» » Экосистемы их структура и организация. Принципы функционирования экосистем

Экосистемы их структура и организация. Принципы функционирования экосистем

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Для изучения основных законов функционирования биосферы, принципов взаимодействия её составляющих, передачи энергии, информации и биомассы, удобно рассматривать биосферу на экосистемном уровне, т.е. - определяя экосистему, как элементарную единицу биосферы. Экологические системы разных уровней представляют собой основные функциональные единицы биосферы. Эти надорганизменные объединения включаю организмы и неживое (косное) окружение, находящиеся во взаимодействии, без которого невозможно поддержание жизни на нашей планете.

Человечеству, как элементу биосферы, наиболее интенсивно увеличивающему своё воздействие на неё, необходимо глубоко изучить законы организации и функционирования экосистем и биосферы в целом, дабы избежать губительного воздействия и уберечь от гибели и планету и самих себя.

1. Понятие экосистемы

Понятие экосистемы было предложено английским учёным А. Тенсли в 1935 году. Он определил экосистему как одну из физических систем, в которую входит комплекс организмов, или биом, и весь комплекс физических факторов, составляющих среду биома, причём организмы и факторы неорганической среды являются равноправными и неразрывно связанными участниками экосистемы. Тенсли не был единственным учёным задумавшемся о необходимости рассматривать живую и абиотическую среды как единое целое. В 1944 году русский учёный В.Н. Сукачёв предложил понятие «биогеоценоз». Биогеоценоз - совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий). Имеющая свою особую специфику взаимодействия слагающих её компонентов и определённый тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии. Понятия крайне сходны по своему значению, однако основным отличием экосистемы биогеоценоза является то, что экосистема не имеет определённого объёма. Тем не менее, в экологической литературе зачастую приравнивают данные понятия. Если не брать в расчёт, определённость объёмов биогеоценоза, идея о том, что экосистема есть совокупность биоценоза и геоценоза, т.е. и живого и неживого достаточно показательна.

2. Структура экосистемы

Несмотря на то, что экосистему принимают за элементарную единицу биосферы, по своей структуре экосистема представляет собой крайне сложный и многокомпонентный механизм. Популяции разных видов всегда образуют в биосфере Земли сложные сообщества - биоценозы. Биоценоз - совокупность растений, животных, грибов и простейших, населяющих участок суши или водоёма и находящихся в определённых отношениях между собой. Биоценозы вместе с занимаемыми ими конкретными участками земной поверхности и прилежащей атмосферой и называют экосистемами. Они могут быть разного масштаба - от капли воды или муравьиной кучи до экосистемы острова, реки, континента и всей биосферы в целом. Таким образом, экосистема - взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергии. Ведущая активная роль в процессах взаимодействия компонентов экосистемы принадлежит живым существам, т.е. биоценозу. Компоненты биоценоза тесно связаны и взаимодействуют с литосферой, атмосферой, гидросферой. В результате на поверхности Земли образуется ещё один элемент экосистем - почва (педосфера).

Понятие экологической системы иеpаpхично. Это означает, что всякая экологическая система определенного уровня включает в себя ряд экосистем предыдущего уровня, меньших по площади и сама она, в свою очередь, является составной частью более крупной экосистемы. В качестве элементарной экосистемы можно представить себе кочку или мочажину на болоте, а более общей экосистемой, охватывающей множество аласов и межаласные пpостpанства, явиться соответствующая залесенная поверхность теppасы или пенеплена. Продолжая этот ряд вверх можно подойти к экологической системе Земли - биосфере, а двигаясь вниз - к биогеоценозу, как элементарной биохорологической (хора - пространство, гр.) единице биосферы. Учитывая решающее значение на развитие живого вещества Земли зональных факторов, пpавомеpно представить себе такой теppитоpиальный ряд соподчиненных экосистем:

элементарные > локальные > зональные > глобальные.

Все группы экосистем - продукт совместного исторического развития видов, различающихся по систематическому положению; виды при этом приспосабливаются друг к другу. Первичной основой для сложения экосистем служат растения и бактерии - продуценты органического вещества (атмосферы). В ходе эволюции до заселения растениями и микроорганизмами определённого пространства биосферы не могло быть и речи о заселении его животными.

Популяции разных видов в экосистемах воздействуют друг на друга по принципу прямой и обратной связи. В целом существование экосистемы регулируется в основном силами, действующими внутри системы. Автономность и саморегуляция экосистемы определяет его особое положение в биосфере как элементарной единицы на экосистемном уровне.

Экосистемы, образующие в совокупности биосферу нашей планеты, взаимосвязаны круговоротом веществ и потоком энергии. В этом круговороте жизнь на Земле выступает как ведущий компонент биосферы. Обмен веществ между соединёнными экосистемами может осуществляться в газообразной, жидкой и твёрдой фазах, а также в форме живого вещества (миграция животных).

Чтобы экосистемы функционировали долго и как единое целое, они должны обладать свойствами связывания и высвобождения энергии, круговоротом веществ. Экосистема также должна иметь механизмы, позволяющие противостоять внешним воздействиям.

Существуют различные модели организации экосистем.

1. Блоковая модель экосистемы. Каждая экосистема состоит из 2 блоков: биоценоз и биотоп. Биогеоценоз, по В.Н. Сукачеву, включает блоки и звенья. Это понятие, как правило, применяют к сухопутным системам. В биогеоценозах обязательно наличие как основного звена - растительного сообщества (луг, степь, болото). Существуют экосистемы без растительного звена. Например, те, которые формируются на базе разлагающихся органических остатков, трупов животных. В них достаточно лишь присутствие зооценоза и микробиоценоза.

2. Видовая структура экосистем. Под ней понимают количество видов, которые образуют экосистему, и соотношение их численностей. Видовое разнообразие исчисляется сотнями и десятками сотен. Оно тем значительнее, чем богаче биотоп экосистемы. Самыми богатыми по видовому разнообразию являются экосистемы тропических лесов. Богатство видов зависит и от возраста экосистем. В сформировавшихся экосистемах обычно выделяется один или 2 - 3 вида явно преобладающих по численности особей. Виды, которые явно преобладают по численности особей, - доминантные (от лат. dom-inans - «господствующий»). Также в экосистемах выделяются виды - эдификаторы (от лат. aedifica-tor - «строитель»). Это те виды, которые являются образователями среды (ель в еловом лесу наряду с доминантностью имеет высокие эдификаторные свойства). Видовое разнообразие - важное свойство экосистем. Разнообразие обеспечивает дублирование ее устойчивости. Видовую структуру используют для оценки условий местопроизрастания по растениям-индикаторам (лесная зона - кислица, она указывает на условия увлажнения). По растениям-эдификаторам или доминантам и растениям-индикаторам называют экосистемы.

3. Трофическая структура экосистем. Цепи питания. Каждая экосистема включает в себя несколько трофических (пищевых) уровней. Первый - растения. Второй - животные. Последний - микроорганизмы и грибы.

С точки зрения трофической структуры экосистему можно разделить на два яруса:

1) Верхний автотрофный ярус, или «зелёный пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органических соединений.

2) Нижний гетеротрофный ярус, или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т.д., в котором преобладают использование, трансформация и разложение сложных соединений.

При этом важно понимать, что живые организмы в «зелёном» и «коричневом» поясах будут различаться. В верхнем ярусе будут преобладать насекомые и птицы, питающиеся листвой и, например, почками. В нижнем же ярусе, будут преобладать микроорганизмы и бактерии разлагающие органику и неорганику. Также в этом поясе будет значительное количество крупных животных.

С другой стороны, если говорить о переносе питательного вещества и энергии, в составе экосистемы удобно выделять следующие компоненты:

1) Неорганические вещества (C, N, CO2, H2O и др.), включающиеся в круговороты.

2) Органические соединения (белки, углеводы, липиды, гумусовые вещества и т.д.) связывающие биотическую и абиотическую части.

3) Воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы.

4) Продуцентов, автотрофных организмов, в основном зелёные растения, которые могут производить пищу из простых неорганических веществ

5) Макроконсументов, или фаготрофов - гетеротрофных организмов, в основном животных, питающихся другими организмами или частицами органического вещества.

6) Микроконсументов, сапротрофов, деструкторов, или осмотрофов - гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путём разложения мёртвых тканей, либо путём поглощения растворённого органического вещества, выделяющегося самопроизвольно или извлечённого сапротрофами из растений и других организмов. В результате деятельности сапротрофов высвобождаются неорганические элементы питания, пригодные для продуцентов; кроме того, сапротрофы поставляют пищу макроконсументам и часто выделяют гормоноподобные вещества, ингибирующие или стимулирующие функционирование других биотических компонентов экосистемы.

Одна из общих черт всех экосистем, будь то наземные, пресноводные, морские или искусственные экосистемы (например, сельскохозяйственные), - это взаимодействие автотрофных и гетеротрофных компонентов. Организмы, участвующие в различных процессах круговорота, частично разделены в пространстве; автотрофные процессы наиболее активно протекают в верхнем ярусе («зелёном поясе»), где доступен солнечный свет. Гетеротрофные процессы наиболее интенсивно протекают в нижнем ярусе («коричневом поясе»), где в почвах и осадках накапливается органическое вещество. Кроме того, эти основные функции компонентов экосистемы частично разделены и по времени, поскольку возможен значительный временной разрыв между продуцированием органического вещества автотрофными организмами и его потреблением гетеротрофами. Например, основной процесс в пологе лесной экосистемы - фотосинтез.

экосистема гетеротрофный беогеоценоз

Заключение

Таким образом, при детальном изучении принципов организации экосистем, становится понятно, что не стоит пренебрегать ролью даже крошечных её составляющих. Даже незначительное изменение состава живой и неживой природы в одной экосистеме может повлечь за собой необратимые изменения, причём не только в данной, но и в соседствующих экосистемах, так как данная система является открытой.

Именно этот фактор должен быть определяющим при разработке месторождений полезных ископаемых и строительстве новых городов. Знание законов функционирования биосферы позволит сделать природопользование и рациональным и безопасным, как для человека, так и для окружающей среды.

Список использованной литературы

1. «Биологическая экология»/ Степановских А.С., М., 2009, 791с.

2. «Каталог биосферы»/ М., 1991, 254с.

3. «Экология»/ Дре Ф., М., 1976, 164с.

4. «Экология»/ Одум Ю., М., 1986, Т.1- 328с.; Т.2 - 376с.

Размещено на Allbest.ru

Подобные документы

    История, концепция и понятие "экосистемы" (биогеоценоза). Ее основные компоненты, строение и механизмы функционирования. Пространственные, временные границы и ранжирование экосистемы (хорологический аспект). Искусственные экосистемы, созданные человеком.

    презентация , добавлен 01.02.2012

    Географическое положение степной экосистемы Евразии, особенности ее геологической структуры. Характеристика всех компонентов живой и неживой природы, продуктивность экосистемы, описание почв. Использование живых и неживых ресурсов данной системы.

    реферат , добавлен 22.04.2015

    Рассмотрение основных источников воздействия на экосистемы Байкальска, Слюднки, Улан-Удэнского, Иркутско-Черемховского и Северобайкальского промышленных узлов. Вопросы государственного регулирования охраны озера Байкал и задачи сохранения его экосистемы.

    реферат , добавлен 02.04.2014

    Понятие экологической системы как совокупности популяций различных видов растений, животных и микробов, взаимодействующих между собой и окружающей их средой. Наземные экосистемы, их роль в жизни человека. Особенности и факторы пресноводных местообитаний.

    презентация , добавлен 27.04.2014

    Описание пищевых цепей, регулирование численности популяций. Современная классическая экология. Основные компоненты экосистемы. Функциональные блоки организмов. Сущность терминов биосфера, биоценоз, биотоп, эдафотоп, климат, экотоп. Биомасса экосистемы.

    презентация , добавлен 27.03.2016

    Определение понятий биогеоценоза и экосистемы. Основные свойства биогеоценоза, механизмы его устойчивости. Приспособление организмов к совместной жизни. Виды биогеоценотических связей: симбиоз, мутуализм, нахлебничество, квартиранство и сотрапезничество.

    презентация , добавлен 06.03.2014

    Живое вещество как основа биосферы. Свойства и функции экосистемы. Системы взглядов на существование биосферы: антропоцентрическая и биоцентрическая. Виды загрязнения окружающей среды. Способы защиты окружающей среды. Внебюджетные экологические фонды.

    лекция , добавлен 20.07.2010

    Структурно-функциональная схема северо-западной водной экосистемы. Источники поступления биогенных элементов. Морфология озёрных котловин. Имитационное моделирование экосистемы проточного водоема. Абиотические и биотические компоненты в речном стоке.

    дипломная работа , добавлен 19.11.2017

    Научные подходы к определению критических границ антропогенной нагрузки на водные экосистемы. Загрязнение водных экосистем как критерий антропогенной нагрузки. Формирование экономического механизма нормирования антропогенной нагрузки на водные экосистемы.

    контрольная работа , добавлен 27.07.2010

    Понятие экологической системы. Структура биогеоценоза, отличие биогеоценоза от экосистемы. Воздействие экологических факторов на живой организм. Диапазон действия экологического фактора. Понятие предельно допустимой концентрации. Продуценты и консументы.

Несмотря на то, что экосистему принимают за элементарную единицу биосферы, по своей структуре экосистема представляет собой крайне сложный и многокомпонентный механизм. Популяции разных видов всегда образуют в биосфере Земли сложные сообщества - биоценозы. Биоценоз - совокупность растений, животных, грибов и простейших, населяющих участок суши или водоёма и находящихся в определённых отношениях между собой. Биоценозы вместе с занимаемыми ими конкретными участками земной поверхности и прилежащей атмосферой и называют экосистемами. Они могут быть разного масштаба - от капли воды или муравьиной кучи до экосистемы острова, реки, континента и всей биосферы в целом. Таким образом, экосистема - взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергии. Ведущая активная роль в процессах взаимодействия компонентов экосистемы принадлежит живым существам, т.е. биоценозу. Компоненты биоценоза тесно связаны и взаимодействуют с литосферой, атмосферой, гидросферой. В результате на поверхности Земли образуется ещё один элемент экосистем - почва (педосфера).

Понятие экологической системы иеpаpхично. Это означает, что всякая экологическая система определенного уровня включает в себя ряд экосистем предыдущего уровня, меньших по площади и сама она, в свою очередь, является составной частью более крупной экосистемы. В качестве элементарной экосистемы можно представить себе кочку или мочажину на болоте, а более общей экосистемой, охватывающей множество аласов и межаласные пpостpанства, явиться соответствующая залесенная поверхность теppасы или пенеплена. Продолжая этот ряд вверх можно подойти к экологической системе Земли - биосфере, а двигаясь вниз - к биогеоценозу, как элементарной биохорологической (хора - пространство, гр.) единице биосферы. Учитывая решающее значение на развитие живого вещества Земли зональных факторов, пpавомеpно представить себе такой теppитоpиальный ряд соподчиненных экосистем:

элементарные > локальные > зональные > глобальные.

Все группы экосистем - продукт совместного исторического развития видов, различающихся по систематическому положению; виды при этом приспосабливаются друг к другу. Первичной основой для сложения экосистем служат растения и бактерии - продуценты органического вещества (атмосферы). В ходе эволюции до заселения растениями и микроорганизмами определённого пространства биосферы не могло быть и речи о заселении его животными.

Популяции разных видов в экосистемах воздействуют друг на друга по принципу прямой и обратной связи. В целом существование экосистемы регулируется в основном силами, действующими внутри системы. Автономность и саморегуляция экосистемы определяет его особое положение в биосфере как элементарной единицы на экосистемном уровне.

Экосистемы, образующие в совокупности биосферу нашей планеты, взаимосвязаны круговоротом веществ и потоком энергии. В этом круговороте жизнь на Земле выступает как ведущий компонент биосферы. Обмен веществ между соединёнными экосистемами может осуществляться в газообразной, жидкой и твёрдой фазах, а также в форме живого вещества (миграция животных).

Чтобы экосистемы функционировали долго и как единое целое, они должны обладать свойствами связывания и высвобождения энергии, круговоротом веществ. Экосистема также должна иметь механизмы, позволяющие противостоять внешним воздействиям.

Существуют различные модели организации экосистем.

  • 1. Блоковая модель экосистемы. Каждая экосистема состоит из 2 блоков: биоценоз и биотоп. Биогеоценоз, по В.Н. Сукачеву, включает блоки и звенья. Это понятие, как правило, применяют к сухопутным системам. В биогеоценозах обязательно наличие как основного звена - растительного сообщества (луг, степь, болото). Существуют экосистемы без растительного звена. Например, те, которые формируются на базе разлагающихся органических остатков, трупов животных. В них достаточно лишь присутствие зооценоза и микробиоценоза.
  • 2. Видовая структура экосистем. Под ней понимают количество видов, которые образуют экосистему, и соотношение их численностей. Видовое разнообразие исчисляется сотнями и десятками сотен. Оно тем значительнее, чем богаче биотоп экосистемы. Самыми богатыми по видовому разнообразию являются экосистемы тропических лесов. Богатство видов зависит и от возраста экосистем. В сформировавшихся экосистемах обычно выделяется один или 2 - 3 вида явно преобладающих по численности особей. Виды, которые явно преобладают по численности особей, - доминантные (от лат. dom-inans - «господствующий»). Также в экосистемах выделяются виды - эдификаторы (от лат. aedifica-tor - «строитель»). Это те виды, которые являются образователями среды (ель в еловом лесу наряду с доминантностью имеет высокие эдификаторные свойства). Видовое разнообразие - важное свойство экосистем. Разнообразие обеспечивает дублирование ее устойчивости. Видовую структуру используют для оценки условий местопроизрастания по растениям-индикаторам (лесная зона - кислица, она указывает на условия увлажнения). По растениям-эдификаторам или доминантам и растениям-индикаторам называют экосистемы.
  • 3. Трофическая структура экосистем. Цепи питания. Каждая экосистема включает в себя несколько трофических (пищевых) уровней. Первый - растения. Второй - животные. Последний - микроорганизмы и грибы.

С точки зрения трофической структуры экосистему можно разделить на два яруса:

  • 1) Верхний автотрофный ярус, или «зелёный пояс», включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света, использование простых неорганических соединений и накопление сложных органических соединений.
  • 2) Нижний гетеротрофный ярус, или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т.д., в котором преобладают использование, трансформация и разложение сложных соединений.

При этом важно понимать, что живые организмы в «зелёном» и «коричневом» поясах будут различаться. В верхнем ярусе будут преобладать насекомые и птицы, питающиеся листвой и, например, почками. В нижнем же ярусе, будут преобладать микроорганизмы и бактерии разлагающие органику и неорганику. Также в этом поясе будет значительное количество крупных животных.

С другой стороны, если говорить о переносе питательного вещества и энергии, в составе экосистемы удобно выделять следующие компоненты:

  • 1) Неорганические вещества (C, N, CO2, H2O и др.), включающиеся в круговороты.
  • 2) Органические соединения (белки, углеводы, липиды, гумусовые вещества и т.д.) связывающие биотическую и абиотическую части.
  • 3) Воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы.
  • 4) Продуцентов, автотрофных организмов, в основном зелёные растения, которые могут производить пищу из простых неорганических веществ
  • 5) Макроконсументов, или фаготрофов - гетеротрофных организмов, в основном животных, питающихся другими организмами или частицами органического вещества.
  • 6) Микроконсументов, сапротрофов, деструкторов, или осмотрофов - гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путём разложения мёртвых тканей, либо путём поглощения растворённого органического вещества, выделяющегося самопроизвольно или извлечённого сапротрофами из растений и других организмов. В результате деятельности сапротрофов высвобождаются неорганические элементы питания, пригодные для продуцентов; кроме того, сапротрофы поставляют пищу макроконсументам и часто выделяют гормоноподобные вещества, ингибирующие или стимулирующие функционирование других биотических компонентов экосистемы.

Одна из общих черт всех экосистем, будь то наземные, пресноводные, морские или искусственные экосистемы (например, сельскохозяйственные), - это взаимодействие автотрофных и гетеротрофных компонентов. Организмы, участвующие в различных процессах круговорота, частично разделены в пространстве; автотрофные процессы наиболее активно протекают в верхнем ярусе («зелёном поясе»), где доступен солнечный свет. Гетеротрофные процессы наиболее интенсивно протекают в нижнем ярусе («коричневом поясе»), где в почвах и осадках накапливается органическое вещество. Кроме того, эти основные функции компонентов экосистемы частично разделены и по времени, поскольку возможен значительный временной разрыв между продуцированием органического вещества автотрофными организмами и его потреблением гетеротрофами. Например, основной процесс в пологе лесной экосистемы - фотосинтез.

экосистема гетеротрофный беогеоценоз

Экосистема (биогеоценоз) – совокупность разных организмов и неживых компонентов среды, тесно связанных между собой потоками вещества и энергии.

Главным предметом исследования при экосистемном подходе в экологии становятся процессы трансформации вещества и энергии между биотопом и биоценозом, то есть возникающий биогеохимический круговорот веществ в экосистеме в целом.

К экосистемам можно отнести биотические сообщества любого масштаба со средой их обитания (например, от лужи до мирового океана, от гнилого пня до обширного лесного массива тайги).

В связи с этим выделяют уровни экосистем

Уровни экосистем:

1. микроэкосистемы (трухлявый пень с насекомыми, микроорганизмами и грибами, обитающими в нём; цветочный горшок);

2. мезоэкосистемы (пруд, озеро, степь и др.);

3. макроэкосистемы (континент, океан);

4. глобальная экосистема (биосфера Земли).

Экосистема – целостная система, в состав которой входят биотические компоненты и абиотические. Они взаимодействуют между собой. Все экосистемы являются открытыми системами и функционируют, потребляя солнечную энергию.

Абиотические компоненты включают неорганические вещества, которые включаются в круговороты, органические соединения, которые связывают биотическую и абиотическую часть: воздушную, водную, субстратную среду.

Биотические компоненты экосистемы имеют видовую, пространственную и трофическую структуру.

Пространственная структура экосистемы проявляется в ярусности: автотрофные процессы наиболее активно протекают в верхнем ярусе – «зеленом поясе», где доступен солнечный свет. Гетеротрофные процессы наиболее интенсивны для нижнего яруса. – «коричневого пояса». Здесь в почвах и осадках накапливаются органические вещества.

Трофическая структура экосистемы представлена продуцентами – производителями органического вещества и консументами – потребителями органического вещества, а также редуцентами – разрушающими органические соединения до неорганических. Экосистема может обеспечить круговорот вещества только в том случае, если включает необходимые для этого четыре составные части: запасы биогенных элементов, продуценты, консументы и редуценты. Продуценты – автотрофы, консументы – геторотрофы. Гетеротрофы делятся на фаготрофы (питаются другими организмами) и сапрофиты, деструкторы (бактерии и грибы, разлагающие мертвые ткани).

В любой экосистеме происходит взаимодействие автотрофных и гетеротрофных компонентов в процессе круговорота веществ. Вещество и энергия на каждом этапе трофической цепи теряется до 90%, только 10 % переходит к очередному потребителю (правило 10 процентов). Скорость создания органического вещества в экосистемах – биологическая продукция, зависит от энергии Солнца. Биологическая продукция экосистем – это скорость создания в них биомассы. Продукция растений первичная, животных – вторичная. В любом биоценозе продукция каждого трофического уровня меньше предыдущего в 10 раз. Биомасса растений больше биомассы травоядных, масса хищников в 10 раз меньше массы травоядных (правило пирамиды биологической продукции). В океанах одноклеточные водоросли делятся с большей скоростью и дают высокую продукцию. Но их общее количество меняется мало, потому что с меньшей скоростью их поедают фильтраторы. Водоросли еле успевают размножаться, чтобы выжить. Рыбы, головоногие моллюски, крупные ракообразные растут и размножаются медленнее, но еще медленнее поедаются врагами, поэтому их биомасса накапливается. Если взвесить все водоросли и всех животных океана, то последние перевесят. Пирамида биомасс в океане оказывается перевернутой. В наземных экосистемах скорость выедания растительного прироста ниже и пирамида биомасс напоминает пирамиду продукции. Наименее продуктивные экосистемы жарких и холодных пустынь и центральных частей океанов. Среднюю продукцию дают леса умеренного пояса, луга и степи. Самый высокий прирост растительной массы – в тропических лесах, на коралловых рифах в океане.


1. Взаимосвязи в экосистеме

Экологические взаимодействия популяций и отдельных организмов в экосистеме носят вещественно-энергетический и информационный характер. Прежде всего, это трофические (пищевые) взаимодействия, которые приобретают разные формы: травоядность – фитофагия; плотоядность – зоофагия, поедание одними животными других, включая и хищничество.

Популяции травоядных, хищных и всеядных животных являются потребителями органического вещества – консументами, которые могут быть первичными, вторичными, третичными. Растения – продуценты.

Одними из наиболее исследованных экологических связей являются между популяциями хищника и жертвы. Хищничество - это способ добывания пищи и питания животных. Значение хищников для популяции жертвы положительно, т.к. хищники в первую очередь истребляют больных и слабых особей. Это способствует сохранению видового разнообразия, т.к. регулирует численность популяций низких трофических уровней.

Симбиоз (мутуализм ). Почти все виды деревьев сожительствуют с микрозными грибами. Грибной мицелий оплетает тонкие участки корней, проникает в межклеточное пространство. Масса тончайших грибных нитей выполняет функцию корневых волосков, насасывая питательный почвенный раствор.

Конкуренция – еще один вид взаимоотношений. Закономерности конкурентных отношений называются – принцип конкурентного исключения: два вида не могут устойчиво существовать в ограниченном пространстве, если рост численности лимитирован одним жизненно важным ресурсом.

Если совместно живущие виды связаны только через цепь других видов и не взаимодействуют, уживаясь в одном сообществе, то их отношения называют нейтральными. Синицы и мыши в одном лесу нейтральные виды.

протокооперация (содружество)

Комменсализм (один извлекает пользу)

Аменсализм (один вид угнетает рост другого)

1. Энергетические потоки в экосистеме

Природные экосистемы – это открытые системы: они должны получать и отдавать вещества и энергию.

Внутри экосистем происходит непрерывный круговорот вещества и энергии. Стадии этого круговорота обеспечиваются различными группами организмов, выполняющих различные функции:

1. Продуценты (от лат. producentis – производящий, создающий) организмы, образующие органические вещества из неорганических. В первую очередь, это растения, создающие в процессе фотосинтеза из воды и углекислого газа глюкозу, используя энергию солнца.

а) в океане и других водоёмах продуцентами являются микроскопические водоросли

фитопланктон , а также крупные водоросли.

б) на суше – это крупные высшие растения (деревья, кустарники, травы).

2. Консументы (от лат. consume – потребляю) – организмы, живущие за счёт органического вещества, созданного продуцентами. К консументам относят всех животных, поедающих растения и друг друга.

а) консументы I порядка – фитофаги (травоядные животные – копытные, грызуны, некоторые насекомые);

б) консументы II порядка – плотоядные животные (насекомоядные птицы и млекопитающие, амфибии, рыбы);

в)консументы III порядка – крупные хищники (хищные рыбы, птицы, млекопитающие).

3. Редуценты (от лат. reducentis – возвращающий, восстанавливающий) – организмы, получающие энергию путём разложения отмершей органики (детрита ), при этом редуценты высвобождают неорганические элементы для питания продуцентов. К ним относят бактерии, грибы.

В результате взаимодействия этих групп организмов происходит круговорот вещества и энергии в экосистеме

Основные компоненты экосистемы. Экосистемы представляют собой элементарную функциональную единицу живой природы, в которой осуществляются взаимодействия между всеми ее компонентами, происходит круговорот веществ и энергии. В состав экосистемы входят неорганические вещества (C, N, CO 2 , H 2 O и др.), которые включаются в круговорот, и органические соединения (белки, углеводы, жиры и др.), связывающие биотическую (живую) и абиотическую (неживую) ее части. Для каждой экосистемы характерна определенная среда (воздушная, водная, наземная), включающая климатический режим и определенный набор параметров физической среды (температуру, влажность и т. п.). По роли, которую выполняют организмы в экосистеме, их подразделяют на три группы:

продуценты – автотрофные организмы, главным образом зеленые растения, которые способны создавать органические вещества из неорганических;

консументы – гетеротрофные организмы, преимущественно животные, которые питаются другими организмами или частичками органического вещества;

редуценты – гетеротрофные организмы, преимущественно бактерии и грибы, обеспечивающие разложение органических соединений.

Окружающая среда и живые организмы взаимосвязаны процессами циркуляции вещества и энергии.

Продуценты улавливают солнечный свет и переводят его энергию в энергию химических связей синтезируемых ими органических соединений. Консументы, поедая продуцентов, разрывают эти связи и используют высвобождающуюся при этом энергию для построения своего собственного тела. Редуценты ведут себя аналогичным образом, но в качестве источника пищи используют либо мертвые тела, либо продукты, выделяющиеся в процессе жизнедеятельности организмов. При этом редуценты разлагают сложные органические молекулы до простых неорганических соединений – углекислого газа, окислов азота, воды, солей аммиака и т. д. В результате они возвращают в окружающую среду вещества, изъятые из нее растениями, и эти вещества могут вновь утилизироваться продуцентами. Цикл замыкается. Надо заметить, что все живые существа в определенной степени являются редуцентами. В процессе метаболизма они извлекают необходимую им энергию при расщеплении органических соединений, выделяя в качестве конечных продуктов углекислый газ и воду.

В экосистемах живые компоненты выстраиваются в цепочки (пищевые или трофические(*) цепи), в которых каждое предыдущее звено служит пищей для последующего. Каждое такое звено представляет собой определенный трофическийуровень, поскольку находящиеся на нем организмы получают энергию через одинаковое число посредников. В основании трофической цепи находятся продуценты, которые из неорганического вещества и энергии света создают живое вещество – первичную биомассу . Второе звено составляют потребляющие эту первичную биомассу животные-фитофаги – это консументы первого порядка. Они, в свою очередь, служат пищей для организмов, составляющих следующий трофический уровень – консументов второго порядка. Далее идут консументы третьего порядка и т. д. Приведем пример простой цепи:

А вот пример более сложной цепи:

В естественных экосистемах пищевые цепи не изолированы одна от другой, а тесно переплетены. Они формируют пищевые сети, принцип образования которых заключается в том, что каждый продуцент может служить пищей не одному, а многим животным-фитофагам, которые, в свою очередь, могут быть съедены разными видами консументов второго порядка и т. д.

Пищевые сети составляют каркас экосистем, и нарушения в них могут приводить к непредсказуемым последствиям. Особенно ранимыми оказываются экосистемы с относительно простыми пищевыми цепями, т. е. те, в которых круг объектов питания конкретного вида узок (например, многие экосистемы Арктики). Выпадение одного из звеньев может повлечь за собой распад всей трофической сети и деградацию экосистемы в целом.

Наглядным примером сложности связей между организмами в экосистемах могут послужить те неожиданные последствия, к которым привела попытка борьбы с малярией на Калимантане (один из островов Индонезии) в 50-х годах XX в. Чтобы уничтожить малярийного комара (переносчика возбудителя малярии), остров стали опрыскивать инсектицидом ДДТ, содержащим хлорорганические соединения. Комары, как и ожидалось, погибли, однако возникли осложнения. ДДТ попал и в организм тараканов, которые оказались более стойкими к нему. Тараканы не погибали, но становились такими медлительными, что в значительно больших, чем обычно, количествах поедались ящерицами. Попавший вместе с тараканами в организм ящериц инсектицид вызывал у них нервные расстройства и ослабление рефлексов. Поэтому ящерицы становились легкой добычей кошек, и их численность резко упала. Ящерицы – хищники, питающиеся, в том числе, и гусеницами, которые выедают тростниковые крыши домов местных жителей. Гусеницы расплодились в огромном количестве и крыши стали проваливаться. Но это было только полбеды. От отравления ДДТ, попавшим в организм при питании отравленными ящерицами, стали гибнуть кошки. Это привело к тому, что поселки наводнили крысы, которые пришли из леса и принесли на себе блох, зараженных чумной палочкой. Итак, боролись с малярией, а получили чуму. Вот к чему приводят мероприятия, проведенные без надлежащей экологической экспертизы. Жители Калимантана предпочли чуму малярии. Поэтому опрыскивание инсектицидом прекратили, а для борьбы с крысами в джунгли на парашютах сбросили большую партию кошек.

Трофическая структура экосистемы и энергетика. Зеленые растения улавливают 1–2% попадающей на них энергии солнца, преобразуя ее в энергию химических связей. Консументы первого порядка усваивают около 10% всей энергии, заключенной в съеденных ими растениях. На каждом последующем уровне теряется 10 – 20% энергии предыдущего. Подобная закономерность находится в полном соответствии со вторым началом (законом) (термодинамики подробнее см. в § 00). Согласно этому закону при любых трансформациях энергии значительная ее часть рассеивается в виде недоступной для использования тепловой энергии. Таким образом, энергия быстро убывает в пищевых цепях, что ограничивает их длину. С этим связано и уменьшение на каждом последующем уровне численности и биомассы (количество живого вещества, выраженное в единицах массы или калориях) живых организмов. Однако это правило, как мы увидим ниже, имеет ряд исключений.

В основе устойчивости каждой экосистемы лежит определенная трофическая структура, которая может быть выражена в виде пирамид численности, биомассы и энергии. При их построении значения соответствующего параметра для каждого трофического уровня изображается в виде прямоугольников, поставленных друг на друга.

Форма пирамид численности в значительной степени зависит от размера организмов на каждом трофическом уровне, особенно продуцентов.

Например, численность деревьев в лесу, значительно ниже, чем травы на лугу или фитопланктона (микроскопические планктонные организмы-фотосинтетики) в пруду.

В биоценозах живые организмы теснейшим образом связаны не только друг с другом, но и с неживой природой. Связь эта выражается через вещество и энергию.

Обмен веществ, как известно, одно из главных проявлений жизни. Говоря современным языком, организмы представляют собой открытые биологические системы, так как они связаны с окружающей средой постоянным потоком вещества и энергии, проходящим через их тела. Материальная зависимость живых существ от среды была осознана еще в Древней Греции. Философ Гераклит образно выразил это явление в таких словах: “Текут наши тела, как ручьи, и материя постоянно обновляется в них, как вода в потоке”. Вещественно-энергетическую связь организма со средой можно измерить.

Поступление пищи, воды, кислорода в живые организмы – это потоки вещества из окружающей среды . Пища содержит энергию, необходимую для работы клеток и органов. Растения напрямую усваивают энергию солнечного света, запасают ее в химических связях органических соединений, а затем она перераспределяется через пищевые отношения в биоценозах.

В. Н. Сукачев
(1880 – 1967)

Крупный русский ботаник, академик
Основоположник биогеоценологии – науки о природных экосистемах

Потоки вещества и энергии через живые организмы в процессах обмена веществ чрезвычайно велики. Человек, например, за свою жизнь потребляет десятки тонн еды и питья, а через легкие – многие миллионы литров воздуха. Многие организмы взаимодействуют со средой еще более интенсивно. Растения на создание каждого грамма своей массы тратят от 200 до 800 и более граммов воды, которую они извлекают из почвы и испаряют в атмосферу. Вещества, необходимые для фотосинтеза , растения получают из почвы, воды и воздуха.

При такой интенсивности потоков вещества из неорганической природы в живые тела запасы необходимых для жизни соединений – биогенных элементов – давно были бы исчерпаны на Земле. Однако жизнь не прекращается, потому что биогенные элементы постоянно возвращаются в окружающую организмы среду. Происходит это в биоценозах, где в результате пищевых отношений между видами синтезированные растениями органические вещества разрушаются в конце концов вновь до таких соединений, которые могут быть снова использованы растениями. Так возникает биологический круговорот веществ .

Таким образом, биоценоз является частью еще более сложной системы, в которую, кроме живых организмов, входит и их неживое окружение, содержащее вещество и энергию, необходимые для жизни. Биоценоз не может существовать без вещественно-энергетических связей со средой. В итоге биоценоз представляет с ней некое единство.

А. Тенсли
(1871 – 1955)

Английский ботаник, ввел в науку понятие «экосистема»

Любую совокупность организмов и неорганических компонентов, в которой может поддерживаться круговорот вещества, называют экологической системой , или экосистемой .

Природные экосистемы могут быть разного объема и протяженности: небольшая лужа с ее обитателями, пруд, океан, луг, роща, тайга, степь – все это примеры разномасштабных экосистем. Любая экосистема включает живую часть – биоценоз и его физическое окружение. Более мелкие экосистемы входят в состав все более крупных, вплоть до общей экосистемы Земли. Общий биологический круговорот вещества на нашей планете также складывается из взаимодействия множества более частных круговоротов. Экосистема может обеспечить круговорот вещества только в том случае, если включает необходимые для этого четыре составные части: запасы биогенных элементов, продуценты , консументы и редуценты (рис. 1).

Рис. 1. Необходимые компоненты экосистемы

Продуценты – это зеленые растения, создающие из биогенных элементов органическое вещество, т. е. биологическую продукцию, используя потоки солнечной энергии.

Консументы – потребители этого органического вещества, перерабатывающие его в новые формы. В роли консументов выступают обычно животные. Различают консументы первого порядка – растительноядные виды и второго порядка – плотоядных животных.

Редуценты – организмы, окончательно разрушающие органические соединения до минеральных. Роль редуцентов выполняют в биоценозах в основном грибы и бактерии, а также другие мелкие организмы, перерабатывающие мертвые остатки растений и животных (рис. 2).

Рис. 2. Разрушители мертвой древесины (жук бронзовка и его личинка; жук-олень и его личинка; большой дубовый усач и его личинка; бабочка древоточец пахучий и его гусеница; жук красный плоскотел; многоножка кивсяк; черный муравей; мокрица; дождевой червь)

Жизнь на Земле продолжается уже около 4 млрд лет, не прерываясь именно потому, что она протекает в системе биологических круговоротов вещества. Основу этого составляет фотосинтез растений и пищевые связи организмов в биоценозах. Однако биологический круговорот вещества требует постоянных затрат энергии. В отличие от химических элементов, многократно вовлекаемых в живые тела, энергия солнечных лучей, задержанная зелеными растениями, не может использоваться организмами бесконечно.

По первому закону термодинамики, энергия не исчезает бесследно, она сохраняется в окружающем нас мире, но переходит из одной формы в другую. По второму закону термодинамики, любые превращения энергии сопровождаются переходом части ее в такое состояние, когда она уже не может быть использована для работы. В клетках живых существ энергия, обеспечивающая химические реакции, при каждой реакции частично превращается в тепловую, а тепло рассеивается организмом в окружающем пространстве. Сложная работа клеток и органов сопровождается, таким образом, потерями энергии из организма. Каждый цикл круговорота веществ, зависящий от активности членов биоценоза, требует все новых поступлений энергии.

Таким образом, жизнь на нашей планете осуществляется как постоянный круговорот веществ , поддерживаемый потоком солнечной энергии. Жизнь организуется не только в биоценозы, но и в экосистемы, в которых осуществляется тесная связь между живыми и неживыми компонентами природы.

Разнообразие экосистем на Земле связано как с разнообразием живых организмов, так и условий физической, географической среды. Тундровые, лесные, степные, пустынные или тропические сообщества имеют свои особенности биологических круговоротов и связей с окружающей средой. Водные экосистемы также чрезвычайно различны. Экосистемы отличаются по скорости биологических круговоротов и по общему количеству вовлекаемого в эти циклы вещества.

Основной принцип устойчивости экосистем – круговорот вещества, поддерживаемый потоком энергии, – по сути дела обеспечивает бесконечное существование жизни на Земле.

По этому принципу могут быть организованы и устойчивые искусственные экосистемы, и производственные технологии, в которых сберегается вода или другие ресурсы. Нарушение согласованной деятельности организмов в биоценозах обычно влечет за собой серьезные изменения круговоротов вещества в экосистемах. Это главная причина таких экологических катастроф , как падение почвенного плодородия, снижение урожая растений, роста и продуктивности животных, постепенное разрушение природной среды.