдельными участками белковой молекулы возникают водородные связи. В результате всех взаимодействий молекула закручивается в спираль. Пространственное расположение пептидной цепи называют вторичной структурой белка.

Водородные и ковалентные связи в белках могут разрываться. Тогда происходит денатурация белка – разрушение вторичной структуры. Это происходит при нагревании, механическом воздействии, изменении кислотности крови и при др. факторах.

Спиралевидные белковые молекулы имеют определённую форму. Если эти спирали вытянуты, то образуются фибриллярные белки. Из таких белков построены мышцы, хрящи, связки, шерсть животных, волосы человека. Но большинство белков имеют шарообразную форму молекул – это глобулярные белки. Такую форму имеют белки, образующие основу ферментов, гормонов, белки крови, молока и многие другие. Отдельные частицы белка (фибры или глобулы) соединяются в более сложные структуры.

Знание состава и структуры белков помогает расшифровать сущность ряда генетических заболеваний человека, а следовательно, искать эффективные способы их лечения. Химические знания используются в медицине для борьбы с болезнями, а также в целях их профилактики, облегчают существование человека на Земле.