» » Исследовательская работа "задачи на разрезание". Точка, линия, прямая, луч, отрезок, ломанная звено CD и звено DE являются смежными

Исследовательская работа "задачи на разрезание". Точка, линия, прямая, луч, отрезок, ломанная звено CD и звено DE являются смежными

Стекло — это материал особенный и отличается от других строительных материалов.

Данный строительный материал обладает чрезвычайной хрупкостью и в своем большинстве является прозрачным.

Вот поэтому прежде, чем купить стекло и работать с ним, необходимо начать покупки именно с инструмента.

Но первый попавшийся инструмент покупать не следует, потому что он может быть некачественным и не сможет отрезать стекло так как надо.

Очень важно определить какой инструмент вам нужен, ведь стеклорезы бывают нескольких видов :

  1. Роликовые;
  2. Алмазные;
  3. Масляные;

Роликовые

В роликовом стеклорезе для резки стекла встроен специальный ролик, который изготовлен из очень прочного вольфрамокобальтового сплава. Обычный диаметр ролика составляет 6,6 мм, такой диаметр ролика позволяет осуществлять резку стекла толщиной до 4 мм.

Алмазные

Алмазный стеклорез оснащён соответственно маленьким алмазом, этот алмаз режет стекло. Хорошо известна твёрдость алмаза и поэтому его очень давно стали использовать для резки стекла.

В наше время, как и раньше, алмазный стеклорез считается лучшим инструментом для того чтобы отрезать стекло.

Масляные

Не так давно список стеклорезов пополнил масляный стеклорез.

Это по сути улучшенный роликовый инструмент, в ручку которого встроен резервуар для подачи смазки к ролику. Данная смазка связывает частицы, которые образовались при резке стекла при этом обеспечивая плавное движение. Данным стеклорезом можно разрезать стекло до 20 мм.

  1. Перед покупкой любого вида стеклореза лучше всего попросить продавца проверить .
  2. В том случае, если инструмент вас устраивает, то можете его покупать, но покупайте тот, который вам демонстрировали.

Как резать стекло

Лист стекла не так уж и просто отрезать, как это кажется с первого раза. Чтобы сделать отрез стекла, необходима подготовка.

Подготовка

  1. Абсолютно новое стекло достаточно будет хорошо очистить от пыли и вытереть насухо газетами, для таких работ ткань не подходит.
  2. В том случае, если предстоит резать старое стекло, то сначала его стоит обезжирить, после этого стекло хорошо моют с помощью воды и моющих средств.
  3. После всех вышеперечисленных манипуляций стекло необходимо будет просушить в закрытом и чистом помещении.

Раскрой стекла

Так же к подготовительным работам относят и раскрой стекла, и подготовку тары для сбора отходов. Тары должно быть две, то есть для сбора мелких отходов и для сбора более крупных, которые могут в дальнейшем для чего-то пригодиться.

Резку стекла лучше всего начинать с простого оконного стекла, а потом переходить на более сложные варианты.

Техника резки стекла


При применении алмазного стеклореза , необходимо его держать у самого низа ручки и проводить плавно линию по линейке, почти не надавливая на стекло.

При резке стекла роликовым стеклорезом требуется небольшое надавливание и при движении стеклореза на поверхности стекла появляется белёсая полоса и более глубокая, чем при применении алмазного инструмента.

Возможные ошибки

При реке стекла бывают две ошибки :

  1. Нажим стеклорезом бывает слишком сильным;
  2. Стеклорезом проводят по несколько раз по одному и тому же месту.

Старайтесь при резке стекла нажимать на инструмент равномерно по всей длине прореза.

Если вы при резке стекла заметили сколы, то это означает только то что вы слишком нажимаете на инструмент. Чтобы этого не было, уменьшите давление на стеклорез.

Ни в коем случае не проводите по порезанной линии дважды, это может испортить ваш инструмент.

Завершающий этап — ломка стекла

Тонкие стёкла ломают руками. Кусок стекла, который уже прорезали, необходимо положить на край стола, так, чтобы линия отреза находилась сверху и немного выступала за край стола, а основная часть стекла должна лежать на столе.

Нужно одной рукой прижать стекольное полотно, а второй нужно взяться за выступающую часть стекла и плавно рукой надавить на стекло вниз.

Если край, который нужно отломить, небольшой и руками его отломить невозможно применяют плоскогубцы.

Знание теории резки стела позволяет вам применить данные знания на практике. То есть вы можете взять небольшой кусок стекла и потренироваться на нём.

После того как вы попробуете резку стекла на практике в дальнейшем вы будете уже более уверены в своих навыках. Надеемся, что эта информация будет полезной. Желаем вам удачи и терпения!

Вступительное слово учителя:

Небольшая историческая справка: Задачами на разрезание увлекались многие ученые с древнейших времен. Решения многих простых задач на разрезание были найдены еще древними греками, китайцами, но первый систематический трактат на эту тему принадлежит перу Абуль-Вефа. Геометры всерьез занялись решением задач на разрезание фигур на наименьшее число частей и последующее построение другой фигуры в начале 20 века. Одним из основателей этого раздела был знаменитый основатель головоломок Генри Э.Дьюдени.

В наши дни любители головоломок увлекаются решением задач на разрезание прежде потому, что универсального метода решения таких задач не существует, и каждый, кто берется их решать, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению. (На занятии мы будем указывать лишь один из возможных примеров разрезания. Можно допустить, что у учащихся может получиться какая-то другая верная комбинация -- не надо этого бояться).

Данное занятие предполагается провести в виде практического занятия. Разбить участников кружка на группы по 2-3 человека. Каждой из групп предоставить заранее подготовленные учителем фигуры. Учащиеся располагают линейкой (с делениями), карандашом, ножницами. Разрешается производить с помощью ножниц лишь прямолинейные разрезы. Разрезав какую-нибудь фигуру на части, необходимо составить другую фигуру из тех же частей.

Задачи на разрезание:

1). Попробуйте разрезать изображенную на рисунке фигуру на 3 равные по форме части:

Подсказка: Маленькие фигуры очень похожи на букву Т.

2). Разрежьте теперь эту фигуру на 4 равные по форме части:

Подсказка: Легко догадаться, что маленькие фигурки будут состоять из 3 клеточек, а фигур из трех клеточек не так много. Их всего два вида: уголок и прямоугольник.

3). Разделите фигуру на две одинаковые части, и из полученных частей сложите шахматную доску.

Подсказка: Предложить начать выполнять задание со второй части, как бы получить шахматную доску. Вспомнить, какую форму имеет шахматная доска (квадрат). Посчитать имеющееся количество клеточек в длину, в ширину. (Напомнить, что клеток должно быть 8).

4). Попробуйте тремя движениями ножа разрезать сыр на восемь равных кусков.

Подсказка: попробовать разрезать сыр вдоль.

Задачи для самостоятельного решения:

1). Вырежьте квадрат из бумаги и выполните следующее:

· разрежьте на такие 4 части, из которых можно составить два равных меньших квадрата.

· разрежьте на пять частей - четыре равнобедренных треугольника и один квадрат - и сложите их так, чтобы получилось три квадрата.

Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение

Точка обозначается цифрой или заглавной (большой) латинской буквой. Несколько точек — разными цифрами или разными буквами, чтобы их можно было различать

точка A, точка B, точка C

A B C

точка 1, точка 2, точка 3

1 2 3

Можно нарисовать на листке бумаги три точки "А" и предложить ребёнку провести линию через две точки "А". Но как понять через какие? A A A

Линия — это множество точек. У неё измеряют только длину. Ширины и толщины она не имеет

Обозначается строчными (маленькими) латинскими буквами

линия a, линия b, линия c

a b c

Линия может быть

  1. замкнутой, если её начало и конец находятся в одной точке,
  2. разомкнутой, если её начало и конец не соединены

замкнутые линии

разомкнутые линии

Ты вышел из квартиры, купил в магазине хлеб и вернулся обратно в квартиру. Какая линия получилась? Правильно, замкнутая. Ты вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб, зашёл в подъезд и разговорился с соседом. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку.
  1. самопересекающейся
  2. без самопересечений

самопересекающиеся линии

линии без самопересечений

  1. прямой
  2. ломанной
  3. кривой

прямые линии

ломанные линии

кривые линии

Прямая линия — это линия которая не искривляется, не имеет ни начала, ни конца, её можно бесконечно продолжать в обе стороны

Даже когда виден небольшой участок прямой, предполагается, что она бесконечно продолжается в обе стороны

Обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами — точками, лежащими на прямой

прямая линия a

a

прямая линия AB

B A

Прямые могут быть

  1. пересекающимися, если имеют общую точку. Две прямые могут пересекаться только в одной точке.
    • перпендикулярными, если пересекаются под прямым углом (90°).
  2. параллельными, если не пересекаются, не имеют общей точки.

параллельные линии

пересекающиеся линии

перпендикулярные линии

Луч — это часть прямой, которая имеет начало, но не имеет конца, её можно бесконечно продолжать только в одну сторону

У луча света на картинке начальной точкой является солнце

солнышко

Точка разделяет прямую на две части — два луча A A

Луч обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами, где первая — это точка, с которой начинается луч, а вторая — точка, лежащая на луче

луч a

a

луч AB

B A

Лучи совпадают, если

  1. расположены на одной и той же прямой,
  2. начинаются в одной точке,
  3. направлены в одну сторону

лучи AB и AC совпадают

лучи CB и CA совпадают

C B A

Отрезок — это часть прямой, которая ограничена двумя точками, то есть она имеет и начало и конец, а значит можно измерить её длину. Длина отрезка — это расстояние между его начальной и конечной точками

Через одну точку можно провести любое число линий, в том числе прямых

Через две точки — неограниченное количество кривых, но только одну прямую

кривые линии, проходящие через две точки

B A

прямая линия AB

B A

От прямой «отрезали» кусочек и остался отрезок. Из примера выше видно, что его длина — наикратчайшее расстояние между двумя точками. ✂ B A ✂

Отрезок обозначается двумя заглавными(большими) латинскими буквами, где первая — это точка, с которой начинается отрезок, а вторая — точка, которой заканчивается отрезок

отрезок AB

B A

Задача: где прямая , луч , отрезок , кривая ?

Ломанная линия — это линия, состоящая из последовательно соединённых отрезков не под углом 180°

Длинный отрезок «поломали» на несколько коротких

Звенья ломаной (похожи на звенья цепи) — это отрезки, из которых состоит ломанная. Смежные звенья — это звенья, у которых конец одного звена является началом другого. Смежные звенья не должны лежать на одной прямой.

Вершины ломаной (похожи на вершины гор) — это точка, с которой начинается ломанная, точки, в которых соединяются отрезки, образующие ломаную, точка, которой заканчивается ломанная.

Обозначается ломанная перечислением всех её вершин.

ломанная линия ABCDE

вершина ломанной A, вершина ломанной B, вершина ломанной C, вершина ломанной D, вершина ломанной E

звено ломанной AB, звено ломанной BC, звено ломанной CD, звено ломанной DE

звено AB и звено BC являются смежными

звено BC и звено CD являются смежными

звено CD и звено DE являются смежными

A B C D E 64 62 127 52

Длина ломанной — это сумма длин её звеньев: ABCDE = AB + BC + CD + DE = 64 + 62 + 127 + 52 = 305

Задача: какая ломанная длиннее , а у какой больше вершин ? У первой линии все звенья одинаковой длины, а именно по 13см. У второй линии все звенья одинаковой длины, а именно по 49см. У третьей линии все звенья одинаковой длины, а именно по 41см.

Многоугольник — это замкнутая ломанная линия

Стороны многоугольника (помогут запомнить выражения: "пойти на все четыре стороны", "бежать в сторону дома", "с какой стороны стола сядешь?") — это звенья ломанной. Смежные стороны многоугольника — это смежные звенья ломанной.

Вершины многоугольника — это вершины ломанной. Соседние вершины — это точки концов одной стороны многоугольника.

Обозначается многоугольник перечислением всех его вершин.

замкнутая ломанная линия, не имеющая самопересечения, ABCDEF

многоугольник ABCDEF

вершина многоугольника A, вершина многоугольника B, вершина многоугольника C, вершина многоугольника D, вершина многоугольника E, вершина многоугольника F

вершина A и вершина B являются соседними

вершина B и вершина C являются соседними

вершина C и вершина D являются соседними

вершина D и вершина E являются соседними

вершина E и вершина F являются соседними

вершина F и вершина A являются соседними

сторона многоугольника AB, сторона многоугольника BC, сторона многоугольника CD, сторона многоугольника DE, сторона многоугольника EF

сторона AB и сторона BC являются смежными

сторона BC и сторона CD являются смежными

сторона CD и сторона DE являются смежными

сторона DE и сторона EF являются смежными

сторона EF и сторона FA являются смежными

A B C D E F 120 60 58 122 98 141

Периметр многоугольника — это длина ломанной: P = AB + BC + CD + DE + EF + FA = 120 + 60 + 58 + 122 + 98 + 141 = 599

Многоугольник с тремя вершинами называется треугольником, с четырьмя — четырёхугольником, с пятью — пятиугольником и т.д.

Перед вами листок бумаги с изображением: а) треугольника, б) пятиконечной звезды, в) многоугольника в форме плывущего лебедя. В каждом случае придумайте , как сложить листок, чтобы после этого соответствующую фигуру можно было вырезать одним непрерывным прямолинейным разрезом ножницами.

Подсказка

Во всех случаях решение почти полностью состоит из шагов двух типов: складывать нужно или по биссектрисе какого-то из связанных с фигурой углов (чтобы «уменьшить» число оставшихся не на одной линии отрезков), или по перпендикуляру к одному из отрезков (чтобы «подогнать» его длину до нужной).

Решение

На рисунках ниже показано, как нужно складывать фигуры из условия задачи, чтобы потом вырезать каждую из них одним разрезом.

С треугольником более-менее все понятно: складываем по одной биссектрисе, потом - по другой (рис. 1).

Со звездой тоже довольно легко справиться. Сначала нужно сложить ее пополам вдоль оси симметрии (вполне естественное действие - раз уж можно «уполовинить» фигуру одним махом). Затем - совместить два луча звезды друг с другом, сложив по биссектрисе ее «внешнего» угла. После этого от контура останется всего три отрезка, которые уже несложно совместить (рис. 2).

С лебедем сложнее всего. Это понятно: фигура без симметрий, с большим числом сторон; поэтому потребуется большое число складок. Схема, по которой надо складывать, изображена на рис. 3. Простые пунктирные линии изображают складки «вниз», пунктиры точка-тире изображают складки «вверх». Сначала нужно наметить эти складки по отдельности, чтобы лист приобрел форму крыши дома, а только потом складывать лист в плоскую фигуру.

На серии фотографий показан весь процесс складывания:

О том, откуда возникает такая хитроумная система складок, читайте в послесловии.

Послесловие

Все предложенные в условии варианты - это всего лишь частные случаи общего вопроса, который звучит так:

Дан многоугольник на плоском листе бумаги, можно ли так сложить этот лист, чтобы многоугольник можно было вырезать одним прямым разрезом?

Оказывается, вне зависимости от формы многоугольника, ответ на этот вопрос всегда положительный: да, можно. (Разумеется, мы сейчас обсуждаем эту задачу с точки зрения математики и не касаемся «физической» стороны дела: слишком много раз лист бумаги невозможно сложить. Считается, что даже очень тонкую бумагу больше 7-8 раз перегнуть невозможно. Это почти так: при некотором старании можно сделать 12 перегибов, но больше уже вряд ли получится.)

Более того, если многоугольников нарисовано несколько, то лист все равно можно сложить так, чтобы все их можно было бы вырезать одним разрезом (и ничего лишнего бы не вырезалось). Все дело в том, что верна следующая теорема:

Пусть на листе бумаги нарисован произвольный граф . Тогда этот лист можно сложить так, чтобы данный граф можно было вырезать одним разрезом, и ничего лишнего вырезано не будет.

У этой теоремы алгоритмическое доказательство. То есть в ее доказательстве дается явный рецепт, как построить нужную систему складок.

Вкратце суть такова. Сначала мы должны построить прямолинейный скелет (straight skeleton). Это набор линий - траекторий вершин исходного многоугольника, - по которым они движутся при его специальном сжатии. Сжатие устроено так: мы двигаем стороны многоугольника «внутрь» с постоянной скоростью, чтобы при этом каждая сторона двигалась, не меняя своего направления. Как несложно убедиться, поначалу вершины будут ползти по биссектрисам углов многоугольника. То есть эта на первый взгляд странная конструкция просто обобщает идею, предложенную в подсказке: что надо стараться складывать по биссектрисам углов многоугольника. Отметим, что в процессе сжатия многоугольник может «развалиться» на части, как это произошло на рис. 5.

После того как скелет получен, из каждой его вершины нужно провести лучи, перпендикулярные к тем сторонам исходной фигуры, к которым их можно провести. Если луч натыкается на линию из скелета, то после пересечения он должен продолжиться не прямо, а вдоль своего зеркального отражения относительно этой линии. Система складок состоит из проведенных линий.

Подробнее об этом и о том, как определять направление складки («вверх» или «вниз»), можно прочитать в статье E. D. Demaine, M. L. Demaine, A. Lubiw, 1998. Folding and Cutting Paper . Краткую историю и еще один подход к решению задачи можно найти на страничке Эрика Демейна, одного из авторов доказательства теоремы. Также можно почитать чуть более популярный рассказ об этой теореме (к сожалению, тоже на английском). Ну и наконец, советую посмотреть мультфильм «Математических этюдов», в котором прекрасно видно, как нужно складывать треугольник и звезду, чтобы потом вырезать их одним разрезом.

Напоследок отмечу, что вопросы, подобные обсуждавшимся выше, поднимались уже довольно давно. Например, в японской книге 1721 года в качестве одной из задачек читателям предлагалось вырезать одним разрезом фигурку из трех объединенных ромбов (рис. 6). Позже метод вырезания звезды объяснял в своей книге знаменитый иллюзионист Гарри Гудини. Кстати, по легенде, как раз благодаря тому, что такую звезду можно быстро вырезать из бумаги или ткани, сейчас на флаге США мы видим именно пятиконечные звезды: швея Бетси Росс , которая, по преданию, сшила первый флаг, смогла убедить Джорджа Вашингтона, что их лучше использовать для флага, чем шестиконечные, которые изначально хотел использовать Вашингтон.

, Конкурс «Презентация к уроку»

Презентация к уроку


































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Опыт показывает, что при использовании практических методов обучения удается сформировать у учащихся ряд мыслительных приемов, необходимых для правильного вычленения существенных и несущественных признаков при ознакомлении с геометрическими фигурами. развивается математическая интуиция, логическое и абстрактное мышление, формируется культура математической речи, развиваются математические и конструкторские способности, повышается познавательная активность, формируется познавательный интерес, развивается интеллектуальный и творческий потенциал.В статье приводится ряд практических задач на разрезания геометрических фигур на части с целью составить из этих частей новую фигуру. Ученики работают над заданиями в группах. Затем каждая группа защищает свой проект.

Две фигуры называются равносоставленными, если, определённым образом разрезав одну из них на конечное число частей, можно (располагая эти части иначе) составить из них вторую фигуру. Итак, метод разбиения основан на том, что всякие два равносоставленных многоугольника равновелики. Естественно поставить обратный вопрос: всякие ли два многоугольника, имеющих одинаковую площадь, равносоставлены? Ответ на этот вопрос был дан (почти одновременно) венгерским математиком Фаркашем Бойяи (1832г.) и немецким офицером и любителем математики Гервином (1833г.): два многоугольника, имеющих равные площади, равносоставленны.

Теорема Бойяи-Гервина гласит: любой многоугольник можно так разрезать на части, что из этих частей удастся сложить квадрат.

Задание 1.

Разрежьте прямоугольник a х 2a на такие части, чтобы из них можно было составить квадрат.

Прямоугольник ABCD разрежем на три части по линиям MD и MC (М – середина АВ)

Рисунок 1

Треугольник АMD переместим так, чтобы вершина М совместилась с вершиной С, катет АМ переместится на отрезок DС. Треугольник МВС переместим влево и вниз так, что катет МВ наложится на половину отрезка DС. (Рисунок 1)

Задание 2.

Разрезать равносторонний треугольник на части так, чтобы из них можно было сложить квадрат.

Обозначим данный правильный треугольник АВС. Необходимо разрезать треугольник АВС на многоугольники так, чтобы из них можно было сложить квадрат. Тогда эти многоугольники должны иметь по крайней мере по одному прямому углу.

Пусть К – середина СВ, Т – середина АВ, точки М и Е выберем на стороне АС так, что МЕ=АТ=ТВ=ВК=СК=а , АМ=ЕС=а /2.

Рисунок 2

Проведем отрезок МК и перпендикулярные к нему отрезки ЕР и ТН. Разрежем треугольник на части вдоль построенных линий. Четырехугольник КРЕС повернем по часовой стрелке относительно вершины К так, что СК совместится с отрезком КВ. Четырехугольник АМНТ повернем по часовой стрелке относительно вершины Т так, что АТ совместится с ТВ. Треугольник МЕР переместим так, что в результате получится квадрат. (Рисунок 2)

Задание 3.

Разрезать квадрат на части так, чтобы из них можно было сложить два квадрата.

Обозначим исходный квадрат ABCD. Отметим середины сторон квадрата – точки M, N, K, H. Проведем отрезки МТ, НЕ, КF и NР – части отрезков МС, НВ, КА и ND соответственно.

Разрезав квадрат ABCD по проведенным линиям, получим квадрат PTEF и четыре четырехугольника MDHT, HCKE, KBNF и NAMP.

Рисунок 3

PTEF – уже готовый квадрат. Из оставшихся четырехугольников составим второй квадрат. Вершины A, B, C и D совместим в одну точку, отрезки АМ и ВК, MD и КС, BN и СН, DH и АN совместятся. Точки Р, Т, Е и F станут вершинами нового квадрата. (Рисунок 3)

Задание 4.

Из плотной бумаги вырезаны равносторонний треугольник и квадрат. Разрезать эти фигуры на многоугольники так, чтобы из них можно было сложить один квадрат, при этом части должны полностью его заполнять и не должны пересекаться.

Треугольник разрежем на части и составим из них квадрат так, как показано в задании 2. Длина стороны треугольника – 2а . Теперь следует разделить на многоугольники квадрат так, чтобы из этих частей и того квадрата, который получился из треугольника, составить новый квадрат. Возьмем квадрат со стороной 2а , обозначим его LRSD. Проведем взаимно перпендикулярные отрезки UG и VF так, что DU=SF=RG=LV. Разрежем квадрат на четырехугольники.

Рисунок 4

Возьмем квадрат, составленный из частей треугольника. Выложим четырехугольники – части квадрата так, как показано на рисунке 4.

Задание 5.

Крест составлен из пяти квадратов: один квадрат в центре, а остальные четыре прилежат к его сторонам. Разрезать его на такие части, чтобы из них можно было составить квадрат.

Соединим вершины квадратов так, как показано на рисунке 5. Отрежем “внешние” треугольники и переместим их на свободные места внутри квадрата АВСК.

Рисунок 5

Задание 6.

Перекроить два произвольных квадрата в один.

На рисунке 6 показано, как нужно разрезать и переместить части квадратов.