» » Этапы гликолиза. Аэробный гликолиз

Этапы гликолиза. Аэробный гликолиз

Суммарное уравнение гликолиза, завершающегося образованием лактата, следующее:

Все ферменты гликолитического пути (рис. 18.2) находятся во внемитохондриальной растворимой клеточной фракции (цитозоле). Они катализируют реакции превращения глюкозы в пируват и лактат, которые протекают в следующей последовательности.

Гликолитический путь превращения глюкозы начинается с ее фосфорилирования в глюкозоб-фосфат. Эта реакция катализируется ферментом гексокиназой; в паренхиматозных клетках печени эту функцию выполняет индуцируемый фермент глюкокиназа, активность которого зависит от характера питания. Донором фосфата служит АТР в виде комплекса Mg - АТР, что характерно и для многих других реакций фосфорилирования. При этом расходуется одна высокоэнергетическая фосфатная связь АТР и образуется ADP. Реакция сопровождается значительными потерями свободной энергии в форме теплоты. Поэтому при физиологических условиях эта реакция является необратимой. Продукт реакции глюкозо-6-фосфат является аллостерическим ингибитором гексокиназы:

Гексокиназа, присутствующая во всех тканях, за исключением паренхимы печени, имеет высокое сродство (низкое ) к своему субстрату, глюкозе; ее функция состоит в том, чтобы обеспечить захват тканью глюкозы даже при низких концентрациях последней в крови. Фосфорилируя практически всю поступающую в клетку глюкозу, гексокиназа поддерживает значительный градиент концентрации глюкозы между кровью и внутриклеточной средой. Фермент действует как на так и на -аномеры глюкозы; он фосфорилирует также и другие гексозы, но со значительно меньшей скоростью.

Функция глюкокиназы состоит в «захватывании» глюкозы из кровотока после приема пищи (когда концентрация глюкозы в крови повышается). В отличие от гексокиназы она имеет высокое значение для глюкозы и эффективно функционирует при концентрации глюкозы в крови выше рис. 22.7). Глюкокиназа специфична к глюкозе.

Глюкозо-6-фосфат занимает важное положение в области стыковки ряда метаболических путей (гликолиз, глюконеогенез, пентозофосфатный путь, гликогенез и гликогенолиз) (рис. 18.2). В ходе гликолиза он превращается во фруктозо-6-фосфат при участии фосфогексозонзомеразы, при этом происходит альдокето-изомеризация. Фермент действует только на а-аномер глюкозо-6-фосфата:

Далее следует еще одно фосфорилирование, осуществляемое АТР; оно катализируется фосфофруктокиназой (фосфофруктокиназа-1) с образованием фруктозо-1,6-бисфосфата. Фосфофруктокиназа также является индуцируемым ферментом; считается, что она играет главную роль в регуляции скорости гликолиза. Реакция, катализируемая фосфофруктокиназой, также является необратимой при физиологических условиях:

Фруктозо-1,6-бисфосфат расщепляется альдолазой (фруктозо-1,6-бисфосфат-альдолазой) на два триозофосфата: глицеральдегид-3-фосфат и дигидроксиацетонфосфат:

Описано несколько различных альдолаз, и все они состоят из четырех субъединиц. В большинстве тканей находится альдолаза А, в печени и почках имеется такке альдолаза В. В клетке фруктозофосфаты

(см. скан)

Рис. 18.2. Последовательность реакций гликолиза. Обозначения: ингибирование. Атомы углерода 1-3 в молекуле фруктозобисфосфата участвуют в образовании дигидроксиацетонфосфата, а атомы углерода 4-6-в образовании глицеральдегид-3-фосфата.

находятся преимущественно в фуранозной форме, но фосфогексозоизомераза, фосфофруктокиназа и альдолаза действуют на молекулы, имеющие «открытую» линейную конфигурацию.

Глицеральдегид-3-фосфат и дигидроксиацетон-фосфат превращаются друг в друга при участии фермента фосфотриозоизомеразы:

Следующей стадией гликолиза является окисление глицеральдегид-3-фосфата с образованием 1,3-бисфосфоглицерата; дигидроксиацетонфосфат при участии фосфотриозоизомеразы также окисляется в 1,3-бисфосфоглицерат, проходя через стадию образования глицеральдегид-3-фосфата:

Фермент, катализирующий эту реакцию, - NAD-зависимая глицеральдегид-З-фосфатдегидро-геназа. В структурном плане она состоит из четырех идентичных полипептидов, образующих тетрамер. Каждый полипептид содержит по принадлежащие остаткам цистеина. Одна из них находится в активном центре фермента. Полагают, что она принимает участие в окислении глицеральдегид-3-фосфата. Сначала субстрат соединяется с остатком цистеина дегидрогеназы, образуя тиополуацеталь, который окисляется в тиоловый эфир; атомы водорода, отщепленные при этом окислении, переносятся на связанный с ферментом NAD. Образующийся NADH связан с ферментом менее прочно, чем NAD, и поэтому легко замещается другой молекулой NAD. Реакция завершается фосфоролизом тиоэфирной связи с присоединением неорганического фосфата при этом образуются -бисфосфоглицерат и свободный фермент с --группой (рис. 18.3). Потенциальная энергия процесса окисления резервируется сначала в высокоэнергетической тиоэфирной связи, а после фосфоролиза - в высокоэнергетической фосфатной связи -бисфосфоглицерата, находящейся в положении 1. Высокоэнергетический фосфат переходит далее в состав АТР при участии фермента фосфоглицераткиназы, при этом образуется -фосфоглицерат:

Поскольку на каждую молекулу глюкозы, участвующую в гликолизе, образуются две молекулы триозы, то на рассмотренной стадии образуются две молекулы АТР на молекулу глюкозы. Здесь мы имеем пример фосфорилирования «на субстратном уровне».

В присутствии арсената, который конкурирует

Рис. 183. Окисление глицеральдегид-3-фосфата. Ф-глицеральдегид-3-фосфатдегидрогеназа. Фермент ингибируется реагентом на - -группы иодацетатом, который, следовательно, способен подавлять гликолиз.

с неорганическим фосфатом образуется 1-арсено-3-фосфоглицерат, самопроизвольно гидролизующийся до 3-фосфоглицерата с выделением теплоты, но без образования АТР. Это важный пример способности арсената разобщать процессы окисления и фосфорилирования.

Образовавшийся на предыдущей стадии 3-фосфоглицерат превращается в 2-фосфоглицерат при участии фермента фосфоглицератмутазы. Полагают, что на промежуточной стадии реакции образуется 2,3-бисфосфоглицерат (DPG):

На следующей стадии, катализируемой енолазой, происходит отщепление молекулы воды и перераспределение энергии внутри молекулы, при этом фосфат в положении 2 переходит в высокоэнергетическое состояние; продуктом реакции является фосфоенолпируват. Енолаза ингибируется ионами фторида; этим пользуются в тех случаях, когда необходимо остановить гликолиз, например перед определением содержания глюкозы в крови. Енолаза нуждается в ионах или :

Высокоэнергетический фосфат фосфоенолпирувата переносится на ADP ферментом пируваткиназой; на этой стадии образуются еще две молекулы АТР на молекулу глюкозы. Образующийся в ходе реакции енолпируват самопроизвольно переходит в кетоформу, т. е. пируват. Это-еще одна неравновесная реакция, сопровождающаяся значительной потерей свободной энергии в форме теплоты; она является физиологически необратимой:

Высокоэнергетический фосфат фосфоенолпирувата переносится на ADP ферментом пируваткиназой; на этой стадии образуются еще две молекулы АТР на молекулу глюкозы. Образующийся в ходе реакции енолпируват самопроизвольно переходит в кетоформу, т. е. пируват. Это - еще одна неравновесная реакция, сопровождающаяся значительной потерей свободной энергии в форме теплоты; она является физиологически необратимой:

В зависимости от окислительно-восстановительного состояния ткани дальнейший процесс может идти по одному из двух путей. В анаэробных условиях реокисление NADH путем переноса восстановительных эквивалентов на дыхательную цепь и далее на кислород происходить не может. Поэтому NADH восстанавливает пируват в лактат, эта реакция катализируется лактатдегидрогеназой. Описано несколько изозимов этого фермента, определение их имеет клиническое значение.

Реокисление NADH путем образования лактата обеспечивает возможность протекания гликолиза в отсутствие кислорода, поскольку поставляется необходимый для реакции. Таким образом, в тканях, функционирующих в условиях гипоксии, наблюдается образование лактата (рис. 18.2). Это в особенности справедливо в отношении скелетной мышцы, интенсивность работы которой в определенных пределах не зависит от поступления кислорода. Образующийся лактат может быть обнаружен в тканях, крови и моче. Гликолиз в эритроцитах даже в аэробных условиях всегда завершается образованием лактата, поскольку в этих клетках отсутствуют митохондрии, содержащие ферментные системы аэробного окисления пирувата. Эритроциты млекопитающих уникальны в том отношении, что около 90% их потребностей в энергии обеспечивается гликолизом. Помимо скелетной мышцы и эритроцитов ряд других тканей (мозг, желудочно-кишечный тракт, мозговой слой почек, сетчатка и кожа) в норме частично используют энергию гликолиза и образуют молочную кислоту. Печень, почки и сердце обычно утилизируют лактат, но в условиях гипоксии образуют его.

Хотя большая часть гликолитических реакций обратима, три из них носят ярко выраженный экзергонический характер и поэтому могут рассматриваться как физиологически необратимые. Это реакции, катализируемые гексокиназой (и глюкокиназой), фосфофруктокиназой и пируваткиназой; они служат главными участками, на которых происходит регуляция гликолиза. Клетки, способные направить движение метаболитов гликолитического пути в направлении синтеза (глюконеогенез), используют различные ферментные системы, обеспечивающие протекание процесса в обход упомянутых выше необратимых стадий. Об этом будет подробнее сказано ниже, когда будут обсуждаться процессы глюконеогенеза.

2,3-Бисфосфоглицератный цикл

В эритроцитах многих млекопитающих имеется фермент, позволяющий направить процесс в обход стадии, катализируемой фосфоглицераткиназой; при этом свободная энергия, обусловленная присутствием высокоэнергетического фосфата в молекуле рассеивается в форме теплоты (рис. 18.4). Дополнительный фермент бисфосфоглицератмутаза катализирует превращение -бисфосфоглицерата в -бисфосфоглицерат, последний далее превращается в -фосфоглицерат при участии -бисфосфоглицератфосфатазы (принято считать, что этой активностью обладает фосфоглицератмутаза). Потеря на этой стадии высокоэнергетического фосфата означает, что процесс гликолиза более не сопровождается производством АТР. В этом может заключаться определенное преимущество, поскольку даже в тех случаях, когда потребности в АТР минимальны, гликолиз может продолжаться. Образующийся -бисфосфоглицерат связывается с гемоглобином, понижая сродство последнего к кислороду, т.е. сдвигает кривую диссоциации оксигемоглобина вправо. Таким образом, присутствие -дифосфоглицерата в эритроцитах способствует диссоциации кислорода из оксигемоглобина и переходу его в ткани (см. гл. 6).

Рис. 18.4. 2,3-Бисфосфоглицератный цикл в эритроцитах

Гликолиз (от греч. glycus - сладкий и lysis - растворение, распад) - сложный ферментативный процесс превращения глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется также АТФ. Суммарное уравнение гликолиза можно изобразить следующим образом:

В анаэробных условиях гликолиз - единственный процесс в животном организме, поставляющий энергию. Именно благодаря процессу гликолиза организм человека и животных определенный период времени может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе. (В аэробных условиях гликолиз можно рассматривать как первую стадию окисления глюкозы до конечных продуктов этого процесса - углекислоты и воды. )

Впервые термин «гликолиз» применил Лепин в 1890 г. для обозначения процесса убыли глюкозы в крови, изъятой из кровеносной системы, т. е. in vitro.

У ряда микроорганизмов процессами, аналогичными гликолизу, являются различные виды брожения .

Последовательность реакций гликолиза, так же как и их промежуточные продукты, хорошо изучена. Процесс гликолиза катализируется одиннадцатью ферментами, большинство из которых выделено в гомогенном, кристаллическом или высокоочищенном виде и свойства которых достаточно изучены. Заметим, что гликолиз протекает в гиалоплазме клетки. В табл. 27 приведены данные относительно скорости анаэробного гликолиза в различных тканях крысы.

Первой ферментативной реакцией гликолиза является фосфорилирование, т. е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Образование глюкозо-6-фосфата в гексокиназной реакции связано с освобождением значительного количества свободной энергии системы и может считаться практически необратимым процессом.

Фермент гексокиназа способен катализировать фосфорилирование не только D-глюкозы, но и других гексоз, в частности D-фруктозы, D-маннозы и др.

Второй реакцией гликолиза является превращение глюкозо-6-фосфата под действием фермента гексозофосфатизомеразы во фруктозо-6-фосфат:

Эта реакция протекает легко в обоих направлениях и не нуждается в присутствии каких-либо кофакторов.

В третьей реакции образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ. Реакция катализируется ферментом фосфофруктокиназой:

Данная реакция аналогично гексокиназной практически необратима, протекает она в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость гликолиза в целом.

Фосфофруктокиназа относится к числу аллостерических ферментов. Она ингибируется АТФ и стимулируется АДФ и АМФ. (Активность фосфофруктокиназы ингибируется также цитратом. Показано, что при диабете, голодании и некоторых других состояниях, когда интенсивно используются жиры как источник энергии, в клетках тканей содержание цитрата может возрастать в несколько раз. В этих условиях происходит резкое торможение активности фосфофруктокиназы цитратом. ). При значительных величинах отношения АТФ/АДФ (что достигается в процессе окислительного фосфорилирования) активность фосфофруктокиназы угнетается и гликолиз замедляется. Напротив, при снижении этого коэффициента интенсивность гликолиза повышается. Так, в неработающей мышце активность фосфофруктокиназы низкая, а концентрация АТФ относительно высокая. Во время работы мышцы происходит интенсивное потребление АТФ и активность фосфофруктокиназы повышается, что приводит к усилению процесса гликолиза.

Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-дифосфат расщепляется на две фосфотриозы:

Эта реакция обратима. В зависимости от температуры равновесие устанавливается на различном уровне. В целом же при повышении температуры реакция сдвигается в сторону большего образования триозофосфатов (диоксиацетонфосфата и глицеральдегид-3-фосфата).

Пятая реакция - реакция изомеризации триозофосфатов. Катализируется эта реакция ферментом триозофосфатизомеразой:

Равновесие данной изомеразной реакции сдвинуто в сторону дигидроксиацетонфосфата: 95% дигидроксиацетонфосфата и около 5% глицеральдегид-3-фосфата. Однако в последующие реакции гликолиза может непосредственно включаться только один из двух образующихся триозофосфатов, а именно глицеральдегид-3-фосфат. Вследствие этого по мере потребления в ходе дальнейших превращений альдегидной формы фосфотриозы дигидроксиацетонфосфат превращается в глицеральдегид-3-фосфат.

Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза. Вторая стадия - наиболее сложная и важная часть гликолиза. Она включает окислительно-восстановительную реакцию (гликолитическую оксидоредукцию), сопряженную с субстратным фосфорилированием, в процессе которого образуется АТФ.

В шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы (дегидрогеназой 3-фосфоглицеринового альдегида ), кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-дифосфоглицериновой кислоты и восстановленной формы НАД (НАДН 2). Эта реакция блокируется йод- или бромацетатом, протекает она в несколько этапов. Суммарно данную реакцию можно изобразить в следующем виде:

1,3-Дифосфоглицериновая кислота представляет собой высокоэнергетическое соединение. Механизм действия глицеральдегид-фосфатдегидрогеназы сводится к следующему: в присутствии неорганического фосфата НАД выступает как акцептор водорода, отщепляющегося от глицеральдегид-3-фосфата. В процессе образования НАДН 2 глицеральдегид-3-фосфат связывается с молекулой фермента за счет SH-групп последнего. Образовавшаяся связь богата энергией, но она непрочна и расщепляется под влиянием неорганического фосфата. При этом образуется 1,3-дифосфоглицериновая кислота.

В седьмой реакции, которая катализируется фосфоглицераткиназой, происходит передача богатой энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты (3-фосфоглицерата):

Таким образом, благодаря действию двух ферментов (глицеральдегидфосфатдегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной группы глицеральдегид-3-фосфата до карбоксильной группы, запасается в форме энергии АТФ.

В восьмой реакции происходит внутримолекулярный перенос оставшейся фосфатной группы и 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат).

Реакция легкообратима, протекает в присутствии ионов Mg 2+ . Кофактором фермента является также 2,3-дифосфоглицериновая кислота, аналогично тому, как в фосфоглюкомутазной реакции роль кофактора выполнялась глюкозо-1,6-дифосфатом:

В девятой реакции 2-фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват). При этом фосфатная связь в положении 2 становится высокоэргической. Реакция катализируется ферментом енолазой:

Енолаза активируется двухвалентными катионами Mg 2+ или Мn 2+ и ингибируется фторидом.

В десятой реакции происходят разрыв высокоэргической связи и перенос фосфатного остатка от фосфоенолпировиноградной кислоты на АДФ. Катализируется эта реакция ферментом пируваткиназой:

Для действия пируваткиназы необходимы Mg 2+ или Мn 2+ , а также одновалентные катионы щелочных металлов (К + или другие). Внутри клетки реакция является практически необратимой.

В одиннадцатой реакции в результате восстановления пировиноградной кислоты образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН 2+ :

В целом последовательность протекающих при гликолизе реакций может быть представлена в следующем виде (рис. 84).

Реакция восстановления пирувата завершает внутренний окислительно-восстановительный цикл гликолиза. При этом НАД здесь играет роль лишь промежуточного переносчика водорода от глицеральдегид-3-фосфата (шестая реакция) на пировиноградную кислоту (одиннадцатая реакция). Ниже схематично изображена реакция гликолитической оксидоредукции, а также указаны этапы, на которых происходит образование АТФ (рис. 85).

Биологическое значение процесса гликолиза прежде всего заключается в образовании богатых энергией фосфорных соединений. В первой стадии гликолиза затрачиваются две молекулы АТФ (гексокиназная и фосфофруктокиназная реакции). Во второй стадии образуются четыре молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции).

Таким образом, энергетическая эффективность гликолиза составляет две молекулы АТФ на одну молекулу глюкозы.

Известно, что изменение свободной энергии при расщеплении глюкозы до двух молекул молочной кислоты составляет около 210 кДж/моль:

Из этого количества энергии около 126 кДж рассеивается в виде тепла, а 84 кДж накапливаются в форме богатых энергией фосфатных связей АТФ. Концевая макроэргическая связь в молекуле АТФ соответствует примерно 33,6-42,0 кДж/моль. Таким образом, коэффициент полезного действия анаэробного гликолиза составляет около 0,4.

Величины изменения свободной энергии точно определены для отдельных реакций гликолиза в интактных эритроцитах человека. Установлено, что восемь реакций гликолиза близки к равновесию, а три реакции (гексокиназная, фосфофруктокиназная, пируваткиназная) далеки от него, поскольку они сопровождаются значительным уменьшением свободной энергии, т. е. практически являются необратимыми.

Как уже отмечалось, основной лимитирующей скорость гликолиза реакцией является реакция, катализируемая фосфофруктокиназой. Вторым этапом, лимитирующим скорость и регулирующим гликолиз, служит гексокиназная реакция. Кроме того, контроль гликолиза осуществляется также лактатдегидрогеназой (ЛДГ) и ее изоферментами. В тканях с аэробным метаболизмом (ткани сердца, почек и др.) преобладают изоферменты ЛДГ 1 и ЛДГ 2 . Эти изоферменты ингибируются даже небольшими концентрациями пирувата, что препятствует образованию молочной кислоты и способствует более полному окислению пирувата (точнее, ацетил-КоА) в цикле трикарбоновых кислот.

В тканях человека, в значительной степени зависящих от энергии, образующейся в процессе гликолиза (например, скелетные мышцы), главными изоферментами являются ЛДГ 5 и ЛДГ 4 . Активность ЛДГ 5 максимальна при тех концентрациях пирувата, которые ингибируют ЛДГ 1 . Преобладание изоферментов ЛДГ 4 и ЛДГ 5 обусловливает интенсивный анаэробный гликолиз с быстрым превращением пирувата в молочную кислоту.

Включение других углеводов в процесс гликолиза

Эффект Пастера

Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований, касающихся роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где O 2 тормозит анаэробный гликолиз. Значение эффекта Пастера, т. е. перехода в присутствии O 2 от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на более экономный путь получения энергии. В результате скорость потребления субстрата, например глюкозы, в присутствии O 2 снижается. Молекулярный механизм эффекта Пастера заключается, по-видимому, в конкуренции между системами дыхания и гликолиза (брожения) за аденозиндифосфат (АДФ), используемый для образования аденозинтрифосфата (АТФ). Как мы уже знаем, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление Ф н и АДФ, генерация АТФ, а также удаление восстановленного НАД (НАДН 2). Иными словами, уменьшение в присутствии кислорода количества Ф н и АДФ и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза.

Гликогенолиз

Процесс анаэробного распада гликогена получил название гликогенолиза. Вовлечение D-глюкозных единиц гликогена в процесс гликолиза происходит при участии трех ферментов - гликогенфосфорилазы,(или фосфорилазы «а»), амило-1,6-глюкозидазы и фосфоглюкомутазы.

Образовавшийся в ходе фосфоглюкомутазной реакции глюкозо-6-фосфат может включаться в процесс гликолиза. После образования глюкозо-6-фосфата дальнейшие пути гликолиза и гликогенолиза полностью совпадают:

В процессе гликогенолиза в виде макроэргических соединений накапливаются не две, а три молекулы АТФ (не тратится АТФ на образование глюкозо-6-фосфата). На первый взгляд, энергетически эффективность гликогенолиза может считаться несколько более высокой по сравнению с процессом гликолиза. Однако надо иметь в виду, что в процессе синтеза гликогена в тканях расходуется АТФ, поэтому в энергетическом плане гликогенолиз и гликолиз практически равноценны.

Гликолиз или путь Эмбдена-Меергофа-Парнаса (от др.-греч γλυκός, glykos — сладкий и λύσης, lysis — расщепление) — последовательность из десяти реакций, которые приводят к превращению глюкозы, C 6 H 12 O 6, в пируват, C 3 H 3 O-3 с образованием АТФ (аденозинтрифосфат) и НАДН (восстановленный никотинамид). В аэробных организмов гликолиз идет перед циклом трикарбоновых кислот и цепью переноса электронов, которые вместе добывают большую часть энергии, которая содержится в глюкозе. При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до СО2 и Н2О При недостаточном содержании кислорода, как это бывает в мышцах, которые активно сокращаются, пируват превращается в лактат. В некоторых анаэробных организмов, например, дрожжей, пируват превращается не в лактат, а в этанол. Образование этанола и лактата из глюкозы — это примеры брожения.

История исследования

Гликолиз первый из открытых и наиболее исследован метаболический путь. 1897 братья Ганс и Эдуард Бюхнер занимались изготовлением бесклеточной экстрактов дрожжей для терапевтического применения. Очевидно, они не могли использовать ядовитые для человека антисептики, как фенол, поэтому попытались распространен в кулинарии консервант — сахарозу. Выяснилось, что в дрожжевых экстрактах это вещество быстро зброджувалась к этиловому спирту. Так впервые установлено, что брожение может происходить вне живых клеток. В 1907 году Эдуарду Бюхнеру была присуждена Нобелевская премия по химии.

Со времени открытия внеклеточного брожения до 1940-х годов исследования реакций гликолиза было одной из основных задач биохимии. Описанием этого метаболического пути в клетках дрожжей занимались Отто Варбург, Ганс фон Эйлер-Хельпин и Артур Гарден (два последних получили Нобелевскую премию по химии 1929 года), в мышцах — Густав Эмбден и Отто Меергоф (Нобелевская премия по медицине и физиологии 1922). Также свой вклад в исследование гликолиза сделали Карл Нойберг, Яков Парнас, Герти и Карл Кори.

Важными «побочными» открытиями, сделанными благодаря изучению гликолиза, была разработка многих методов очистки ферментов, выяснения центральной роли АТФ и других фосфорильованих соединений в метаболизме, открытие коэнзимов, таких как НАД.

Распространение и значение

В эукариотических клетках реакции гликолиза происходят в цитозоле. В большинстве таких клеток именно этот среди других метаболических путей занимает первое место по количеству атомов углерода, которые превращаются в нем. Для таких тканей млекопитающих, как мозг (за исключением условий голодания), мозговой слой почек, сперматозоиды, а также эритроциты, в которых полностью отсутствуют митохонондрии, гликолиз является единственным источником метаболической энергии. Для мышц в условиях очень большой нагрузки гликолиз выгоден не только потому, что дает возможность получить энергию при недостатке кислорода, а еще и потому, что он происходит очень быстро и обеспечивает синтез АТФ в 10,5 раз быстрее, чем аэробная окисления органических веществ. Также от гликолиза главным образом зависят растительные ткани, специализированные на хранении крахмала (например клубни картофеля), и водные растения, такие как настурция лекарственная.

Другими путями окисления глюкозы является пентозофосфатный путь и путь Энтнера-Дудорова. Последний является заменой гликолиза в некоторых грамотрицательных и, очень редко, грамположительных бактерий и имеет много общих черт с ним ферментов.

Реакции гликолиза

Традиционно гликолиз разделяют на две стадии: подготовительную, предусматривающий вклад энергии (пять первых реакций), и стадию отдачи энергии (пять последних реакций). Иногда четвертую и пятую реакции выделяют в отдельную промежуточную стадию.

На первой стадии происходит фосфорилирования глюкозы в шестом положении, изомеризация полученного глюкозо-6-фосфата в фруктозо-6-фосфата, и повторное фосфорилирования уже в первом положении, в результате чего образуется фруктозо-1,6-бисфосфат. Фосфатные группы на моносахариды переносятся с АТФ. Это необходимо для активации молекул — увеличение содержания в них свободной энергии. Далее фруктозо-1,6-бисфосфат расщепляется до двух фосфотриоз, которые могут свободно превращаться друг в друга.

На второй стадии (отдачи энергии) фосфотриозы (глицеральдегид-3-фосфат) окисляется и фосфорилируется неорганическим фосфатом. Полученный продукт в серии екзергоничних реакций сопряженных с синтезом четырех молекул АТФ превращается в пирувата. Таким образом, при гликолиза происходит три принципиальных преобразования:

  • Расщепление глюкозы до двух молекул пирувата;
  • Фосфорилирования АДФ до АТФ
  • Восстановление НАД.

Первая стадия

Фосфорилирования глюкозы

Первая реакция гликолиза — фосфорилирования глюкозы с образованием глюкозо-6-фосфата, катализируется ферментом гексокиназой. Донором фосфатной группы является молекула АТФ. Реакция происходит только в присутствии ионов Mg 2+, потому что настоящим субстратом для гексокиназы является не АТФ 4-, а комплекс MgАТФ 2. Магний экранирует отрицательный заряд фосфатной группы, таким образом облегчая осуществление нуклеофильного атаки на последний атом фосфора гидроксильной группой глюкозы.

ΔG 0 = -16,7 кДж / моль

Вследствие фосфорилирования происходит не только активация молекулы глюкозы, но и ее «заключения» внутри клетки: плазматическая мембрана имеет белки-переносчики для глюкозы, но не для ее фосфорилированном формы. Поэтому большая заряженная молекула глюкозо-6-фосфата не может проникнуть через мембрану несмотря на то, что ее концентрация в цитоплазме больше, чем во внеклеточной жидкости.

Фермент гексокиназа присутствует почти у всех организмов, основным его субстратом является глюкоза. Однако он может катализировать фосфорилирования других гексоз D-фруктозы, D-маннозы и тому подобное. У человека есть четыре изоформы гексокиназы (от I до IV). Один из изоферментов — гексокиназа IV или глюкокиназа — отличается от других форм особенностями кинетики и регулирования его активности.

Изомеризация глюкозо-6-фосфата

Во второй реакции гликолиза происходит изомеризация глюкозо-6-фосфата в фруктозо-6-фосфата под действием фермента глюкозофосфатизомеразы (гексозофосфатизомеразы). Сначала происходит открытие шестичленного пиранозного кольца глюкозо-6-фосфата, то есть переход этого вещества в линейную форму, после чего карбонильная группа из первого положения переносится во второй через промежуточную ендиольну форму. То есть альдозами превращается в кетоза. Образована линейная молекула фруктозо-6-фосфата замыкается в пятичленной фуранозных кольцо.

ΔG 0 = 1,7 кДж / моль

Через незначительное изменение свободной энергии реакция является обратимой. Изомеризация глюкозо-6-фосфата — это необходимое условие для дальнейшего прохождения гликолиза, поскольку следующая реакция — еще одно фосфорилирования, требует наличия гидроксильной группы в первом положении.

Фосфорилирования фруктозо-6-фосфата

После стадии изомеризации идет вторая реакция фосфорилирования, в которой фруктоза-6-фосфат превращается в фруктозо-1,6-бисфосфат за счет присоединения фосфатной группы АТФ. Реакцию катализирует фермент фосфофруктокиназы-1 (сокращенно ФФК-1, существует также фермент ФФК-2, катализирует образование фруктозо-2,6-бисфосфат в другом метаболическом пути).

ΔG 0 = -14,2 кДж / моль

В условиях цитоплазмы клетки эта реакция является необратимой. Она первой достоверно определяет расщепление веществ по гилколитичному пути, поскольку глюкозо-6-фосфат и фруктозо-6-фосфат могут вступать в другие метаболические преобразования, а фруктоза-1,6-бисфосфат используется только в гликолизе. Именно образование фруктозо-1,6-бисфосфат является лимитирующей стадией гликолиза.

У растений, некоторых бактерий и простейших также форма фосфофруктокиназы, что использует в качестве донора фосфатной группы пирофосфат, а не АТФ. ФФК-1 как аллостерический фермент подлежит сложным механизмам регулирования. К положительным модуляторов относятся продукты расщепления АТФ — АДФ и АМФ, рибулозо-5-фосфат (промежуточный продукт пентозофосфатного пути), в некоторых организмов фруктозо-2,6-бисфосфат. Негативным модулятором является АТФ.

Расщепление фруктозо-1,6-бисфосфат на две фосфотриозы

Фруктозо-1,6-бисфосфат расщепляется до двух фосфотриоз: глицеральдегид-3-фосфат и дигидроксиацетонфосфат под влиянием фруктозо-1,6-фосфатальдолазы (чаще просто альдолаза). Название фермента альдолазы происходит от обратной реакции альдольной конденсации. Механизм прохождения реакции изображен на схеме:

ΔG 0 = 23,8 кДж / моль

Хотя стандартная изменение свободной энергии при расщеплении фруктозо-1,6-бисфосфат является положительной и имеет большое абсолютное значение, в реальных условиях клетки из-за низкой концентрации фосфотриоз реакция легко проходит в обе стороны.

Описанный механизм реакции характерен только для альдолазы класса I, распространенной в клетках растений и животных. В клетках бактерий и грибов присутствует альдолаза класса II, которая катализирует реакцию другим путем.

Механизм реакции альдольно расщепления еще раз демонстрирует важность изомеризации во второй реакции гликолиза. Если бы такому преобразованию подлежала альдозами (глюкоза), то образовалась бы одна двокарбонова и одна чотирикарбонова соединение, каждая из которых должна метаболизируется собственным шялхом. Зато трикарбонови соединения образованы в результате расщепления кетозы (фруктозы) могут легко превращаться друг в друга.

Изомеризация фосфотриоз

В последующих реакциях гликолиза участвует только одна из фосфотриоз образованных из фруктозо-1,6-бисфосфат, а именно глицеральдегид-3-фосфат. Однако другой продукт — дигидроксиацетонфосфат — быстро и обратно может превращаться в глицеральдегид-3-фосфат (катализирует эту реакция триозофосфатизомеразы).

ΔG 0 = 7,5 кДж / моль

Механизм реакции похож на изомеризацию глюкозо-6-фосфата в фруктозо-6-фосфат. Равновесие реакции смещено в сторону образования дигидроксиацетонфосфату (96%), однако из-за постоянного использования глицеральдегид-3-фосфата все время происходит обратное преобразование.

После преобразования двух «половинок» глюкозы в глицеральдегид-3-фосфат атомы углерода, происходящих от ее C-1, C-2 и C-3, становятся химически непременно от C-6, C-5 и C-4 соответственно. Эта реакция завершает подготовительную стадию гликолиза.

Вторая стадия

Окисления глицеральдегид-3-фосфата

Первой реакцией стадии отдачи энергии гликолиза является окисление глицеральдегид-3-фосфата с одновременным его фосфорилированием, что осуществляется ферментом глицеральдегид-3-фосфатдегидрогеназы. Альдегид превращается не во свободную кислоту, а в смешанный ангидрид с фосфатной кислотой (1,3-бисфосфоглицерат). Соединения такого типа — ацилфосфаты — имеют очень большое негативное изменение свободной энергии гидролиза (ΔG 0 = -49,3 кДж / моль).

Реакцию превращения глицеральдегид-3-фосфата до 1,3-бисфосфоглицерату можно рассматривать как два отдельных процесса: окисление альдегидной группы НАД + и присоединения фосфатной группы к образованной карбоновой кислоты. Первая реакция термодинамически выгодна (ΔG 0 = -50 кДж / моль), вторая наоборот невыгодна. Изменение свободной энергии для второй реакции почти такая же, только положительная. Если бы они происходили последовательно одна за другой, то вторая реакция требовала бы слишком большой энергии активации, чтобы протекать в условиях живой клетки с удовлетворительной скоростью. Но оба процессы сопряженными благодаря тому, что промежуточное соединение — 3-фосфоглицерат — ковалентно связана с остатком цистеина тиоестерним связью в активном центре фермента. Такой тип связи позволяет «законсервировать» часть энергии, выделяемой при окисления глицеральдегид-3-фосфата, и использовать ее для реакции с ортофосфорной кислотой.

ΔG 0 = 6,3 кДж / моль

Для прохождения этой стадии гликолиза необходим кофермент НАД +. Его концентрация в клетке (менее 10 -5 М) значительно меньше, чем количество глюкозы, метаболизируется за несколько минут. Поэтому в клетке постоянно происходит повторное окисление НАД +.

Перенос фосфатной группы 1,3-бисфосфоглицерату на АДФ

В следующей реакции большой запас энергии ацилфосфату используется для синтеза АТФ. Фермент фосфоглицераткиназа (название от обратной реакции) катализирует перенос фосфатной группы с 1,3-бисфосфоглицерату на АДФ, кроме АТФ продуктом реакции является 3-фосфоглицерат.

ΔG 0 = -18,6 кДж / моль

Такой тип синтеза АТФ, при котором используется растворимый соединение с высоким потенциалом переноса фосфатной группы, называется сусбстратним фосфорилированием, в противовес окислительного фосфорилирования, что имеет место при аэробной окисления во внутренней мембране митохондрий.

Шестая и седьмая реакции гликолиза сопряженные между собой и 1,3-бисфосфоглицерат является общим промежуточным продуктом. Первая из них сама по себе была бы ендергоничною, однако затраты энергии компенсируются второй — выражено екзергоничною. Суммарное уравнение этих двух процессов можно записать так:

Глицеральдегид-3-фосфат + АДФ + Ф н + НАД + → 3-фосфоглицерат + АТФ + НАДH (H +), ΔG 0 = -12,2 кДж / моль;

Следует заметить, что для одной молекулы глюкозы эта реакция происходит дважды, поскольку из одной молекулы глюкозы были образованы две молекулы глицеральдегид-3-фосфата. Итак, на этом этапе синтезируются две молекулы АТФ, покрывает энергетические затраты первой стадии гликолиза.

Изомеризация 3-фосфоглицерат

В восьмой реакции гликолиза фермент фосфоглицератмутаза в присутствии ионов магния катализирует перенос фосфатной группы 3-фосфоглицерат с третьего положения в другое, в результате чего образуется 2-фосфоглицерат. Реакция происходит в два этапа: на первом из них фосфатная группа, изначально присоединена к остатку гистидина в активном центре фермента, переносится на C-2 3-фосфоглицерат, в результате чего образуется 2,3-бисфосфоглицерат. После этого фосфатная группа в третьем положении синтезированной соединения переносится на гистидин. Таким образом регенерируются фосфорилированный фермент и производится 2-фосфоглицерат.

ΔG 0 = 4,4 кДж / моль

Исходное фосфорилирования фосфоглицератмутазы осуществляется реакцией с 2,3-бисфосфоглицерату, незначительной концентрации которого достаточно для активации фермента.

Дегидратация 2-фосфоглицерат

Следующая реакция — образование Энола с результате дегидратации (отщепление воды) 2-фосфоглицерат — ведет к образованию фосфоэнолпируват (сокращенно ФЭП) и катализируется ферментом енолазы.

ΔG 0 = 7,5 кДж / моль

Это вторая реакция образования вещества с высоким потенциалом переноса фосфатной группы в процессе гликолиза. Изменение свободной энергии при гидролизе фосфатного эфира обычного спирта значительно ниже по сравнению с таким изменением при гидролизе енолфосфату, в частности для 2-фосфоглицерат ΔG 0 = -17,6 кДж / моль, а для фосфоэнолпируват ΔG 0 = -61,9 кДж / моль.

Перенос фосфатной группы с ФЭП на АДФ

Последняя реакция гликолиза — перенос фосфатной группы с фосфоэнолпируват на АДФ — катализируется пируваткиназы в присутствии ионов K + и Mg 2+ или Mn 2+. Продуктом этой реакции является пируват, который сначала образуется в енольная форме, после чего быстро и неферментативно таутомеризуеться в кетонную форму.

Реакция имеет большое отрицательное изменение свободной энергии, главным образом благодаря екзергоничому процесса таутомеризации. Около половины энергии (30,5 кДж / моль), что выделяется при гидролизе ФЭП (61,9 кДж / моль), используется на субстратно фосфорилирования, остальные (31,5 кДж / моль) служит как движущая сила, толкающая реакцию в сторону образования пирувата и АТФ. Реакция является необратимой по клеточных условий.

Суммарный выход гликолиза

Изменение свободной энергии в реакциях гликолиза в эритроцитах
Реакция ΔG 0 (кДж / моль) ΔG (кДж / моль)
Глюкоза + АТФ → глюкозо-6-фосфат + АДФ -16,7 -33,4
Глюкозо-6-фосфат ↔ фруктозо-6-фосфат 1,7 от 0 до 25
Фруктозо-6-фосфат + АТФ → фруктозо-1,6-бисфосфат + АДФ -14,2 -22,2
Фруктозо-1,6-бисфосфат ↔ глицеральдегид-3-фосфат + дигидроксиацетонфосфат 28,3 от -6 до 0
Дигидроксиацетонфосфат ↔ глицеральдегид-3-фосфат 7,5 от 0 до 4
Глицеральдегид-3-фосфат + Ф н + НАД + ↔ 1,3-бисфосфоглицерат + НАДH + H + 6,3 от -2 до 2
1,3-бисфосфоглицерат + АДФ ↔ 3-фосфоглицерат + АТФ -18,8 от 0 до 2
3-фосфоглицерат ↔ 2-фосфоглицерат 4,4 от 0 до 0,8
2-фосфоглицерат ↔ фосфоэнолпируват + H 2 O 7,5 от 0 до 3,3
Фосфоэнолпируват + АДФ → пируват + АТФ -31,4 -16,7

Общее уравнение гликолиза имеет следующий вид:

Глюкоза + 2Ф н + 2АДФ + 2НАД + → 2 пируват + 2АТФ + 2НАДН + 2Н + + 2Н 2 О.

Суммарное количество энергии, выделяющейся в процессе расщепления глюкозы до пирувата составляет 146 кДж / моль, на синтез двух молекул АТФ расходуется 61 кДж / моль, остальные 85 кДж / моль энергии превращается в тепло.

При полном окислении глюкозы до углекислого газа и воды выделяется 2840 кДж / моль, если сравнить это значение с общим выходом екзергоничних реакций гликолиза (146 кДж / моль), то становится понятно, что 95% энергии глюкозы остается «заключенной» в молекулах пирувата. Хотя реакции гликолиза являются универсальными почти для всех организмов, дальнейшая судьба его продуктов — пирувата и НАДН — отличается в разных живых существ и зависит от условий.

В аэробных организмов при достаточной концентрации кислорода НАД + регенерируется путем передачи электронов в дыхательная цепь переноса электронов, который в эукариот расположен во внутренней мембране митохондрий. Конечным акцептором электронов при этом является кислород. Пируват подвергается окислительного декарбоксилирования, превращается в ацетил-КоА и поступает в цикл Кребса, где происходит его дальнейшее окисление. Отщеплений электроны также попадают в дыхательная цепь переноса электронов.

С другой стороны, в анаэробных условиях восстановлен НАДH не может передать свои электроны на кислород, поэтому он переносит их или непосредственно назад на молекулу пирувата, как в процессе молочнокислого брожения, или на определенные продукты его превращения, например в ацетальдегид в случае спритового брожения. Анаэробный метаболизм глюкозы дает значительно меньше энергии, чем аэробный.

Включение других углеводов в процесс гликолиза

Кроме глюкозы в процессе гликолиза превращается еще большое количество углеводов, важнейшими из которых являются полисахариды крахмал и гликоген, дисахариды сахароза, лактоза, мальтоза и трегалоза, а также моносахариды, такие как фруктоза, галактоза и манноза.

Полисахариды

Полисахариды, включаются в процесс гликолиза, могут иметь разное происхождение, от чего зависит их судьба. Крахмал и гликоген, попадающих в организм животных с пищей, подлежат гидролиза до мономеров (глюкозы) в пищеварительной системе. У человека расщепление этих полисахаридов начинается в ротовой полости, продолжается в двенадцатиперстной кишке и завершается образованием глюкозы у стенок тонкого кишечника, где она и всасывается в кровь, откуда может поглощаться клетками и использоваться в процессе гликолиза.

С другой стороны, эндогенные полисахариды, откладываются про запас в клетках растений (крахмал) и животных и грибов (гликоген), включаются в гликолиз другим путем. Они подлежат не гидролиза, а фосфоролиз, который осуществляют ферменты фосфорилаза крахмала и гликогенфосфорилазы соответственно. Они катализируют атаку фосфорной кислоты на гликозидная α1 → 4 связь между ним и предпоследним остатками глюкозы с нередукуючого конца. Продуктом реакции является глюкозо-1-фосфат. Глюкозо-1-фосфат превращается фосфоглюкомутаза на глюкозо-6-фосфат, который является промежуточным метаболитом гликолиза. Механизм такого превращения похож на изомеризацию 3-фосфоглицерат до 2-фосфоглицерат. Фосфоролиз внутриклеточных полисахаридов выгоден тем, что позволяет сохранить часть энергии гликозидных связей благодаря образованию фосфорилированного моносахарида. Таким образом экономится одна молекула АТФ на одну молекулу глюкозы.

Дисахариды

Как и полисахариды, дисахариды перед всасыванием должны быть гидролизованные до моносахаридов, что у человека катализируется ферментами присоединенными к внешней стороне клеток эпителия тонкого кишечника. Сахарозу расщепляет сахараза, мальтозу — мальтазой, трегалозу — Трегалаза, лактозу — лактаза. Экспрессия гена последнего фермента существенно снижается у взрослых млекопитающих, в том числе и у человека (лактоза — это дисахарид молока, большинство млекопитающих употребляют только в раннем детстве). Это приводит к невосприимчивости лактозы — непереваренный дисахарид становится пищей для микроорганизмов, живущих в толстом кишечнике. Они размножаются, выделяют большое количество газов (водорода и метана), молочной кислоты, повышает осмотичность содержимого кишечника. Вследствие этого возникает вздутие, метеоризм, боль и диарея. От невосприимчивости лактозы не страдают популяции людей на севере Европы и в некоторых районах Африки, которые приобрели полезной способности синтезировать фермент лактазу протяжении всей жизни.

Моносахариды

У большинства организмов нет отдельных путей для утилизации фруктозы, галактозы и маннозы. Все они превращаются в фосфорилированные производные и вступают в процесс гликолиза. Фруктоза, попадает в организм человека с фруктами и вследствие расщепления сахарозы в большинстве тканей, кроме печени, например в мышцах и почках, фосфорилируется гексокиназой к фруктозо-6-фосфата с использованием одной молекулы АТФ. В печени она имеет другой путь преобразования: сначала фруктокиназы переносит фосфатную группу на C-1 фруктозы, образованный фруктозо-1-фосфат расщепляется фруктозо-1-фосфатальдолазы к глицеральдегид и дигидроксиацетонфосфату. Обе триозы превращаются в глицеральдгед-3-фосфат: первый — под влиянием триозокиназа, второй — под влиянием гликолитического фермента триозофосфатизомеразы.

Галактоза образуется в организме в результате расщепления молочного сахара. Она поступает в печень и там превращается в глюкозо-6-фосфат за четыре шага: сначала галактокиназы катализирует фосфорилирования в первом положении, на образованный галактозо-1-фосфат переносится уридильна группа из УДФ-глюкозы при участии фермента галактозо-1-фосфатуридилтрансферазы. Продуктами второй реакции является глюкозо-1-фосфат и УДФ-галактоза. Глюкозо-1-фосфат под влиянием фосфоглюкомутазы превращается в глюкозо-6-фосфат и поступает в гликолиз, а УДФ-галактоза используется для регенерации УДФ-глюкозы, катализируемой УДФ-галактоза-4-эпимеразы. Дефект любого из ферментов метаболического пути превращения галактозы в глюкозу вызывает заболевания галактоземию. В зависимости от того, какой именно фермент не работает, галактоземия может быть различной сложности: например дисфункция галактокиназы вызывает образование катаракты у новорожденных вследствие отложения в хрусталике метаболита галактозы галактитолу, другие симптомы сравнительно легкие и могут быть устранены путем ограничения употребления лактозы и галактозы. Нарушение функционирования трансферазы и эпимеразы приводит к серьезным последствиям, в частности дефектов в развитии нервной системы, повреждения печени, может быть летальным.

Источником маннозы в организме могут быть различные полисахариды и гликопротеины пищи, она фосфорилируется в шестом положении гексокиназой, после чего может быть изомеризована к фруктозо-6-фосфата фосфоманозоизомеразою.

Регуляция гликолиза

Изучая процесс брожения у дрожжей Луи Пастер заметил такую ​​закономерность: как скорость поглощения, так и общее количество использованной клетками глюкозы сильно увеличивалась за анаэробных условий по сравнению с аэробными. Причины этого явления, которое было названо эффектом Пастера, стали понятными после детального изучения процессов катаболизма: в присутствии кислорода происходит полное окисление глюкозы до углекислого газа и воды, сопровождающееся синтезом 30-32 молекул АТФ на одну молекулу глюкозы, а при его отсутствии брожения дает выход только 2 молекулы АТФ на молекулу глюкозы. Итак, в анаэробных условиях клетке нужно употребить в 15 раз больше глюкозы, чтобы получить то же количество АТФ.

Эффект Пастера свидетельствует о том, что гликолиз не происходит с одинаковой скоростью при любых условиях, а строго регулируется в клетке в зависимости от ее метаболических потребностей для того, чтобы поддерживать концентрацию АТФ приблизительно стабильном уровне и обеспечивать при необходимости строительные блоки для других метаболических путей. Моментальная регуляция может происходить за счет изменения активности трех ферментов: гексокиназы, фосфофруктокиназы и пируваткиназы. Все они катализируют необратимые реакции и не участвуют в процессе глюконеогенеза. Более длительные изменения в скорости прохождения гликолиза происходят благодаря гормонам глюкагона, адреналина, инсулина, а также путем изменения экспрессии генов гликолитических ферментов.

Гексокиназа

У человека есть четыре изоформы фермента гексокиназы (I-IV), отличающиеся своими свойствами. Гексокиназа II, преобладает в мышечной ткани, имеет высокое сродство к своему субстрату — глюкозы, и уже при концентрации 0,1 мМ, в 40-50 раз меньше содержание глюкозы в крови, фермент наполовину насыщается. Благодаря этому гексокиназа II может работать с максимальной интенсивностью. Вместе с гексокиназой I, также присутствует в мышцах, гексокиназа II аллостерический и обратимо ингибируется продуктом реакции, которую она катализирует, — глюкозо-6-фосфат. Итак, когда гликолиз замедляется на последующих стадиях, в клетке накапливается глюкозо-6-фосфат, который подавляет реакцию собственного образования, и глюкоза больше не задерживается в клетке.

В печени другой изоферментный состав гекоскиназы — там преобладает гексокиназа IV, которую еще называют глюкокиназы. Она отличается от других изоформ тремя особенностями. Во-первых, глюкокиназа имеет низкое сродство к глюкозе, константа Михаэлиса составляет 10 мм, что превышает нормальное содержание глюкозы в крови. Во-вторых, активность этого фермента НЕ подавляется глюкозо-6-фосфат. В-третьих, существует специальный регуляторный белок присутствует только в клетках печени, ингибирует Гексокиназа IV путем заякорювання в ядре, где она отделена от других ферментов гликолиза. Этот белок более эффективно действует в присутствии фруктозо-6-фосфата, в то время как большие концентрации глюкозы ослабляют его эффект.

Набор таких свойств позволяет Гексокиназа IV эффективно выполнять свою функцию: регулировать уровень глюкозы в крови. При обычных условиях, когда он не превышает нормы (4-5 мм), гексокиназа неактивна, связана регуляторным белком в ядре и не может катализировать фосфорилирования. В результате печень не конкурирует с другими органами по глюкозу, а вновь в глюконеогенезе молекулы могут свободно выходить в кровь. Когда уровень глюкозы в крови возрастает, например после употребления пищи богатой углеводами, она быстро транспортируется GLUT2 в гептациты и вызывает диссоциацию глюкокиназы и регуляторного белка, после чего фермент может катализировать реакцию фосфорилирования.

Гексокиназа IV также регулируется на уровне биосинтеза белка, ее количество в клетке увеличивается, когда растут энергетические потребности, о чем может свидетельствовать низкая концентрация АТФ, высокая концентрация АМФ и тому подобное.

Фосфофруктокиназы

ФФК-1 — важнейший регуляторный фермент гликолиза он не только катализирует необратимое преобразование, но и является первым энзимом, однозначно направляет метаболиты на путь гликолитического расщепления (глюкозо-6-фосфат и фруктозо-6-фосфат могут использоваться в других метаболических путях). Как аллостерический фермент ФФК-1 кроме активного центра содержит также центры связывания положительных и отрицательных модуляторов (активаторов и ингибиторов), к ним относятся:

  • АТФ, АДФ, АМФ. АТФ является не только субстратом, но и ингибитором для ФФК-1. Когда потребление этой молекулы в клетке происходит медленнее, чем ее синтез, она присоединяется к аллостерического центра фермента и снижает сродство ФФК-1 до фруктозо-6-фосфата. АДФ и АМФ, концентрация которых повышается в случае интенсивного использования АТФ, действуют как активаторы, ослабляя влияние АТФ на ФФК-1. Такой тип регуляции активности фосфофруктокиназы имеет место во всех тканях.
  • Кислотность. В мышцах активность ФФК-1 зависит от кислотности среды. Вследствие интенсивного анаэробного расщепления глюкозы во время больших нагрузок в мышечных волокнах накапливается лактат, что приводит к снижению pH до уровня, может нести угрозу повреждения ткани. В таких условиях ФФК-1 снижает свою активность приостанавливая гликолиз. В печени отсутствует такой механизм регуляции этого фермента, поскольку там не происходит синтеза молочной кислоты.
  • Цитрат является промежуточным метаболитом цикла трикарбоновых кислот. Его высокое содержание в цитоплазме свидетельствует о том, что клетка получает нужную энергию от окисления липидов и белков и о достаточном количестве биосинтетических предшественников. Так что в таких условиях отпадает необходимость в расщеплении глюкозы для синтеза АТФ или получения «строительных блоков» для анаболических, поэтому цитирует действует как ингибитор фосфофруктокиназы усиливая влияние на нее АТФ.
  • Фруктозо-2,6-бисфосфат (Ф-2,6-БФ) стимулирует ФФК-1 в печени, его действие связано с регулированием уровня глюкозы в крови. Концентрация Ф-2,6-БФ зависит от активности бифункционального фермента ФФК-2 / ФБФ-2 (фосфофруктокиназы-2 / фруктозо-2,6-БИСФОСФАТАЗЫ), что может осуществлять как фосфорилирования фрутозо-6-фосфту с образованием Ф-2, 6-БФ (киназного активность), так и гидролиз последнего (фосфатазна активность). «Переключение» активностей ФФК-2 / ФБФ-2 происходит путем его фосфорилирования / дефосфорилирования, Фосфорилированная форма работает как фосфатаза, дефосфорильована — как киназа. Гормон инсулин, основная функция которого — уменьшение уровня глюкозы в крови, из-за ряда посредников стимулирует киназного активность бифункционального фермента, вследствие чего концентрация Ф-2,6-БФ растет и это соединение активирует ФФК-1, а следовательно и прохождения гликолиза. С другой стороны, глюкагон наоборот действует как активатор фосфтазнои активности ФФК-2 / ФБФ-2, имеет противоположный эффект на гликолитическую расщепления глюкозы. На активность бифункционального фермента также влияет ксилулозо-5-фосфат (промежуточный продукт пентозофосфатного пути), который стимулирует киназного активность и таким образом ускоряет гликолиз. Эта регуляторная молекула важна для активации синтеза жирных кислот в гепатоцитах, когда в крови повышается уровень глюкозы.

Некоторые из модуляторов активности ФФК-1 влияют также на фермент фруктозо-1,6-БИСФОСФАТАЗЫ, которая катализирует в глюконеогенезе реакцию превращения фруктозо-1,6-бисфосфат в фруктозо-6-фосфат, но противоположным образом: ее ингибирует АМФ и Ф-2 6-БФ. Итак активация гликолиза в клетке сопровождается угнетением глюконеогенеза и наоборот. Это необходимо для предотвращения лишним затратам энергии в так называемых сусбтартних циклах.

Пируваткиназа

У млекопитающих найдено как минимум три изоферменты пируваткиназы, что экспрессируются в различных тканях. Эти изоферменты имеют много общего, например все они подавляются высокими концентрациями ацетил-КоА, АТФ и длинноцепочечных жирными кислотами (показатели того, что клетка хорошо обеспечена энергией), а также аланином (аминокислота, которая синтезируется из пирувата). Фруктозо-1,6-бисфосфат активирует различные изоферменты пируваткиназы. Однако печеночная изоформа (пируваткиназа L) отличается от мышечной (пируваткиназы M) наличием еще одного способа регуляции — путем ковалентной модификации фосфатной группой. В ответ на низкий уровень глюкозы в крови поджелудочной железой выделяется глюкагон, активирующий цАМФ-зависимой протеинкиназы. Этот фермент фосфорилирует пируваткиназы L, в результате чего последняя теряет свою активность. Итак гликолитическую расщепления глюкозы в печени замедляется и ее могут использовать другие органы.

Гликолиз в раковых клетках

1928 Отто Варбург обнаружил, что в раковых клетках почти всех типов гликолиз и поглощение глюкозы происходит примерно в 10 раз интенсивнее, чем у здоровых, даже в присутствии больших концентраций кислорода. Эффект Варбурга стал основой для разработки нескольких методов выявления и лечения рака.

Все раковые клетки, по крайней мере на начальных этапах развития опухоли растут в условиях гипоксии, то есть недостатка кислорода, из-за отсутствия сетки капилляров. Если они расположены на расстоянии более 100-200 мкм от ближайшей кровеносного сосуда, то должны полагаться только на гликолиз без дальнейшего окисления пирувата для получения АТФ. Йомвирно, что почти во всех раковых клетках в процессе злокачественной трансформации происходят следующие изменения: переход на получение энергии только путем гликолиза и приспособления к условиям повышенной кислотности, возникающих вследствие выделения молочной кислоты в межклеточную жидкость. Чем более агрессивная опухоль, тем быстрее в ней происходит гликолиз.

Приспособление раковых клеток к недостатку кислорода во многом происходит благодаря транскрипционных факторов индуцированном гипоксией (англ. Hypoxia-inducible transcription factor, HIF-1), который стимулирует повышение экспрессии как минимум восьми генов гликолитических ферментов, а также транспортеров глюкозы GLUT1 и GLUT3, активность которых не зависит от инсулина. Еще одним ефекторм HIF-1 является выделение клетками васкулярного эндотелиального фактора роста (англ. Vascular endothelial growth factor), что стимулирует образование кровеносных сосудов в опухоли. HIF-1 также выделяется мышцами во время тренировок, предусматривающие большую интенсивность нагрузки, в этом случае он имеет аналогичный эффект: усиливает способность к анаэробного синтеза АТФ и стимулирует рост капилляров.

В некоторых случаях повышенная интенсивность гликолиза может быть использована для нахождения местоположения опухоли в организме с помощью позитрон-эмиссионной томографии (ПЭТ). Пациенту в кровь вводят аналог глюкозы 2-флюоро-2-дезоксиглюкозу (ФДГ), меченый изотопом 18 F. Это вещество поглощается клетками и является субстратом для первого фермента гликолиза — гексокиназы, однако не может быть преобразована фосфоглюкоизмеразою, поэтому накапливается в цитоплазме. Скорость накопления зависит от интенсивности захвата аналога глюкозы и его фосфорилирования, оба процесса значительно быстрее происходят в раковых клетках, чем в здоровых. При распаде 18 F выделяются позитроны, которые фиксируются специальными сенсорами.

Особенности катаболизма глюкозы в злокачественных опухолях используются не только для диагностики, но и для разработки новых противораковых препаратов, среди которых: ингибиторы гексокиназы (2-дезоксиглюкоза, лонидамин, 3-бромпируват), Иматиниб (Gleevec), подавляющее определенную тирозинкиназы, которая стимулирует синтез гексокиназы, и другие.

ГЛИКОЛИЗ (греч, glykys сладкий + lysis разрушение, распад) - сложный ферментативный процесс превращения глюкозы, протекающий в тканях животных и человека без потребления кислорода и приводящий к образованию молочной кислоты и АТФ.

C 6 H 12 O 6 + 2АДФ + 2Ф неорг. -> 2CH 3 CHOHCOOH + 2АТФ + 2H 2 O.

Именно благодаря Г. организм человека и животных может осуществлять ряд физиол, функций в условиях недостаточности кислорода.

В тех случаях, когда Г. протекает на воздухе или в атмосфере кислорода, говорят об аэробном Г. В анаэробных условиях Г.- единственный процесс в животном организме, поставляющий энергию. В аэробных условиях Г. является первой стадией окислительного превращения глюкозы и других углеводов до конечных продуктов этого процесса - углекислоты и воды. Процессами, аналогичными Г., у растений и микроорганизмов являются различные виды брожения (см.). Впервые термин «гликолиз» был предложен Лепином (Lepine) в 1890 г.

Последовательность реакций в процессе Г., также как и их промежуточные продукты, хорошо изучены. Реакции Г. катализируются одиннадцатью ферментами, большинство из которых выделены в гомогенном, кристаллическом или высоко очищенном виде и свойства которых тщательно изучены.

Наиболее интенсивен Г. в скелетных мышцах, в печени, сердце, мозге и других органах. В клетке Г. протекает в гиалоплазме.

Первой ферментативной реакцией (см. схему), открывающей цепь реакций Г., является реакция взаимодействия D-глюкозы с АТФ (2), приводящая к образованию глюкозо-6-фосфата и обеспечивающая возможность дальнейшего превращения глюкозы в процессе Г. Реакция катализируется гексокиназой (см.). Эта реакция сопровождается выделением значительного количества энергии и поэтому практически необратима. В скелетных мышцах и печени глюкозо-6-фосфат в больших количествах образуется также при катаболизме гликогена, т. е. при гликогенолизе.

Второй реакцией Г. (схема, реакция 2) является изомеризация глюкозо-6-фосфата во фруктозо-6-фосфат, катализируемая глюкозофосфатизомеразой, не нуждающейся в присутствии каких-либо кофакторов. Образующая смесь двух гексозомонофосфатов, состоящая приблизительно на 80% из глюкозо-6-фос-фата и на 20% из фруктозо-6-фосфата с примесью нек-рого количества других фосфомоноэфиров, носит название эфира Эмбдена. Такая же смесь, но состоящая из глюкозо-6-фосфата почти наполовину, называется эфиром Робисона.

Фруктозо-6-фосфат, далее в фосфофруктокиназной реакции (схема, реакция 3) за счет АТФ фосфорилируется во фруктозо-1,6-дифосфат. Фруктозодифосфат является специфическим субстратом именно для Г., тогда как предыдущие реакции характерны не только для Г., но и для окислительного распада углеводов. Фосфофруктокиназа - регуляторный фермент, имеющий на молекуле 7, а по данным некоторых авторов, 12 центров связывания субстратов, кофакторов и ингибиторов. Фермент активируется ионами двухвалентных металлов, неорганическим фосфатом, АДФ, АМФ, циклическим 3",5"-АМФ. Активность фермента также повышается в присутствии фруктозо-6-фосфата и фруктозо-1,6-дифосфата. Ингибируют фермент АТФ и цитрат.

Реакция, катализируемая фосфофруктокиназой, является наиболее медленно текущей реакцией Г., определяющей скорость всего процесса. Главными факторами в клетке, контролирующими фосфофруктокиназу, являются относительные концентрации АТФ и АДФ. Когда величина отношения АТФ/АДФ + Ф неорг. значительна, что достигается в процессе окислительного фосфорилирования (см.), происходит угнетение фосфофруктокиназы, и Г. замедляется. При снижении величины отношения АТФ/АДФ + Ф неорг. интенсивность Г. повышается. В неработающей мышце активность фосфофруктокиназы низка, что объясняется высокой концентрацией АТФ (см. Аденозинтрифосфорная кислота). В процессе работы, когда происходит интенсивное потребление АТФ, активность фосфофруктокиназы увеличивается, что приводит к интенсификации Г., а следовательно, и к усиленному образованию АТФ. При диабете, голодании и других условиях, вызывающих переключение энергетического обмена на использование жиров, содержание цитрата в клетке может возрасти в несколько раз. Величина торможения фосфофруктокиназы цитратом достигает при этом 70-80%.

Следующий этап Г. катализирует фруктозодифосфатальдолаза (схема, реакция 4). Фруктозо-1,6-дифосфат расщепляется на две фосфотриозы: диоксиацетонфосфат и глицеральдегид-3-фосфат. Под влиянием триозофосфатизомеразы (схема, реакция 5) происходит взаимопревращение, фосфотриоз. Равновесие этой реакции сдвинуто в сторону образования диоксиацетонфосфата: на 96% диоксиацетонфосфата приходится всего 4% глицеральдегид-3-фосфата, но именно он и участвует в дальнейших превращениях в процессе Г. Благодаря высокой активности триозофосфатизомеразы преимущественное образование диоксиацетонфосфата не лимитирует скорости Г. в целом. Образованием глицеральдегид-3-фосфата (3-фосфоглицеринового альдегида) заканчивается первая стадия Г.

Вторая стадия Г. является общим путем превращения всех углеводов и рассматривается как наиболее сложная и важная часть процесса, приводящая к образованию АТФ. Центральной реакцией Г. является реакция гликолитической оксидоредукции, сопряженной с фосфорилированием,- реакция окисления 3-фосфоглицеринового альдегида (схема, реакция 6), катализируемая глицеральдегидфосфатдегидрогеназой. Этот фермент состоит из четырех идентичных субъединиц, каждая из которых представляет собой полипептидную цепь с 330 аминокислотными остатками. Каждая субъединица несет одну молекулу НАД+ и 4 свободные SH-группы. В ходе реакции, идущей в присутствии неорганического фосфата, НАД+ выступает как акцептор водорода, отщепляющегося от глицеральдегид-3-фосфата. При восстановлении НАД+ происходит связывание глицеральдегид-3-фос-фата с молекулой фермента за счет SH-групп последнего. Образовавшаяся связь, богатая энергией, непрочна и расщепляется под влиянием неорганического фосфата, при этом образуется 1,3-дисфосфоглицериновая к-та (1,3-дифосфоглицерат). Последующая реакция (схема, реакция 7) приводит к передаче богатого энергией фосфатного остатка на молекулу АДФ с образованием АТФ и 3-фосфоглицериновой к-ты (3-фосфоглицерата). Для реакции, катализируемой фосфоглицераткиназой, необходимы ионы двухвалентных металлов: Mg 2+ , Mn 2+ или Ca 2+ . Далее (схема, реакция 8) 3-фосфоглицериновая к-та превращается в 2-фосфоглицериновую к-ту (2-фосфоглицерат). Реакцию катализирует фосфоглицерат-фосфомутаза в присутствии двух кофакторов: иона Mg 2+ и 2,3-дифосфоглицериновой к-ты. Следующий этап Г.- образование фосфоенолпирувата, богатого энергией предшественника АТФ (схема, реакция 9). Превращение 2-фосфоглицериновой к-ты (2-фосфоглицерата) в фосфоенолпируват осуществляется в результате реакции дегидратации, катализируемой фосфопируват-гидратазой. Фермент, катализирующий эту реакцию, нуждается в Mg 2+ , Mn 2+ , Zn 2+ или Cd 2+ , антагонистами которых являются ионы Ca 2+ или Sr 2+ . Реакцию между фосфоенолпируватом и АДФ (схема, реакция 10) с образованием пировиноградной к-ты (пирувата) и АТФ катализирует пируваткиназа, требующая для проявления своей активности ионов Mg 2+ или Mn 2+ и K + ; Ca 2+ выступает как конкурентный антагонист этих ионов. Для максимальной активности пируваткиназа нуждается также в присутствии одновалентных катионов K + , Rb + или Cs + , антагонистами которых являются катионы Na + и Li + . Обратимое восстановление пирувата в молочную к-ту (лактат) за счет восстановленного НАД + (НАДН) является конечным этапом Г. (схема, реакция 11). Реакцию катализирует лактатдегидрогеназа (см.).

Благодаря трем необратимым реакциям - гексокиназной, фосфофруктокиназной и пируваткиназной Г. сам по себе является необратимым процессом (его равновесие сдвинуто в сторону образования молочной к-ты). На I стадии Г. затрачиваются две молекулы АТФ, на II стадии образуются четыре молекулы АТФ. Т. о., энергетическая эффективность Г. (всего две молекулы АТФ на одну молекулу глюкозы) сравнительно низка. Тем не менее роль Г. велика, т. к. только благодаря ему организм может осуществлять ряд физиол, функций в условиях недостаточного снабжения тканей и органов кислородом. Такие условия создаются, напр., в энергично работающей скелетной мышце. Присутствие кислорода тормозит Г. (явление, называемое эффектом Пастера - см. Пастера эффект). В сердечной мышце в процессах образования энергии гликолитический путь распада углеводов занимает небольшое место. Активность ферментов Г. в сердце значительно ниже, чем в скелетных мышцах. Реальная скорость Г. меняется в зависимости от снабжения сердечной мышцы кислородом и интенсивности в ней окислительных процессов. Но даже при наиболее оптимальных условиях снабжения кислородом в мышце сердца всегда идет Г. Субстраты гликолитических реакций (фосфорилированные сахара, пируват, молочная к-та) используются сердечной мышцей в процессах пластического обмена веществ и в цикле Трикарбоновых к-т (см. Трикарбоновых кислот цикл) в качестве субстратов окисления. Большую роль Г. приобретает в сердце в условиях дефицита кислорода. Бурный аэробный Г. происходит в опухолях, где он является основным источником энергии. Опухолевые ткани характеризуются отсутствием эффекта Пастера. В них регулирующая роль фосфофруктокиназы утрачивается.

Нормальное течение Г. возможно только в том случае, если в ткани присутствуют АДФ, субстраты для фосфоглицераткиназной и пируваткиназной реакций, а также НАД и неорганический фосфат, необходимые для реакции гликолитической оксидоредукции (угнетение гликолитической оксидоредукции в сердечной мышце, обусловленное уменьшением содержания НАД, наблюдалось в условиях экспериментального миокардита). Основной, лимитирующей скорость Г. реакцией является реакция, катализируемая фосфофруктокиназой (см. схему, реакция 3). Вторым этапом, лимитирующим скорость и регулирующим Г., после фосфофруктокиназной реакции является гексокиназная реакция (см. схему, реакция 1). Широкий изоферментный спектр этого фермента обусловливает возможность тонкой регуляции Г. на его начальном, пусковом этапе. Динамичный характер связи гексокиназы с митохондриями и микросомами, а также изменения свойств этого фермента при взаимодействии с субклеточными структурами делают механизм регуляции Г. очень чувствительным.

Отсутствие регулирующей роли фосфофруктокиназы и крайне высокая активность гексокиназы превращают злокачественную опухоль в мощный насос, непрерывно извлекающий глюкозу из организма. При этом интенсивность Г. такова, что перепад между концентрацией глюкозы в артериальной крови и ткани опухоли достигает 60-80 мг% (артериальная кровь) против нуля (опухолевая ткань).

В норме контроль Г. осуществляется также лактатдегидрогеназой (ЛДГ) и ее изоферментами (см. Лактатдегидрогеназа), которые характеризуются специфической локализацией в органах и тканях. В тканях с аэробным метаболизмом (ткани сердца, почек, эритроциты) преобладают ЛДГ-1 и ЛДГ-2. Эти изоферменты ингибируются даже небольшими концентрациями пирувата, что препятствует образованию молочной к-ты и способствует более полному окислению пирувата в цикле Трикарбоновых к-т. В тканях человека, в значительной степени зависимых от энергии, образующейся в процессе Г. (скелетные мышцы), главными изоферментами ЛДГ являются ЛДГ-4 и ЛДГ-5. Активность ЛДГ-5 максимальна при тех концентрациях пирувата, которые ингибируют ЛДГ-1. Преобладание изоферментов ЛДГ-4 и ЛДГ-5 обусловливает интенсивный анаэробный Г. с быстрым превращением пирувата в молочную к-ту. Заметное увеличение относительного содержания ЛДГ-5 было отмечено при адаптации организмов и клеток в культурах к гипоксии. Во многих тканях человека (ткани селезенки, поджелудочной и щитовидной желез, надпочечников, лимф, узлов) преобладает изофермент ЛДГ-3. В тканях эмбриона и плода человека присутствуют все 5 изо-ферментов лактатдегидрогеназы, среди которых преобладает ЛДГ-3. Вскоре после рождения у ребенка картина распределения изоферментов в органах и тканях становится такой же, как и у взрослого человека. Изменение изоферментного спектра в эмбриогенезе особенно выражено в скелетных мышцах. При различных миопатиях (см.) наблюдается аномальное распределение изоферментов ЛДГ: увеличение одних и уменьшение или даже полное исчезновение других. При прогрессирующей мышечной дистрофии (болезнь Дюшенна) преобладают изоферменты ЛДГ-1, ЛДГ-2 и ЛДГ-3. При других формах мышечной дистрофии (миотоническая дистрофия, дерматомиозит, болезнь Верднига - Гоффманна) характерно уменьшение или даже отсутствие ЛДГ-5 в скелетных мышцах, что коррелирует со сниженным образованием молочной к-ты у больных этими формами миопатий после физ. работы. При ряде патол, состояний благодаря увеличению проницаемости клеточных мембран изо-ферменты лактатдегидрогеназы в избыточном количестве поступают в кровь. Активность лактатдегидрогеназы и характер распределения ее изоферментов в сыворотке крови специфически изменяются при инфаркте миокарда (см.), заболеваниях печени и желчевыводящих путей, ревматизме (см.). В клинике для дифференциальной диагностики этих заболеваний применяют простые методы определения относительного распределения изоферментов лактатдегидрогеназы в сыворотке крови, основанные на их различной электрофоретической подвижности.

В организме человека и животных существуют ферментативные механизмы, обеспечивающие протекание Г. в обратном направлении, т. е. синтез глюкозы, а также гликогена из молочной к-ты. Этот процесс носит название глюконеогенеза; он интенсивно протекает в печени, куда в больших количествах током крови доставляется молочная к-та. Энергия для осуществления этого процесса образуется также в печени в результате полного окисления нек-рой части (ок. 15%) молочной к-ты. Предшественниками глюкозы в глюконеогенезе могут быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла Трикарбоновых к-т, а также так наз. гликогенные аминокислоты.

Большинство стадий глюконеогенеза представляет собой обращение реакций Г. Три реакции Г.- гексокиназная, фосфофруктокиназная и пируваткиназная - необратимы, поэтому глюконеогенез идет в обход этих реакций.

Первую реакцию глюконеогенеза - превращение молочной к-ты в пировиноградную - катализирует лактатдегидрогеназа. Синтез фосфоенолпирувата из пирувата осуществляется в несколько этапов. Первый этап локализуется в митохондриях.

Пируват под влиянием пируваткарбоксилазы (КФ 6.4.1.1), активной только в присутствии ацетилкофермента А, карбоксилируется при участии CO 2 с образованием оксалоацетата. В реакции участвует АТФ, поэтому продуктами реакции наряду с оксалоацетатом являются АДФ и ортофосфат:

Оксалоацетат в результате декарбоксилировании и фосфорилирования под влиянием фосфопируваткарбоксилазы (КФ 4.1.1.32) превращается в фосфоенол пируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат или инозинтрифосфат:

Фосфопируваткарбоксилаза присутствует как в гиалоплазме, так и в митохондриях, но распределение фермента у человека и животных различно. У морских свинок, кроликов, овец, коров и у человека фосфопируваткарооксилаза присутствует в обеих фракциях. В эмбриональной печени крыс и морских свинок, не способной к глюконеогенезу, присутствует только митохондриальный фермент. В гиалоплазме активность фосфопируваткарбоксилазы появляется только в постнатальный период; одновременно печень становится способной к глюконеогенезу.

Поскольку в глюконеогенезе участвует фосфопируваткарбоксилаза превращение оксалоацетата в фосфоенолпируват происходит именно в гиалоплазме. Оксалоацетат, образовавшийся в митохондриях, не может перейти в гиалоплазму, т. к. мембрана митохондрий для него непроницаема. В митохондриях оксалоацетат восстанавливается в яблочную к-ту (малат), к-рая способна диффундировать из митохондрий в гиалоплаз-му, где и окисляется с образованием оксалоацетата, который, в свою очередь, превращается в фосфоенол пируват.

Последующие реакции глюконеогенеза, катализируемые ферментами Г., приводят к образованию фруктозо-1 ,6-дифосфата. Превращение фруктозо-1 ,6-дифосфата во фруктозо-6-фосфат, а затем и глюкозо-6-фосфата в глюкозу катализируют специфические фосфатазы, гидролитически отщепляющие неорганический фосфат.

При глюконеогенезе фруктозо-1,6-дифосфатаза (гексозодифосфатаза; КФ 3.1.3.11) катализирует ключевую реакцию D-фруктозо-1,6-дифосфат + H 2 O -> D-фруктозо-б-фосфат + ортофосфат) и соответственно действие, к-рое оказывает на нее АТФ и АМФ, противоположно их действию на фосфофруктокиназу (см. выше): гексозодифосфатаза активируется под влиянием АТФ и ингибируется АМФ. Когда величина отношения АТФ/АДФ низка, в клетке происходит расщепление глюкозы, когда эта величина высока - расщепление глюкозы прекращается. В аэробных условиях значительно эффективнее, чем в анаэробных, из клетки удаляется неорганический фосфат й АДФ и накапливается АТФ, что приводит к подавлению Г. и стимуляции глюконеогенеза. Пируваткарбоксилаза также чувствительна к величине отношения АТФ/АДФ, т. к. ингибируется АДФ. Ацетил-КоА активирует пируваткарбоксилазу.

В регуляции Г. и глюконеогенеза большую роль играет инсулин (см.). При недостаточности его происходит повышение концентрации глюкозы в крови (гипергликемия), избыточное выведение глюкозы с мочой (глюкозурия) и уменьшение содержания гликогена в печени. При этом мышцы утрачивают способность использовать в процессе Г. глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов (биосинтеза белков, биосинтеза жирных к-т из глюкозы) наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом все перечисленные метаболические нарушения исчезают: нормализуется проницаемость для глюкозы мембран мышечных клеток, восстанавливается соотношение между Г. и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как регулятор синтеза ферментов. Он является индуктором образования ключевых ферментов Г.: гексокиназы, фосфофруктокиназы и пируваткиназы. Одновременно инсулин действует как репрессор синтеза ферментов глюконеогенеза.

Клин, признаки преобладания Г. над аэробной фазой распада углеводов наблюдаются чаще всего при гипоксических состояниях, обусловленных различными нарушениями кровообращения или дыхания, высотной болезнью, анемией, понижением активности системы тканевых окислительных ферментов при некоторых инфекциях и интоксикациях, гипо- и авитаминозами, в результате относительной гипоксии при чрезмерной мышечной работе. При усилении Г. происходит накопление пирувата и лактата с соответствующим закислением тканей, изменением кислотно-щелочного равновесия, уменьшением щелочных резервов. У больных сахарным диабетом активация процессов Г. и недостаточный ресинтез лактата в гликоген печени также нередко приводят к увеличению содержания в крови лактата и пирувата; в этих случаях ацидоз может достигать высокой степени с развитием диабетической молочнокислой комы. Торможение ресинтеза гликогена из лактата и пирувата, образовавшихся в результате Г., наблюдается при поражениях паренхимы печени (поздние стадии гепатита, цирроз печени и т. п.), поэтому увеличение содержания в сыворотке крови лактата и пирувата может служить показателем нарушения функции печени.

Высокая интенсивность Г. в опухолевых тканях используется для определения чувствительности опухолей к нек-рым противоопухолевым препаратам: подавление Г. в срезах опухоли под влиянием исследуемого химиопрепарата свидетельствует о чувствительности к нему данной опухоли.

Библиография: Дэгли С. и Никольсон Д. Е. Метаболические пути, пер. с англ., М., 1973, библиогр.; Л e н и н д-жер А. Биохимия, пер. с англ., М., 1976; Проблемы медицинской химии, под ред. В. С. Шапота и Э. Г. Ларского, М., 1973, библиогр.; УилкинсонДж. Изофер-менты, пер. с англ., М., 1968.

Г. А. Соловьева, Г. К. Алексеев.

Чтобы понять, что такое гликолиз, придется обратиться к греческой терминологии, потому что данный термин произошел от греческих слов: гликос – сладкий и лизис – расщепление. От слова Гликос происходит и название глюкозы. Таким образом, под данным термином подразумевается процесс насыщения глюкозы кислородом, в результате которого одна молекула сладкого вещества распадается на две микрочастицы пировиноградной кислоты. Гликолиз – это биохимическая реакция, происходящая в живых клетках, и направленная на расщепление глюкозы. Существует три варианта разложения глюкозы, и аэробный гликолиз – один из них.

Процесс этот состоит из целого ряда промежуточных химических реакций, сопровождаемых выделением энергии. В этом и кроется основная суть гликолиза. Высвобождаемая энергия расходуется на общую жизнедеятельность живого организма. Общая формула расщепления глюкозы выглядит так:

Глюкоза + 2НАД + + 2АДФ + 2Pi → 2 пируват + 2НАДH + 2Н + + 2АТФ + 2Н2O

Аэробное окисление глюкозы с последующим расщеплением ее шестиуглеродной молекулы осуществляется посредством 10 промежуточных реакций. Первые 5 реакций, объединяет подготовительная фаза подготовки, а последующие реакции направлены на образование АТФ. В ходе реакций образуются стереоскопические изомеры сахаров и их производные. Основное накопление энергии клетками происходит во второй фазе, связанной с образованием АТФ.

Этапы окислительного гликолиза. Фаза 1.

В аэробном гликолизе выделяются 2 фазы.

Первая фаза – подготовительная. В ней глюкоза вступает в реакцию с 2 молекулами АТФ. Эта фаза состоит из 5 последовательных ступеней биохимических реакций.

1-я ступень. Фосфорилирование глюкозы

Фосфорилирование, то есть процесс переноса остатков фосфорной кислоты в первой и последующих реакциях производится за счет молекул адезинтрифосфорной кислоты.

В первой ступени остатки фосфорной кислоты из молекул адезинтрифосфата переносятся в молекулярную структуру глюкозы. В ходе процесса получается глюкозо-6-фосфат. В качестве катализатора в процессе выступает гексокиназа, ускоряющая процесс с помощью ионов магния, выступающих в качестве кофактора. Ионы магния задействованы и в других реакциях гликолиза.

2-я ступень. Образование изомера глюкозо-6-фосфата

На 2-й ступени происходит изомеризация глюкозо-6-фосфата во фруктозу-6-фосфат.

Изомеризация – образование веществ, имеющих одинаковый вес, состав химических элементов, но обладающих разными свойствами вследствие различного расположения атомов в молекуле. Изомеризация веществ осуществляется под действием внешних условий: давления, температур, катализаторов.

В данном случае процесс осуществляется под действием катализатора фосфоглюкозоизомеразы при участии ионов Mg + .

3-я ступень. Фосфорилирование фруктозо-6-фосфата

На данной ступени происходит присоединение фосфорильной группы за счет АТФ. Процесс осуществляется при участии фермента фосфофруктокиназа-1. Этот фермент и предназначен только для участия в гидролизе. В результате реакции получаются фруктозо-1,6-бисфосфат и нуклеотид адезинтрифосфат.

АТФ – адезинтрифосфат, уникальный источник энергии в живом организме. Представляет собой довольно сложную и громоздкую молекулу, состоящую из углеводородных, гидроксильных групп, азота и групп фосфорной кислоты с одной свободной связью, собранных в нескольких циклических и линейных структурах. Высвобождение энергии происходит в результате взаимодействия остатков фосфорной кислоты с водой. Гидролиз АТФ сопровождается образованием фосфорной кислоты и выделением 40-60 Дж энергии, которую организм затрачивает на свою жизнедеятельность.

Но прежде должно произойти фосфорилирование глюкозы за счет молекулы Адезинтрифосфата, то есть перенос остатка фосфорной кислоты в глюкозу.

4-я ступень. Распад фруктозо-1,6-дифосфата

В четвертой реакции фруктозо-1,6-дифосфат распадается на два новых вещества.

  • Диоксиацетонфосфат,
  • Глицеральд альдегид-3-фосфат.

В данном химическом процессе в качестве катализатора выступает альдолаза, фермент, участвующий в энергетическом обмене, и необходимый при диагностировании ряда заболеваний.

5-я ступень. Образование триозофосфатных изомеров

И, наконец, последний процесс – изомеризация триозофосфатов.

Глицеральд-3-фосфат продолжит участвовать в процессе аэробного гидролиза. А второй компонент – диоксиацетон фосфат при участии фермента триозофосфатизомеразы преобразуется в глицеральдегид-3-фосфат. Но трансформация эта – обратимая.

Фаза 2. Синтез Адезинтрифосфата

В данной фазе гликолиза будет аккумулироваться в виде АТФ биохимическая энергия. Адезинтрифосфат образуется из адезиндифосфата за счет фосфорилирования. А также образуется НАДН.

Аббревиатура НАДН имеет очень сложную и труднозапоминаемую для неспециалиста расшифровку – Никотинамидадениндинуклеотид. НАДН – это кофермент, небелковое соединение, участвующее в химических процессах живой клетки. Он существует в двух формах:

  1. окисленной (NAD + , NADox);
  2. восстановленной (NADH, NADred).

В обмене веществ NAD принимает участие в окислительно-восстановительных реакциях транспортируя электроны из одного химического процесса в другой. Отдавая, или принимая электрон, молекула преобразуется из NAD + в NADH, и наоборот. В живом организме НАД вырабатывается из триптофана или аспартата аминокислот.

Две микрочастицы глицеральдегид-3-фосфата подвергаются реакциям, в ходе которых образуется пируват, и 4 молекулы АТФ. Но конечный выход адезинтрифосфата составит 2 молекулы, поскольку две затрачены в подготовительной фазе. Процесс продолжается.

6-я ступень – окисление глицеральдегид-3-фосфата

В данной реакции происходит окисление и фосфорилирование глицеральдегид-3-фосфата. В итоге получается 1,3-дифосфоглицериновая кислота. В ускорении реакции участвует глицеральдегид-3-фосфатдегидрогеназа

Реакция происходит при участии энергии, полученной извне, поэтому она называется эндергонической. Такие реакции протекают параллельно с экзергоническими, то есть выделяющими, отдающими энергию. В данном случае такой реакцией служит следующий процесс.

7-я ступень. Перемещение фосфатной группы с 1,3-дифосфоглицерата на адезиндифосфат

В этой промежуточной реакции фосфорильная группа переносится фосфоглицераткиназой с 1,3-дифосфоглицерата на адезиндифосфат. В итоге получаются 3-фосфоглицерат и АТФ.

Фермент фосфоглицераткиназа приобрел свое название за способность катализировать реакции в обоих направлениях. Этот фермент также транспортирует фосфатный остаток с адезинтрифосфата на 3-фосфоглицерат.

6-я и 7-я реакции часто рассматриваются как единый процесс. 1,3-дифосфоглицерат в нем рассматривается как промежуточный продукт. Вместе 6-я и 7-я реакции выглядят так:

Глицеральдегид-3-фосфат+ADP+Pi +NAD+⇌3 -фосфоглицерат+ATP+NADH+Н+,ΔG′о = −12,2 кДж/моль.

И суммарно эти 2 процесса освобождают часть энергии.

8-я ступень. Перенесение фосфорильной группы с 3-фосфоглицерата.

Получение 2-фосфоглицерата – процесс обратимый, происходит под каталитическим действием фермент фосфоглицератмутазы. Фосфорильная группа переносится с двухвалентного атома углерода 3-фосфоглицерата на трехвалентный атом 2-фосфоглицерата, в итоге образуется 2-фосфоглицериновая кислота. Реакция проходит при участи положительно заряженных ионов магния.

9-я ступень. Выделение воды из 2-фосфоглицерата

Эта реакция в своей сути является второй реакцией расщепления глюкозы (первой была реакция 6-й ступени). В ней фермент фосфопируватгидратаза стимулирует отщепление воды от атома С, то есть процесс элиминирования из молекулы 2-фосфоглицерата и образование фосфоенолпирувата (фосфоенолпировиноградной кислоты).

10-я и последняя ступень. Перенос фосфатного остатка с ФЕП на АДФ

В заключительной реакции гликолиза задействованы коферменты – калий, магний и марганец, в качестве катализатора выступает фермент пируваткиназа.

Преобразование енольной формы пировиноградной кислоты в кето-форму является обратимым процессом, и в клетках присутствуют оба изомера. Процесс перехода изометрических веществ из одного в другой называется таутомеризацией.

Что такое анаэробный гликолиз?

Наряду с аэробным гликолизом, то есть расщеплением глюкозы при участии О2 , существует и так называемый анаэробный распад глюкозы, в котором кислород не участвует. Он также состоит из десяти последовательных реакций. Но где протекает анаэробный этап гликолиза, связан ли он с процессами кислородного расщепления глюкозы, или это самостоятельный биохимический процесс, попробуем в этом разобраться.

Анаэробный гликолиз – это распад глюкозы при отсутствии кислорода с образованием лактата. Но в процессе образования молочной кислоты НАДН в клетке не накапливается. Этот процесс осуществляется в тех тканях и клетках, которые функционируют в условиях кислородного голодания – гипоксии. К таким тканям в первую очередь относятся скелетные мышцы. В эритроцитах, несмотря на наличие кислорода, тоже в процессе гликолиза образуется лактат, потому что в кровяных клетках отсутствуют митохондрии.

Анаэробный гидролиз протекает в цитозоле (жидкой части цитоплазмы) клеток и является единственным актом, продуцирующим и поставляющим АТФ, поскольку в данном случае окислительное фосфорилирование не работает. Для окислительных процессов нужен кислород, а его в анаэробном гликолизе нет.

И пировиноградная, и молочная кислоты служат источниками энергии, для выполнения мышцами определенных задач. Излишки кислот поступают в печень, где под действием ферментов снова превращаются в гликоген и глюкозу. И процесс начинается снова. Недостаток глюкозы восполняется питанием – употреблением сахара, сладких фруктов, и иных сладостей. Так что нельзя в угоду фигуре совсем отказываться от сладкого. Сахарозы нужны организму, но в меру.