» » Схемы приборов для измерения величины индуктивности. Как измерить емкость и индуктивность с помощью осциллографа

Схемы приборов для измерения величины индуктивности. Как измерить емкость и индуктивность с помощью осциллографа

Пока мне не нужно было заниматься намоткой выходного трансформатора, тема измерений индуктивности катушек с сердечниками меня мало интересовала. Досаждала, конечно ненадежность китайских коробочек, претендующих на звание “измеритель индуктивности”, но теперь, когда я стал углубляться в этот вопрос, то оказалось, что они, эти коробочки, еще и дают разные показания при замерах на разных пределах измерений… А это наводит на нехорошие мысли, а главное – мешает систематической работе – непонятно, что ты замерил. Вот пример – у меня есть выходник 10К, который должен иметь индуктивность первички около 30 Генри. Посмотрите, что показывает тестер на пределе 20 Генри и что на пределе 200 Генри – ну что, как тут определять правильную цифру – голосованием?


Я бы понял, если бы испытательная частота была разной – но нет, частота замера на этих пределах одна и та же – 100 Гц….Ну а если и тестер умер (за 5 лет сейчас у меня уже третий) – то все сделанные ранее замеры вообще повисают в воздухе… Пришел к выводу – нужен стандарт!
Еще несколько лет назад, когда я купил выходной трансформатор у одного старого японца, у нас возник с ним спор по поводу индуктивности первички. Я замерил его своей “китайской коробочкой” и получил 70 Генри, хотя японец утверждал, что там аж 160… Когда я спросил его, как он это измерил, то прислал мне вот такую совсем простенькую от руки нарисованную схемку измерений, сущность замера которой в пояснениях не нуждается.


Сделал все как мне сказал этот уважаемый японец-сан и получилось в точности 160 Генри…. Что же тогда замерил “измеритель индуктивности” ? Я замерил на осциллографе, что на пределах 200 и 20 Генри – китайский тестер генерирует 100 Гц, а на всех остальных диапазонах – 1000 Гц. То есть выясняется, что результат измерений зависит от частоты испытательного прибора. И еще оказалось, что результат замера также еще и зависит от величины приложенного напряжения…
Все это на превый взгляд как-то не вяжется с теорией – известно, что индуктивность катушки зависит от сечения сердечника, от количества витков и величины мю сердечника, но никак не от частоты и тем более не от величины приложенного напряжения. Но давайте не будем торопиться. В физике магнитезма есть такая формула зависимости магнитной индукции в сердечнике:

Bm = U * 10E(8) / (4,44*F*N*S)

где U – приложенное напряжение
F – частота переменного тока
N – количество витков в катушке
S – сечение магнитопровода.

Любой тестер (испытатель) подает на измеряемую катушку определенной величины и частоты напряжение, создавая в сердечнике некоторую величину магнитной индукции B. Проблема в том, что мю, то есть магнитная проницаемость сердечника мягко говоря, не является величиной постоянной, а точнее, сильно зависит от величины магниной индукции. Вот тут и становится понятно, отчего результаты замеров так сильно зависят от величин, которые вроде прямым образом на индуктивность влиять не должны – то есть от частоты и от величины приложенного напряжения. Так как величина мю с ростом величины магнитной индукции сильно увеличивается (особенно при отсутствии зазора в магнитопроводе), иногда в десятки раз, отсюда из приведенной выше формулы следует простое правило – результат замера индуктивности будет тем больше, чем ниже частота и чем выше величина испытательного напряжения. Поэтому всегда, когда идет разговор об индуктивности первичной обмотки выходного трансформатора, необходимо указывать, в каких условиях проводились измерения. Особенно это касается трансформаторов для двухтактников, где нет немагнитного зазора.
А раз все это так, получается есть смысл сделать замеры индуктивности первичной обмотки трансформатора не при каких-то отвлеченных значениях частоты (в тестерах – это 100 или 1000 Гц в зависимости от диапазона) и напряжения, а при тех значениях, которые реально будут иметь место в работающем транформаторе. Как это и делают японцы – на частоте 50 Гц и подают небольшое (так называемое “малосигнальное”) напряжение на первичку. В общем, у меня появилось желание сделать прибор по той примитивной схеме от японца, но только с цифровой шкалой для удобства пользования. Вот схема прибора:




На картинке – уже собранный вольтметр, который я купил на рынке в Риге за 8 Лат (около 11 Евро). У него четыре разрядные цифры, разрядную точку надо поставить между третьим и четвертым разрядом.

Детали. Нужен качественный сдвоенный потенциометр 50К, лучше логарифмический, идеально подойдет ALPS или аналогичный для аудиоприменения. Также надо точно подобрать резисторы R2 и R3. LM1085 можно заменить на LM317, напряжение питания вольтметра может быть любым в пределах 6.8 – 10 Вольт. Сетевой трансформатор – любой маломощный с примерно подходящими напряжениями на вторичной обмотке. Измерительный вольтметр может быть любой с входным сопротивлением не ниже 10М, с пределом измерений от минус 2 до плюс 2 вольта. На вторичной обмоке транфсорматора указано на схеме номинальное напряжение 6.3 вольта, но т.к. он работает практически на холостом ходу, то фактически там есть 7.1 вольта.

Как работает схема? Есть два режима работы – “БАЛАНС” – балансировка сопротивлений измерительного потециометра Р1 и тестируемой индуктивности, при этом переключатель (тумблер с двумя парами контактов) S2 находтся в положении, указанном на схеме. Когда достигнут баланс (вольтметр показывает ноль) , тогда переключатель S2 переводится в другое положение – “ЧТЕНИЕ” и тогда можно прочитать значение индуктивности, так как потенциометр Р2, (сдвоенный с Р1) будет показывать падение напряжения, в точности равное измеряемой индуктивности. Пределы изменений – от 3.2 до 159 Генри. Точность зависит от качества сдвоенного потенциометра Р1/Р2 и от точночти подбора резисторов R2 и R3.

Настройка собранного прибора. Вначале надо отбалансировать измерительный мост. В режиме “БАЛАНС” подключают к клеммам индуктивность около 10 – 20 генри (любой дроссель) и выставляют ноль на вольтметре. После этого замеряя тестером переменное напряжение на дросселе и на потенциометре Р1+ R2 и вращают движок подстроечника VR3, каждый раз подстраивая ноль на измерительном вольтметре добиваются того, чтобы измерительный вольтметр показывал ноль при равенстве измеренных тестером напряжений на дросселе и (R2+Р1). После этого переводят тумблер режима работы в положение “ЧТЕНИЕ” и поставив потенциометр Р2 на максимальное сопротивление, подстроечником VR2 устанавливают показание 159.2 (т.е. 1.592 вольта) Генри. На этом настройка заканчивается.
В заключение – фотографии законченного изделия.

Надо отметить, что данный прибор не претендует на высокую точность измерений. Он пригоден для примерной оценки индуктивности первички выходного трансформатора или индуктивности дросселя по принятому стандарту – 50 Гц и напряжении 5 вольт RMS на тестируемой индуктивности. Метод не учитывает активное сопротивление обмотки, Но даже если активное сопротивление не учитывать, все равно для большинства реально существующих выходных трансформаторов ошибка не превысит 2 – 3 %, что вполне достаточно для поставленной задачи. В случае необходимости можно поправку на активное сопротивление внести, учитывая, что Lcorret=Ract/(2*3,14*50), где Ract – замеренная величина активного сопротивления обмотки, и Lfact=L – Lcorrect, где L -показания измерителя.
Также, для повышения точности измерений первички двухтактных трансформаторов (или любых индуктивностей без немагнитного зазора) желательно прибор включать в сеть через стабилизатор напряжения, или, хотя-бы через ЛАТР. Для измерения дросселей и индуктивности первички однотактных трансформаторов в этом необходимости нет. Например, я провел пробный замер индуктивности первичной обмотки трансформатора TW60SE, так вот при изменении сетевого напряжения (я пользовался ЛАТРом) от 200 до 237 вольт (18 %) расхождения в показании измерителя составило менее 3 %.

*************************************************************************************************

Эта схема измерителя индуктивности построена с использованием микросхемы 74HC14 . Измерителем тут будет стрелочный индикатор. Схема, при всей своей простоте, действительно работает замечательно. Измеритель индуктивности откалиброван в нашем случае для 0-100 мкГн, так как это наиболее популярный диапазон.

Принципиальная схема индуктометра на 74HC14

Аналоговый метод измерения ограничивает его точность, но при самостоятельной намотке катушек для различных радиосхем его хватает.

Принцип действия индуктометра

Принцип работы схемы заключается в том, что если вы генерируете импульсы постоянной частоты и амплитуды, а затем передаёте сигнал через низкочастотный фильтр, в результате чего напряжение постоянного тока будет пропорционально индуктивности.


Частота импульса устанавливается генератором на триггерах Шмидта и состоит из сопротивления обратной связи (2k потенциометр и 3.9k постоянный резистор). 1000 пФ конденсатора на землю, и элементами триггера Шмидта. Ширина импульса пропорциональна индуктивности и обратно пропорциональна сопротивлению. Эта схема подойдёт только для широкополосных катушек. Индуктивности с железными или ферритовыми сердечниками, в следствии высокой проницаемости ферритов, не могут быть точно измерены. Схема вполне линейна, вы можете убедиться в этом, взглянув на график:


Схема подключается к вольтметру с милливольтным измерением, имеющим высокое входное сопротивление, так как устройство не имеет буфера на выходе. Для упрощения конструкции измерителя индуктивности, можно собрать его на металлизированной стороне макетной плате. Все соединения, в том числе земляные соединения, должны быть короткие. Провод будет добавлять значение к измеряемой индуктивности, так что держите его предельно коротким.

Калибровка измерителя индуктивности

Процедура настройки проста: подключите аккумулятор и цифровой вольтметр, подключите известную катушку или дроссель, а затем отрегулируйте потенциометр, пока не получите нужного значения на шкале. Например, используйте 1 мкГн индуктивность и отрегулируйте потенциометр так, чтобы получить 100 мВ на милливольтметре. На фото - измерение 33 мкГн промышленного дросселя.


Генератор с указанными значениями радиоэлементов работает на частоте 173 КГц. Если у вас существенно отличные частоты, попробуйте изменить частоту генератора вышеуказанными компонентами.

Это очень точный измеритель индуктивности/емкости на базе микроконтроллера PIC16F628A. Идея реализована на примере точного измерителя индуктивности/емкости .Конструкция устройства немного отличается от аналогичных устройств, найденных в сети Интернет. Целью моего не легкого труда было предоставить простое решение, которое легко собрать с первой попытки. Большинство конструкций данного типа устройств работает не так, как описано в документации, или на них просто недостаточно справочной информации. Наиболее трудной частью проекта было запрограммировать весь математический код с плавающей запятой в память программ размером 2k микроконтроллера 16F628A.

Обычно измеритель индуктивности/емкости представляет собой измеритель частоты, имеющий в составе генератор колебаний, который генерирует колебания и измеряет величины L или C, после чего вычисляется конечный результат. Погрешность частоты составляет 1Гц. Для получения более подробной информации по измерению частоты с помощью синхронизирующих устройств, обратитесь к моей статье о цифровом частотомере.

Теоретические сведения : Внимательно посмотрите на схему; я не использовал язычковое реле, поскольку не нашел его на местном рынке радиокомпонентов. Поэтому я решил сначала использовать полевой МОП-транзистор вместо язычкового реле. Но наилучший результат я получил с помощью обычного NPN-транзистора, такого как BC547. Если вы не доверяете транзисторам, тогда вы сможете добавить язычковое реле самостоятельно. Я использовал внутренний компаратор контроллера для генератора и подсоединил его к источнику внешней синхронизации таймера Timer1 для вычисления частоты. Благодаря этому не понадобилось использовать внешний операционный усилитель Lm311. Реле RL1 использовалось для выбора режима измерения L и C. Измеритель работает на базе четырех основных уравнений, которые представлены ниже:

Для обеих неизвестных величин L и C, обычно применяется равенство 1 и 2. Средние значения F1 мы получаем с помощью LC колебательного контура, затем подсоединяем C cal параллельно колебательному контуру и получаем величину F2.
Сразу после этого,

  1. Для емкости требуется F3 (уравнение 3), оставляя Cx параллельно колебательному контуру, затем вычисляется Cx из уравнения 4
  2. Для индуктивности требуется F3 (уравнение 7), оставляя Lx последовательно колебательному контуру, и c затем вычисляется Lx из уравнения 8

Следовательно, как для индуктивности, так и для емкости, уравнения 1, 2, и уравнения 5, 6 одинаковы.
После получения приблизительных значений индуктивности или емкости, программа автоматически приведет значения к техническим единицам, которые отобразит на жидкокристаллическом дисплее разрешением 16x2.
Если вам тяжело осилить все математические вычисления, тогда лучше оставить их на время и перейти к аппаратным средствам. Для начала выполните процесс калибровки, который разъяснен в следующей главе.

Конструкция:
Точность измерения зависит от состояния ваших компонентов. Два конденсатора, емкостью 33пФ в генераторе должны быть танталовыми (для низкой серии сопротивлений/индуктивностей). Используйте C4, C5 (C cal) полистирольного типа, поскольку зеленые конденсаторы имеют слишком большое отклонение величины. Избегайте использования керамических конденсаторов. Некоторые из них имеют большие затухания.

  1. Сначала проверьте, чтобы все компоненты отлично подходили на свои места в плате.
  2. Запрограммируйте микросхему (16F628A) с помощью Hex файла, указанного ниже на данной странице. Если у вас нет программатора / загрузчика, тогда обратитесь к моей схеме . Его очень легко собрать самостоятельно.
  3. Сначала подайте питание на схему без микросхемы, затем проверьте напряжение на выводе 5, 14 колодки ИС с помощью вольтметра. Если напряжение равно 5В, тогда все отлично.
  4. Поместите микросхему в колодку ИС и подайте питание. Если на жидкокристаллическом дисплее будет повышенная контрастность, тогда увеличьте значение резистора R11 на несколько килоом.

Калибровка:

  1. Закоротите два тестовых проводника и подайте питание на схему. При этом выполнится автоматическая калибровка. Устройство перейдет в режим по умолчанию – режим индуктивности. Дайте несколько минут на "разогрев", затем нажмите кнопку "zero" (нуль) для выполнения форсированной повторной калибровки. Теперь на дисплее должно отображаться значение ind = 0.00 uH (мкГн)
  2. Теперь разомкните два тестовых проводника и подсоедините заранее известную индуктивность, например 10 мкГн или 100 мкГн. Измеритель индуктивности/емкости должен считать приблизительно аналогичное значение (допускается погрешность до +/- 10%).
  3. После этого необходимо настроить измеритель для отображения результата с погрешностью около +/- 1%. Чтобы выполнить это, проверьте что в схеме установлены 4 джампера Jp1 ~ Jp4. Джамперы Jp1 и Jp2 предназначены для увеличения (+) и уменьшения (–) значений. Для увеличения значения сначала установите Jp1 и выполните шаги 1,2, для уменьшения значения установите Jp2 и выполните шаги 1,2.
  4. Если на дисплее отображаются необходимые значения, тогда снимите джамперы. После этого микросхема запомнит калибровку, пока вы не заходите снова внести изменения.
  5. Если у вас все еще не получается получить требуемое значение, установите джампер Jp3, чтобы увидеть величину F1. На дисплее отобразится значение около 503292 с индуктивностью 100мкГн и емкостью 1нФ. Или установите джампер Jp4, чтобы посмотреть значение F2. Если на дисплее ничего не появится, то это означает, что ваш генератор неправильно работает. Еще раз проверьте вашу плату.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Линейный регулятор

LM7805

1 В блокнот
U3 МК PIC 8-бит

PIC16F628A

1 В блокнот
Q1, Q2 Биполярный транзистор

BC547B

2 В блокнот
D1, D3 Выпрямительный диод

1N4001

2 В блокнот
С1, С2, С6, С7 Электролитический конденсатор 10 мкФ 4 В блокнот
С3, С10 Конденсатор 0.1 мкФ 2 В блокнот
С4, С5 Конденсатор 1000 пФ 2 В блокнот
С8, С9 Конденсатор 33 пФ 2 В блокнот
R1, R3, R4 Резистор

100 кОм

3 В блокнот
R2, R14, R15 Резистор

10 кОм

3 В блокнот
R5 Резистор

47 кОм

1 В блокнот
R6 Резистор

1.5 кОм

1 В блокнот
R7, R9-R12 Резистор

1 кОм

5 В блокнот
R8, R13 Резистор

560 Ом

2 В блокнот
LCD1 LCD-дисплей 16х2 LCD 1 В блокнот
Х1 Кварцевый резонатор 16 МГц 1 В блокнот
RL1 Реле 5 В 1

Радиолюбителям, занимающиеся разработкой ВЧ-устройств и их схемотехникой, часто при настройке катушек индуктивности, обмоток трансформаторов, дросселей, различных контуров с сосредоточенными параметрами и пр. необходим прибор, позволяющий точно и с минимальной погрешностью измерить индуктивность.
Представляем Вам измеритель индуктивности HENRYTEST.

Это устройство разработано специально для радиолюбителей и специалистов. Однако, простота использования позволит даже новичкам получать великолепные результаты измерений. Высокое качество измерения достигается с помощью индивидуальной каллибровки и оригинального внутреннего программного обеспечения, которое позволяет снизить погрешность измерения до 1/1000.

В настоящее время имеется множество различных разработок частотометров и электронных шкал. На протяжении многих лет радиолюбители и профессионалы наблюдали их эволюцию от громоздкого и прожорливого агрегата использующего, жесткую логику до компактных экономичных устройств, собранных на микроконтроллерах. При этом, в основном, большая их часть довольно схожа по конструкции и различается лишь названием микроконтроллеров из которых они были собраны.

Так одной из популярнейших тем разработок являются различные комбинации измерителей индуктивности (генриметр), емкости (фарадиметр), сопротивления (омметр), частоты (частотомер). Однако, большая часть измерителей индуктивности, даже исполненные на микроконтроллерах, всё же имеют некоторую погрешность измерения связанную как с методом измерения, так и с качеством исполнения прибора.

Оставив качество изготовления и компоненты устройства на совесть разработчика, выделим несколько методов измерения индуктивности. Так часто используемый для измерения сравнительно больших индуктивностей (от 0,1 до 1000 гн), метод «вольтметр – амперметр», дает погрешность в 2-3%. При использовании мостового метода расчета, с измерительным мостом переменного тока на различных частотах в комплекте с образцовой емкостью, а иногда, еще и индуктивностью, погрешность может составить 1-3%. В резонансном методе расчета, основанном на использовании резонансных свойств колебательного контура, образованного измеряемой индуктивностью L и образцовой емкостью C, погрешность может составлять 2-5%. Также небольшую погрешность при измерении прибавляет меняющаяся температура измеряемого устройства во время измерения. В нашей разработке эта погрешность сведена к минимуму и в этом участвует как само устройство, так и разработанное программное обеспечение.

Сейчас набирает ход тенденция использования компьютера при разработке ВЧ устройств и их схем. Мы предлагаем вам для этого, наш измеритель индуктивности, который подключаясь через стандартный USB порт к компьютеру или ноутбуку выдает отличное качество измерения с минимальной погрешностью. Кроме того, это отсутствие дополнительных источников питания, влияющих на точность измерения, безопасность при работе с компьютером, простота в работе, точность формул расчета и быстрый результат гарантирует качество измерения. Так в диапазоне измерения от 1 нгн до 10 гн точность достигает 0,1% и это достигается тем, что во время расчета подсчитывается каждый 1 нгн.

Пользоваться нашим измерителем HENRYTEST очень просто, подключив его к компьютеру прилагаемым проводом USB, и предварительно один раз установив поставляемое в комплекте программное обеспечение, в дальнейшем нужно лишь закрепить оба конца измеряемого контура в нашем измерителе HENRYTEST, и нажать кнопку «ТЕСТ» на компьютере. В течение 5 секунд вам выдается результат.

Первое пришествие данного измерительного генератора в сферу моего радиолюбительского интереса состоялось под названием « ». Было необходимо в процессе изготовления настроить поисковую катушку металлодетектора «Tesoro Eldorado» вот модератор с сайта по изготовлению МД и предложил форуму панацею в его «лице», не дав, правда, подробного руководства по сборке, но заверив в повторяемости схемы.

Принципиальная схема

Скачать для увеличения

Для производства замеров подключаться данный генератор должен был к частотомеру. Сложной схему не назовёт даже начинающий любитель электроники, поэтому все дружно приступили к сборке, но тогда собрать удалось единицам причём из числа продвинутых. Меняли транзисторы, номиналы резисторов и конденсаторов, но всё как-то без результата. Повторяться схема не желала. Предложивший схему упирал на то, что повторяющими не достаточно точно подбирается номинал электронных компонентов.

Когда появился вариант печатной платы частично на СМД компонентах, которые как известно не сложно приобрести и с 1% допуском по точности номинала - не устоял перед искушением. Собранная схема сразу не заработала, а вот когда начал менять транзисторы беря в расчёт коэффициент усиления в сторону увеличения, ставить неполярные конденсаторы из числа термостабильных, да посоветовали на выходе подстроечник 1 кОм для регулировки уровня выходного переменного напряжения, что-то сдвинулось с мёртвой точки, но окончательного положительного результата не получил. Сила выходного сигнала была мала, виртуальный частотомер компьютера выдавал не стабильные показания. На том тогда всё и закончилось.

А не так давно увидел знакомую схему в несколько иной интерпретации, с подробнейшим описанием сборки и настройки, под названием «Приставка для измерения индуктивности». Сразу стало понятно, что её предыдущий вариант это неудачная кастрация схемы. Необходимость замера индуктивности поисковой катушки для собранного металлодетектора К-158 (вариант всем известного « ») врасплох не застала.

Учитывая предыдущий опыт, сразу доработал предложенную печатную плату под свои электронные компоненты, по сути же, схема осталась неизменной. Постоянный резистор R8 номиналом 270 Ом заменил на подстроечный 5 кОм (для установления нужной величины выходного переменного напряжения в интервале от 0 до более чем 5 вольт), резистор R9 и конденсатор С7 установил как в схеме, а не как на предложенной печатной плате.

В целом сборка данного варианта хлопот не доставила, ибо основные рекомендации сборки и настройки были теперь известны:

  • транзисторы VT 1 и 2 исключительно КТ326Б, VT3 лучше КТ3107Г с коэффициентом усиления более 50, а VT4 нужен КТ3102В с к/усиления исключительно более 150, VT5 также КТ3102В с к/усиления более 50
  • конденсатор С1 набирается из трёх (меньше не получится) общей ёмкостью строго 25330 пикофарад. Допуск отклонения желателен менее 0,5%, от этого зависит точность измеряемой индуктивности. Все конденсаторы должны быть с хорошим ТКЕ (термостабильные - то есть их ёмкость должна как можно меньше зависеть от изменения температуры их корпуса)
  • после подачи напряжения 12 В, не подключая катушки к разъему Х1 замерить напряжение на эмиттере VT5 которое должно быть равным половине питающего, если отклонение большое, подобрать резистора R4. Ток потребления будет в пределах к 20 мА - на выходе должно быть переменное напряжение необходимое для производства измерения имеющимся частотомером, например для китайского частотомера-конструктора оно составляет 2 вольта (или чуть более). Его уровень устанавливается подстроечным резистором R8.

Подключение катушки производится как можно ближе к виткам намотки, (минуя соединительный кабель), соединительные провода приставки не более 30 мм. Показатель частотомера в килогерцах. Величина на фото проходная, в результате всех манипуляций с катушкой (отмотки - домотки) она была получена в размере 71,626 Гц.

Результат замера обрабатывается в программке (программа в архиве, лист №10) - данные заносятся в разделе «Основной расчёт» в графе «Исходные данные», далее щелчок курсором вне основных полей программы и получаем результат - индуктивность составляет 195 мкГн. Первый расчёт нужно начать с заполнения раздела «Вспомогательный расчёт», для этого потребуется подключение параллельно поисковой катушке конденсатора ёмкостью более 1000 пФ (лучше 4500 пФ) фактический номинал которого известен с абсолютной точностью.

Универсальный LC генератор - схема

Собранной приставкой остался доволен, когда разберешься во всех, кажущихся на первый взгляд, хитросплетениях всё просто. Однако уже захотелось иметь более мобильный вариант измерителя индуктивности, без всяких там вычислений. Заказал на AliExpress электронный конструктор - прибор с функцией измерения индуктивности (да и много чего вообще и всего-то за 600р). Ну а пока он до меня добирается, решил посмотреть в интернете приставку для мультиметра. И вот самым неожиданным образом нашёл схему под названием «Универсальный LC генератор», которая как выяснилась, была предшественницей предыдущих схем. Рекомендуемое напряжение питания к этой схеме указано 5 вольт, во время съёмки видеодемонстрации работы приставки попробовал запитать этим напряжением уже собранную но, к сожалению, не получилось, не помог даже подстроечный резистор регулировки (возможно его номинал необходим более 5 вольт), однако от напряжения в 10 вольт устройство работало нормально.

Видео

Кому интересно - вся подборка материалов по всем трём схемам в архиве . Автор Babay iz Barnaula

Обсудить статью ПРИСТАВКА К ЧАСТОТОМЕРУ ИЗМЕРИТЕЛЬ ИНДУКТИВНОСТИ