» » Что является объектом современной систематики. Наука систематика

Что является объектом современной систематики. Наука систематика

Расположение люминофоров. Адский вампир. 800 видов светящихся живых существ. Креветки. Они живые и светятся. Рыба-топорик. Глубоководный удильщик. Классический пример биолюминесценции. Светящиеся колонии бактерий. Феерическое зрелище. Глубоководный кальмар. Идиакант. Морское перо. Светящиеся глубоководные многощетинковые черви. Гребневики. Самки удильщиков. У бактерий люминофорные белки рассеяны по всей клетке.

«Разнообразие организмов» - Видовое разнообразие хордовых в Калужской области. Видовое разнообразие основных групп животных России и мира. Система таксономических категорий. Филогенетическая классификация на основе анализа последовательсностей. Многоцарственная система живой природы. Предположительное видовое разнообразие основных групп животных. Соотношение настоящего и предсказываемого числа видов. Жорж Кювье. Система Н.Н. Воронцова.

«Формы организации материи» - Передача состояния. Гипотеза Хойла. Космические циклы. Законы сохранения массы. Античастица. ООС. Ферментные механизмы управления. Скорость электромагнитных волн. ПОС. Обратные связи в живых организмах. Состояние системы. Социальная система. Следствие. Биологические часы. Политические отшельники. Первый закон энергетической проводимости. Проблемы цивилизации. Четыре этапа. Жизнь. Электромагнитные волны.

«Самоорганизация систем» - Кибернетика как наука. Объединенное действие. Пространство трехмерно. Аттрактор. Управление. Бионика. Фазовые изменения. Открытые неравновесные системы. Проблема «биологического времени». Неорганическая природа. Некоторые условия самоорганизации. Заслуга синергетики. Хронобиология. Внимание. Примеры самоорганизации систем разной природы. Теоретическая кибернетика. Период плавного эволюционного развития.

«Разнообразие живых организмов» - Под генетическим разнообразием понимается многообразие. Под угрозой исчезновения находится почти 20 тысяч видов растений. Биоразнообразие. Умеренные леса. Все типы биологического разнообразия взаимосвязаны между собой. Иногда в отдельную категорию выделяют разнообразие ландшафтов. Распределение видов по поверхности планеты неравномерно. С 1600 г. безвозвратно исчезли 83 вида млекопитающих. Возникновение и исчезновение видов.

«Видовое разнообразие живых организмов» - Живые организмы. Щука. Родственные организмы. Аполлон. Возможно ли разделить организмы на группы. Признаки живых организмов. Рассмотри рисунок. Организмы. Притча о двух мудрецах. Процессы жизнедеятельности. Сходные признаки. Котята. Заполни таблицу. Внешнее строение. Прочитайте текст учебника. Составить рассказ. Неродственные организмы. Прудовая ночница. Разнообразие живых организмов. Рыба.

Материал из Юнциклопедии


Мир живых существ насчитывает, по различным оценкам, от 1,5 до 8 млн. видов. Для описания и обозначения множества ныне обитающих на Земле, а также ископаемых растений, животных, микроорганизмов, грибов необходима определенная система.

Эти задачи выполняет раздел биологии, называемый систематикой, в него входит как составная часть и классификация организмов. Систематика опирается на данные, полученные всеми разделами биологии, и в то же время служит основой для многих биологических наук. Таким образом, важнейшее значение систематики в том, что она дает возможность ориентироваться во всем многообразии существующих и ископаемых организмов.

Попытки систематизирования (классификации) организмов были предприняты еще в античном мире Аристотелем и другими учеными древности, однако основы научной систематики были заложены лишь в конце XVII в. английским ученым Дж. Реем и развиты выдающимся шведским естествоиспытателем К. Линнеем в XVIII в. Все ранние системы, в том числе наиболее удачная из них система самого Линнея были искусственными, т. е. за их основу часто брали отдельные признаки, характеризующие лишь внешнее сходство (см. Конвергенция).

Учение Ч. Дарвина (см. Эволюционное учение) придало систематике новое, эволюционное содержание, и в дальнейшем главным направлением ее развития стало эволюционное, которое стремится наиболее полно отразить в естественной, или филогенетической, системе отношения между организмами, существующие в природе (см. Родословное древо, Филогенез).

Современная систематика использует для классификации и описания организмов не только частные признаки, например форму зубчиков листа растения или число лучей в спинном и других плавниках у рыб, но и различные особенности строения, экологии, поведения и т. п., характеризующие организмы. Чем полнее исследователи учитывают эти особенности, тем в большей мере сходство, выявляемое систематикой, отражает родство (общность происхождения) организмов, объединяемых в ту или иную группу (тот или иной таксон). Например, сходство летучей мыши и птицы (летающих теплокровных позвоночных) поверхностное: летучая мышь - млекопитающее, т. е. относится к другому классу. При сравнении птиц и млекопитающих с другими, более отдаленными в систематическом отношении организмами, из других типов, важны уже не различия, а общность плана их строения как позвоночных животных. Многие тропические лианы сходны между собой по ряду признаков (лазящие стебли, совпадение сроков цветения), хотя относятся к разным семействам, но и те и другие входят в класс двудольных растений.

Наиболее распространенным методом исследования в систематике остается сравнительно-морфологический, хотя современные систематики широко используют электронную микроскопию, биохимические, биофизические и другие методы. Изучение тонкой структуры хромосом привело к возникновению ка-риосистематики, а использование биохимических данных - к развитию хемосистемати-ки. Сравнительное изучение белков, ДНК и РНК у разных групп организмов позволяет дополнять и уточнять их систематические характеристики и взаимоотношения. Этими проблемами занимается еще одна современная отрасль систематики - геносистематика.

Изучение строения и развития любого живого объекта требует знания его положения относительно других организмов, а также их филогенетических отношений. Все большее значение приобретает изучение популяционной структуры вида. Знание ее незаменимо при проведении экологических, биогеографических и генетических исследований, поскольку во время таких работ в поле зрения исследователя находится много видов, принадлежащих к самым различным популяциям. Систематика ископаемых животных и растений тесно связана с палеонтологией. Знание систематики позволяет выявлять редкие и исчезающие виды животных и растений, поэтому она имеет большое значение для решения чрезвычайно важной проблемы - охраны живой природы. Главнейшая задача систематики - создание такой системы органического мира, которая бы наиболее полно отражала взаимоотношения между организмами.

Оказалось, что различия между прокариотами и эукариотами глубже, чем, например, между высшими животными и высшими растениями (те и другие - эукариоты). Прокариоты образуют в системе органического мира резко обособленную группу, которой придают ранг надцарства. В нее входят бактерии, в том числе цианобактерии и архебактерии (некоторые систематики разделяют прокариот на два самостоятельных надцарства - эубактерий и архебактерий).

Грибы выделены в отдельное царство. Окончательно пока не решен вопрос о том, к какому из двух основных царств эукариот ближе стоят грибы, поскольку группа эта разнородная.

Царства делят на подцарства, последние - на типы (у растений, бактерий и грибов - отделы). Типы (отделы) состоят из классов, классы - из отрядов (порядков). Отряды в свою очередь делят на семейства, состоящие из родов. Роды состоят из видов. Иногда выделяют в видах подвиды, но основной таксономической категорией является вид.

Для удобства (с практической точки зрения) основные таксономические категории часто дробят. Так, типы делят на подтипы, классы - на подклассы и т. д. Иногда основные категории укрупняют (надтипы, надклассы и т. д.).

Филогенетические схемы, изображающие систему органического мира, различны и зависят от точки зрения ученых, работающих в области систематики.

Если бы вас попросили описать вашу спальню, то вы, вероятно, не стали бы называть каждую отдельную вещь, так как это перечисление будет длиться довольно долго. Вместо этого вы, вероятно, упростили бы все это, группируя вещи по таким категориям, как книги, игрушки, Э, картины, мебель и так далее. Это наука, изучающая животного и растительного мира путем его классификации.

Для чего нужна систематика?

Представьте себе, можно ли описать город без использования различных категорий, таких, как автомобили, люди, здания, мосты и дороги? Вот для чего нужна систематика. Теперь попытайтесь представить себе ученого, у которого нет никакой возможности объединить все живые существа на планете. В биологии, систематика - изучающая и классифицирующая все живое на планете.

Два вида систематики

Существуют два близкородственных и перекрывающихся уровней классификации: таксономический (известный как система Линнея) и филогенетический.

  • Таксономические классификации групп живых существ на основе общих черт. Например, животных, которые откладывают яйца и имеют чешуйки, мы называем рептилиями, а животных, которые имеют живорожденных и мех или волосы, мы называем млекопитающими.
  • Филогенетические классификации используют таксономические названия и показавают, как группы организмов эволюционно связаны друг с другом. Например, гориллы более тесно связаны с людьми, чем с тараканами.

Систематика животных - изучающая и классифицирующая все биологическое Если провести аналогию с человеческими отношениями, то любое живое существо имеет имя (таксономическая классификация), а также определенную степень родства с другими организмами. Например, шимпанзе и макака будут, образно говоря, братьями, их дядей будет горилла, человек будет их дальним родственником, а вот с тараканом они и вовсе не будут знакомы (филогенез). Систематика растений - это наука, изучающая огромное разнообразие растительного мира.

Карл Линней - отец современной систематики

Что бы делали биологи без универсального способа группировки организмов? Это был бы настоящий хаос. За инструмент стоит благодарить Карла Линнея, также известного, как Карл фон Линней (1707-1778). Шведский ботаник, зоолог и врач рассматривается в современной науке как «отец систематики». Он был первым, кто последовательно использовал систему для классификации организмов на основе общих признаков. Его одновременно строгая и простая методология давала вполне научную обоснованность в области классификации.

Биологическое разнообразие

Систематика - это наука в биологии, изучающая ее огромное разнообразие живых существ, что является одной из определяющих черт мира природы. Эта научная дисциплина тесно связана с экологией и эволюционной биологией. Систематика - это наука, изучающая и рассматривающая, как формируются новые виды, как протекают те или иные экологические процессы, почему некоторые группы поддерживают невероятно широкий видовой диапазон, а некоторые организмы попросту вымирают.

Это связано с характеристиками различных организмов, которые позволяет дать детальное изучение конкретных групп. Систематика стремится понять историю жизни посредством филогенетических и генетических взаимоотношений живых существ. Оценка разнообразия и знание принципов и процедур этой дисциплины имеют важное значение в экологии, эволюционной и природоохранной биологии.

Систематика и филогенетическое дерево

Систематика - это наука, изучающая разнообразие живых организмов прошлого и настоящего, а также их отношения с течением времени, которые изображаются в виде филогенетических деревьев. Эволюционное древо делится на две части: первая известна как ветвление порядка, который показывает взаимоотношения организмов в пределах группы, вторая называется длиной ветви, определяющей период эволюции, через которые прошли организмы.

Значение

Систематика играет центральную роль в биологии, предоставляя средства для характеристики изучаемых организмов. Благодаря классификации, отражающей эволюционные отношения, появляется возможность предсказывать и проверять различные гипотезы. Филогенез может быть полезен для прогнозирования данных об истории жизни недостаточно хорошо изученных биологических групп.

Биологическая систематика изучает диверсификации всех живых форм прошлого и настоящего, а также отношения между ними. Дендрограммы видов и высших таксонов используются для изучения эволюционных признаков (например, анатомических или молекулярных характеристик) и показывают распределение организмов (биогеография). Систематика просто необходима для понимания эволюционной истории жизни на планете Земля.

Систематика растений – наука об их разнообразии. Ее задача – описание организмов, выявление сходства и различия, классификация и установление идентичных групп, родственных связей и эволюционных отношений.

Конечная цель - создание системы растений, в которой было бы определено постоянное местоположение каждого вида. Для этого необходимы единые методология и критерии.

Современная систематика строится на данных многих биологических наук. Теоретической основой ее является эволюционное учение.

В ботаническую систематику включают флористику, связанную с описанием растений, таксономию – разделение растений на сопряженные, соподчиненные группы (таксоны) и филогенетическую систематику - установление общности происхождения отдельных групп (категорий) растений – филогенез.

Важным разделом систематики является номенклатура – существующее название таксонов и система правил, регулирующих установленные названия.

Систематика позволяет ориентироваться в многообразии организмов, что необходимо для хозяйственной деятельности человека.

2 Методы систематики

Основной метод систематики – сравнительно - морфологический . Он основан на сравнении морфологических признаков растений, но этот метод дополняется и другими.

Сравнительно – анатомический, эмбриологический, онтогенетический – изучают сходство и различие в строении тканей, зародышевых мешков, особенности образования новых клеток, оплодотворения и развития зародыша, формирования органов.

Сравнительно - цитологический и кариологический – анализируют строение клеток, ядра (по числу и морфологии хромосом). Методы позволяют установить гибридную природу растений, изменчивость вида.

Палинологический – исследует строение оболочек спор и пыльцевых зерен растений. Анализ данных палеоботаники и геологии позволяет установить особенности древних флор.

Биохимический – изучает химический состав первичных и вторичных соединений. С биохимией связаны физиологические особенности: морозоустойчивость, засухоустойчивость, солеустойчивость и т.д.

Гибридологический – основан на изучении скрещивания растений разных групп, совместимости и несовместимости родительских пар, что позволяет установить родство.

Палеонтологический – может воссоздать по ископаемым остаткам эволюцию отдельных видов, историю их развития, дать материал для установления родства между крупными систематическими единицами: отделами, классами, порядками.

Выбор методов современной систематики определяется задачами и используется для выявления сходства и различия между таксонами (группами) и установление исторической последовательности их происхождения.

3 Разнообразие организмов

Для удобства изучения принято делить растения на две большие группы: низшие и высшие.

Высшие – более молодая группа. Это многоклеточные организмы, тело которых расчленено на органы (исключение составляют печеночные мхи). Органы полового размножения у них – многоклеточные. В половом органе – архегонии содержится одна половая клетка (яйцеклетка), в антеридии – много сперматозоидов. По количеству видов они превосходят низшие. По способу питания выделяются автотрофные и гетеротрофные растения.

Автотрофные – образуют органические вещества, необходимые для построения своего тела и жизненных процессов из углекислоты, воды и минеральных веществ.

По источникам энергии их делят на фотосинтетики – содержащие хлорофилл и образующие органические вещества при использовании световой энергии, и хемосинтетиков – безхлорофильные организмы, использующие энергию окисления минеральных веществ (сероводород, метан, аммиак, закисное железо и др.) для образования органического вещества.

2. Место высших растений в органическом мире.

3. Общая характеристика высших растений и их отличие от водорослей.

4. Происхождение высших растений.

5. Краткая история систематики растений.

6. Методы систематики растений.

1.Предмет, цели и задачи систематики высших растений.

Систематика высших растений – это раздел ботаники, который разрабатывает естественную классификацию высших растений на основе изучения и выделения таксономических единиц, устанавливает родственные связи между ними в их историческом развитии.

«Систематика, по определению Lawrence (1951) – это наука, которая включает о п р е д е л е н и е, н о м е н к л а т у р у и к л а с с и ф и к а ц и ю объектов, и обычно ограничивается объектами, если она ограничивается растениями, то часто называется систематической ботаникой».

    О п р е д е л е н и е – это сопоставление растений или таксона с другими и выявление идентичности или сходства его с уже известными элементами. В некоторых случаях может быть обнаружено, что растение является новым для науки;

    Н о м е н к л а т у р а – это выбор правильного научного названия известного всем растения в соответствии с системой номенклатуры; это своеобразная метка, к которой можно обращаться. Процесс наименования регулируется международно принятыми правилами, которые лежат в основе «Международного кодекса ботанической номенклатуры».

    К л а с с и ф и к а ц и я – это отнесение растения (или групп растений) к группам, или таксонам, которые принадлежат к различным категориям согласно особому плану или порядку; то есть кждый вид классифицируется как определенного рода, каждый род относить к определенному семейству и т.д. (Гербарное дело: Справочное руководство. Русское издание. Кью: Королевский ботанический сад, 1995).

Важнейшими понятиями систематики являются таксономические (систематические) категории и таксоны. Под таксономическими категориями подразумевают определенные ранги или уровни в иерархической классификации, полученные в результате последовательного подразделения абстрактного множества на подмножества.

Согласно правилам ботанической номенклатуры основными т а к с о –

н о м и ч е с к и м и к а т е г о р и я м и считаются: в и д (species ), р о д (genus ), семейство (familia ), порядок (ordo ), класс (classis ), отдел (devisio ), царство (regnum ) . При необходимости могут использоваться и промежуточные категории, например, подвид (subspecies ), родрод (subgenus ), подсемейство (subfamilia ), надпорядок (superordo ), надцарство (superregnum ).

В отличие от абстрактных таксономических категорий т а к с о н ы конкретны. Т а к с о н а м и принято называть реально существующие или существовавшие группы организмов. Которые в процессе классификации отнесены к определенным таксономическим категориям. Например, ранги р о- д а или в и д а являются т а к с о н о м и ч е с к и м и к а т е г о р и я м и, а род лютик (Ranunculus ) и вид лютик едкий (Ranunculus acris ) – два конкретных таксона. Первый таксон охватывает все существующие виды рода лютик, второй – все особи, относимые к виду лютик едкий.

Научные названия всех таксонов, относящихся к таксономическим категориям выше вида, состоят из одного латинского слова, т.е. у н и н о м и -н а л ь н ы е. Для видов, начиная с 1753 г. – даты выхода в свет книги К. Линнея «Виды растений» – приняты б и н о м и н а л ь н ые н а з в а н и я, состоящие из двух латинских слов. Первое обозначает род, к которому относится данный вид, второе – видовой эпитет: например ольха клейкая – Alnus glutinosa , смородина черная – Ribes migrum , клевер луговой – Trifolium pratense . Принятое в ботанике правило давать видам растений двойные названия известно как б и н а р н а я н о м е н к л а т у р а. Введение бинарной номенклатуры – одна из заслуг Карла Линнея.

У н и н о м и н а л ь н ы е н а з в а н и я имеют обычно определенные окончания, позволяющие устанавливать, к какой таксономической категории относится данный таксон. Для семейтсв растений принято окончание – aceae , для порядков – ales , для подклассов – idae , для классов – psida , для отделов – phyta . В основу стандартного униноминального названия кладется название какого-либо рода, включаемого в это семейство, порядок, класс и т.д. Например, названия семейства Magnoliaceae , порядка Magnoliales , подкласса Magnoliidae , класса Magnoliopsida и отдела Magnoliophyta происходят от рода Magnolia . Для таксонов высоких рангов (класс, отдел и т.д.) допускается употребление давно установившихся названия, не имеющих перечисленных выше окончаний. Так, классы покрытосеменных растений – двусемядольные –Magnoliopsida и односемядольные –Liliopsida могут называться Dicotyledones и Monocotyledones , а покрытосеменные – Magnoliopsida , или Angiospermae .

«Кодекс международной ботанической номенклатуры» для ряда семейств допускает использование на равных основаниях альтернативных (т.е. с правом выбора) названий, давно закрепившихся в научной литературе. В частности, семейство пальмы можно с равным правом называть либо Areca - ceae (от Areca ), либо Palmae ; крестоцветные –Brassicaceae (от Brassica ), либо Cruciferae ; бобовые – Leguminosae , либо Fabaceae (от Faba ) и т.д. Строгих и общепринятых праквил, регламентирующих русские названия видов и таксонов более высокого ранга, не существует.

Ученый, впервые описавший таксон, является его автором. Фамилия автора помещается после латинского названия таксона обычно в сокращенной форме. Например, буква L . указывает на авторство Линнея (Linneus), ДС. – Декандолля (De Candolle), Bge. – Бунге (Bunge), Com. – В.Л. Комарова и т.д. В научных работах авторство таксонов считается обязательным, в учебниках и популярных изданиях их нередко опускают.

Цель систематики высших растений – дать целостное представление об историческом развитии высших растений на основе родственных связей между ними, охарактеризовать их в научном и практическом отношениях.

Задачи систематики высших растений как учебного курса заключаются в том, чтобы

    о п р е д е л и т ь место высших растений в органическом мире, отличие их от водорослей;

    р а с с м о т р е т ь краткую историю развития систематики высших растений, методы исследований в систематике высших растений;

    о х а р а к т е р и з о в а т ь вегетативные и репродуктивные органы высших растений отдельных таксонов; происхождение и филогенетические связи между ними; различные взгляды на происхождение высших растений и их таксонов; значение высших растений в природе и жизни человека; вопросы рационального использования и охраны высших растений.

    Место высших растений в органическом мире.

Современная наука об органическом мире делит живые организмы на два н а д ц а р с т в а: доядерные организмы (Procariota ) и ядерные организмы (Eucariota ). Надцарство доядерных организмов представлено одним ц а р с т в о м – дробянки (Mychota ) с двумя п о д ц а р с т в а м и: бактерии (Bacteriobionta ) и цианотеи , или сине-зеленые водоросли (Cyanobionta ) .

Надцарство ядерных организмов включает три ц а р с т в а: животные (Animalia ), грибы (Mycetalia , Fungi , или Mycota ) и растения (Vegetabilia , или Plantae ) .

Царство животных делится на два п о д ц а р с т в а: простейшие животные (Protozoa ) и многоклеточные животные (Metazoa ).

Царство грибов подразделяется на два п о д ц а р с т в а: низшие грибы (Myxobionta ) и высшие грибы (Mycobionta ).

Царство растений включает три п о д ц а р с т в а: багрянки (Rhodobionta ), настоящие водоросли (Phycobionta ) и высшие растения (Embryobionta ).

Таким образом, предметом систематики высших растений являются высшие растения, которые входят в состав подцарства высших растений, царства растений, надцарства ядерных организмов.