» » Оксид NO2 с кислородом вообще не реагирует. Оксид азота (I, II, III, IV, V): свойства, получение, применение Вывод: оксид амфотерный

Оксид NO2 с кислородом вообще не реагирует. Оксид азота (I, II, III, IV, V): свойства, получение, применение Вывод: оксид амфотерный

Важнейшие оксиды азота представлены в таблице 1.

Оксид азота (V) представляет собой твёрдое вещество, остальные оксиды при обычных условиях газообразны. Наибольшее практическое значение из них имеют оксид азота (II) и оксид азота (IV). Все оксиды азота ядовиты, за исключением оксида азота (I).

Оксид азота(I) N 2 O. При комнатной температуре N 2 0 - бесцветный газ (t пл = _ 91 °С, t кип = -89 °С) без запаха, сладковатый на вкус, малорастворимый в воде. При вдыхании в небольших количествах N 2 0 вызывает судорожный смех, поэтому его называ­ют «веселящим газом». Молекула N 2 0 линейная, малополярная. Методом валент­ных связей ее строение описывается с помощью двух резонансных структур:

Связь между атомами азота (0,113 нм) лишь немного длиннее, чем тройная связь в молекуле N 2 (0,110 нм).

Оксид азота(1) получают термическим разложением нитрата аммония при температуре немного выше температуры его плавления (170 °С):

NH 4 NO 3 → N 2 0 + 2Н 2 0

Более чистый N 2 0 образуется при сопропорционировании нитрита и соли гидразина или гидроксиламина:

NH 3 OHCI + NaN0 2 = N 2 O + 2Н 2 0 + NaCl

Оксид азота (II) NO – бесцветный газ, мало растворимый в воде и химически с ней не взаимодействующий. Он легко соединяется с кислородом, образуя оксид азота (IV):

2NO + O 2 → 2NO 2 + 113 кДж

Оксид азота (II) получают в лаборатории при действии разбавленной азотной кислоты (ρ = 1,2 г/см 3 , ω=33%) на медь. Уравнение реакции имеет вид:

3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O

Молекула NO обладает нечётным числом внешних электронов, следовательно, у неё есть один избыточный электрон. Ненасыщенный характер молекулы NO проявляется в её способности к комплексообразованию с ионами некоторых металлов. Так, при пропускании NO в раствор FeSO 4 последний окрашивается в бурый цвет вследствие образования соединения состава SO 4 . При нагревании это непрочное соединение разлагается.

Оксид азота(II) - типичный восстановитель. Он обесцвечивает подкислен­ный раствор перманганата калия:

5NO + 3KMn0 4 + 2H 2 S0 4 = 2MnS0 4 + 3KN0 3 + Mn(N0 3) 2 + 2H 2 0

легко окисляется кислородом:

2NO + 0 2 = 2N0 2

Процесс протекает с очень высокой скоростью, так как обе реагирующие частицы являются радикалами.

Из-за наличия одного неспаренного электрона на разрыхляющей 2π-орбитали для оксида азота (II) характерны процессы одноэлектронного окисления с образованием катиона нитрозила (нитрозония ) N0 + : N0 – е - = N0 + . При этом кратность связи N-О повышается до трех, а ее энергия возрастает от 627 (NО) до 1046 (NO +) кДж/моль. Производными нитрозила являются ковалентные оксигалогениды азота NOX (X - галоген), а также ионные соли, например, перхлорат нитрозония , селенат нитрозония (N0) 2 Se0 4 . Гидросульфат нитрозония получают, пропуская сернистый газ через дымящую азотную кислоту:



HN0 3 + S0 2 =

Другие соли нитрозония также мо­гут быть получены взаимодействием ок­сидов азота с концентрированными кислотами, например:

N 2 0 3 + H 2 Se0 4 = (N0) 2 Se0 4 + Н 2 0

Соли нитрозония термически неустойчивы, а в присутствии воды необратимо гидроли­зуются:

2 + Н 2 0 = NO + N0 2 + 2H 2 S0 4

Ковалентный хлорид нитрозила N0C1 - оранжево-красный газ (t пл = -65 °С, t кип = -6 °С), образующийся при хлорировании N0 в присутствии активированного угля:

NO + С1 2 = 2N0C1

при взаимодействии нитрита с хлороводородом:

NaN0 2 + 2НС1 = N0C1 + NaCl + Н 2 0

или при замещении аниона в солях нитрозония:

NaCl = N0C1 + NaHS0 4

Менее характерны для N0 окислительные свойства. Например, при взаи­модействии с сильными восстановителями образуется азот:

2N0 + 2H 2 S = N 2 + 2S↓ + 2Н 2 0

На родиевом катализаторе N0 окисляет угарный газ в углекислый:

2N0 + 2СО = N 2 + 2С0 2

Такие катализаторы устанавливают в выхлопных трубах автомобилей во избе­жание загрязнения атмосферы ядовитыми газами NO x .

При взаимодействии с расплавленной щелочью NO диспропорционирует:

6N0 + 4КОН = N 2 + 4KN0 2 + 2Н 2 0

Оксид азота(III) N 2 0 3 . Это соединение очень неустойчиво и существует только при низких температурах. В твердом и жидком состоянии (t пл = -100 °С) это вещество окрашено в ярко-синий цвет; выше О °С оно разлагается:

N 2 0 3 =N0 + N0 2

В отличие от N 2 0 и N0 оксид азота (II) - типичный кислотный оксид, в ледяной воде он растворяется с образованием голубого раствора азотистой кислоты;

N 2 0 3 + Н 2 0 = 2HNO 2

При взаимодействии с щелочными растворами N 2 0 3 количественно превра­щается в нитриты:

N 2 0 3 + 2NaOH = 2NaN0 2 + Н 2 0

В сильнокислой среде происходит гетеролитический распад связи NO-N0 2 , в результате этого образуются соли нитрозония:

N 2 0 3 + 3H 2 S0 4 = 2NO + + Н 3 0 + + 3HSO 4

При охлаждении до -36 °С эквимолярной смеси оксидов N0 и N0 2 , образую­щейся при восстановлении 50%-ной HN0 3 оксидом мышьяка (III) или крахма­лом, конденсируется N 2 0 3:

2HN0 3 + As 2 0 3 + 2Н 2 0 = 2H 3 As0 4 + N 2 0 3

1 / n (C 6 H 10 O 5) n +12HN0 3 = 6C0 2 + 11H 2 0 + 6N 2 0 3

Оксиды азота(IV): NO 2 и N 2 0 4 . Оксид азота(IV) в широком интервале тем­пературы существует в виде равновесной смеси мономера N0 2 и димера N 2 0 4 .

Равновесие

2N0 2 ↔ N 2 0 4 , ΔН = -57,2 кДж/моль

Бурый газ Бесцветный газ

парамагнитен диамагнитен

сильно зависит от температуры. Твердый оксид азота(IV) бесцветный, так как состоит исключительно из молекул N 2 0 4 . При его нагревании до t, w = -12,8 °С появляется коричневая окраска, которая усиливается с повышением темпера­туры по мере увеличения доли мономера в смеси.

Оксид азота(IV) (как мономер, так и димер) хорошо растворим в воде и взаимодействует с ней. Поскольку в водных растворах соединения азота в чет­ных степенях окисления не существуют, происходит диспропорционирование на азотную и азотистую кислоты:

N 2 0 4 + Н 2 0 = HN0 3 + HN0 2

Последняя устойчива лишь на холоде, а при комнатной температуре и выше диспропорционирует на N0 и HN0 3 , поэтому при комнатной и более высо­ких температурах реакция протекает по уравнению

3N0 2 + Н 2 0 = 2HN0 3 + NO

Однако если через воду пропускать смесь N0 2 и воздуха, то образуется только HN0 3:

2N0 2 + Н 2 0 + 1 / 2 0 2 = 2HN0 3

Подобно N0 оксид N 2 0 4 подвержен одноэлектронному окислению с обра­зованием катиона нитроила (нитрония) N0 2 , имеющего линейное строение и изоэлектронного (16 е - на три атома) С0 2 . Нитроил-ион образуется также при самоионизации азотной кислоты:

2HN0 3 ↔ N0 2 + + NO 3 - + Н 2 0

Диоксид N0 2 - сильный окислитель, в атмосфере которого горят углерод, сера, многие металлы:

С + 2N0 2 = С0 2 + 2NO

В газовой фазе диоксид азота окисляет хлороводород до хлора:

2N0 2 + 4НС1 = 2NOC1 + 2Н 2 0 + С1 2

Получают N0 2 взаимодействием меди с горячей концентрированной азот­ной кислотой:

Сu + 4HN0 3 = Cu(N0 3) 2 + 2N0 2 + 2Н 2 0

либо термическим разложением (350-500 °С) тщательно высушенных нитра­тов тяжелых металлов:

2Pb(N0 3) 2 → 2РbО + 4N0 2 + 0 2

Реакцию проводят в присутствии диоксида кремния, связывающего образую­щийся оксид свинца в силикат PbSi0 3 , тем самым смещая равновесие вправо.

Оксид азота(IV) образуется также при окислении N0 кислородом:

2NO + 0 2 = 2N0 2 , ΔН° = -114 кДж/моль

Интересно, что эта реакция является обратимой, и при 200°С равновесие существенно смещено влево.

Оксид азота(V) N 2 0 5 . Азотный ангидрид N 2 0 5 образуется в виде летучих (t субл = 32,3 °С) бесцветных гигроскопичных кристаллов при пропускании па­ров азотной кислоты через колонку с оксидом фосфора(V):

4HN0 3 + Р 4 0 10 → 2N 2 0 5 + 4НР0 3

Твердый N 2 0 5 построен из ионов N0 2 + и N0 3 - , а в газовой фазе и в растворах состоит из молекул 0 2 N-О-N0 2 . Это вещество очень неустойчиво и в течение нескольких часов распадается (период полураспада 10ч), при нагревании - со взрывом:

2N 2 0 5 = 4N0 2 + 0 2

При растворении N 2 0 5 в воде образуется азотная кислота.

Высший оксид азота является сильным окислителем, например:

N 2 0 5 + I 2 = I 2 0 5 + N 2

В безводных кислотах (серной, азотной, ортофосфорной, хлорной) N 2 0 5 рас­падается, образуя катион нитрония N0 2:

N 2 0 5 + НСlO 4 = N0 2 + C10 4 - + HN0 3

Соли нитрония являются сильными окислителями. При попадании в воду они гид­ролизуются:

N0 2 + C10 4 - + Н 2 0 = HN0 3 + НС10 4

Хлористый нитроил N0 2 C1 (t пл = -145 °С, t кип = -16 °С) - бесцветный газ, образую­щийся при пропускании хлора над твердым нитратом серебра или при взаимодействии дымящей азотной и хлорсульфоновой кислот:

HN0 3 + ClSO 3 H = N0 2 C1 + H 2 S0 4

В щелочной среде он распадается на гипохлорит и нитрит.

ОБЩИЕ СВЕДЕНИЯ

Эмпирическая формула. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NO

Молекулярная масса, кг/кмоль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30,01

Агрегатное состояние. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . газообразное

Внешний вид. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . бесцветный газ

Запах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . отсутствует

Применение: для получения NH2OH. Присутствует в отходящих дымовых газах при неполном сгорании топлива.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность при 20 °С и давлении 101,3 кПа, кг/м3 . . . . . . . . . . . . . . . . . . .1,3402

Плотность жидкой фазы при минус 163°С, кг/м3 . . . . . . . . . . . . . . . . . . . . 1332

Температура плавления, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 163,5

Критическая температура, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 93

Критическое давление, МПа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,48

Теплота образования, кДж/моль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91,26

Константы уравнения Антуана, в температурном интервале минус 233 – минус 178°С,

А. . . . . . . . . . . . . 20,1314

В. . . . . . . . . . . . . 1572,52

С. . . . . . . . . . минус 4,88

Динамическая вязкость, Па?с. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183?10-7

Теплоемкость, Дж/(моль?К) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29,86

Мольный объем в критической точке, см3/моль. . . . . . . . . . . . . . . . . . . . . . 58

:

*т- твердое вещество;

Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .слабо растворим

Реакционная способность: ниже 1000 0С практически не разлагается. С водой, разбавленными растворами кислот и щелочей не взаимодействует. Растворим в спирте, сероуглероде и серной кислоте. При обычных условиях быстро окисляется до диоксида азота, с повышением температуры скорость реакции уменьшается. Присоединяет галогены с образованием нитрозилгалогенидов (NOHal). С серной кислотой в присутствии воздуха дает нитрозилсерную кислоту (NO)НSО4. Восстанавливается углеродом, фосфором, серой, водородом, металлами, до азота. Окисляется, например, хроматами и перманганатами до азотной кислоты. С солями многих металлов образует нитрозокомплексы.

САНИТАРНО-ГИГИЕНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Класс опасности в воздухе рабочей зоны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р. в воздухе рабочей зоны (в пересчете на NO2), мг/м3 . . . . . . . . . . . 5,0

Код вещества, загрязняющего атмосферный воздух. . . . . . . . . . . . . . . . . 0304

Класс опасности в атмосферном воздухе. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р./с.с. в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . .0,4/0,06

Воздействие на людей: кровяной яд, оказывает прямое действие на центральную нервную систему.

Меры первой помощи пострадавшим от воздействия вещества: удалить пострадавшего из вредной атмосферы. При нарушении дыхания – кислород. При рефлекторных расстройствах дыхания и сердечной деятельности применяют, так называемую, противодымную смесь (хлороформа 40 ч., 96% этилового спирта 4 ч., серного эфира 20 ч.); к этой смеси добавляют 5 капель нашатырного спирта. При раздражении дыхательных путей - содовые ингаляции, горячее молоко с содой или щелочной минеральной водой. При тяжелом отравлении – госпитализация.

Меры предосторожности: герметизация аппаратуры и коммуникаций, вентиляция помещений. При электро- и газовой сварке внутри аппаратуры, вообще в тесных и замкнутых пространствах, обязательна подача свежего воздуха для вытеснения оксидов азота

Средства защиты: фильтрующий промышленный противогаз. Изолирующие шланговые противогазы с подачей чистого воздуха. Герметичные очки с полумаской. Перчатки резиновые кислотостойкие бесшовные, перхлорвиниловые бесшовные; кислотозащитные рукавицы КР; перчатки, покрытые латексом. Спецодежда, покрытая слоем перхлорвиниловой смолы, или из ткани, обработанной парафино-стеарино-фосфатной эмульсией и латексом СВХ-1. Сапоги, брюки поверх сапог.

ПОЖАРОВЗРЫВООПАСНЫЕ СВОЙСТВА

Группа горючести. . . . . . . . . . . . . . . . . . . . негорючий, пожароопасный газ

Оксидами называют бинарные соединения химических элементов с кислородным атомом, у которого окислительная степень равна 2-. Азот, обладающий меньшим электроотрицательным значением, образует различные комбинации с кислородом. Эти соединения относятся к разным классам веществ. Оксид азота кислород содержит в количестве, которое устанавливает валентность элемента N. Она колеблется от 1 до 5.

Какие бывают оксиды

Существует около десятка азотистых соединений, содержащих O-элемент. Из них пять наиболее часто встречаемых: оксид одновалентного, оксид двухвалентного, оксид трехвалентного, оксид четырехвалентного и оксид пятивалентного азота.

Остальные соединения считаются менее распространенными. К ним относят оксид азота четырехвалентного в форме димера, нестабильные молекулы нитрилазида, нитрозилазида, тринитрамида и нитратный радикал.

Формулы оксидов азота

Ниже приведены обозначения наиболее значимых соединений элемента N.

Это прежде всего оксид азота, формула которого состоит из двух химических знаков - N и O. За ними ставятся индексы, в зависимости от степени окисления атомов.

  • Азота одновалентного оксид имеет формулу N 2 O. В нем атом N заряжен +1.
  • Азота двухвалентного оксид имеет формулу NO. В нем атом N заряжен +2.
  • Азота трехвалентного оксид имеет формулу N 2 O 3 . В нем атом N заряжен +3.
  • Четырехвалентный оксид азота, формула которого NO 2 , имеет заряд атома N +4.
  • Пятивалентное кислородное соединение обозначается как N 2 O 5 . В нем атом N заряжен +5.

Описание одновалентного оксида азота

Он еще именуется диазотом, закисью и газом веселящим. Последнее название произошло от действия, связанного с опьянением.

Оксид азота с валентностью I в условиях нормальной температуры существует в форме негорючего газа, без цвета, который проявляет приятный сладковатый привкус и запах. Воздух легче данного соединения. Оксид растворяется в водной среде, этаноле, эфирах и кислоте серной.

Вода, щелочные и кислотные растворы не способны с ним вступать в реакцию, он не образует соли. Не подвергается воспламенению, зато способен поддержать процесс горения.

Аммиак оксид азота переводит в азид (N3NH4).

При соединении с молекулами эфиров, хлорэтана и циклопропана образуется взрывоопасная смесь.

Обычные условия способствуют его инертности. Под действием нагревания вещество восстанавливается.

Описание оксида двухвалентного азота

Его еще называют моноокисью, окисью или нитрозил-радикалом. В условиях нормальной температуры является бесцветным негорючим газом, слаборастворимым в водной среде. Воздухом окисляется, получается NO 2. Жидкая и твёрдая его форма становятся голубого цвета.

Оксид азота может быть восстановителем в реакциях взаимодействия с галогенами. Продуктом их присоединения является нитрозилгалогенид, который имеет формулу NOBr.

Диоксид серы и другие сильные восстановители окисляют NO с получением молекул N 2 .

Описание оксида трехвалентного азота

Они именуется ангидридом азотистым. В нормальном состоянии может быть жидкостью, с синей окраской, а стандартные параметры среды переводят оксид в форму газа, не имеющего цвета. Обладает устойчивостью только при низких температурах.

Молекулы N 2 O 3 диссоциируют во время нагревания с выделением одно- и двухвалентного оксида.

В качестве ангидрида присоединяет воду с получением кислоты азотистой, а со щелочами формирует соли в виде нитритов.

Описание оксида четырехвалентного азота

По-другому его называют диоксидом. Существует в форме буро-красного газа, у которого имеется острый запах, а также может быть желтоватой жидкостью.

Относится к кислотным оксидам, у которых развита хорошо химическая активность.

Его молекулы окисляют неметаллы с образованием кислородсодержащих соединений и свободного азота.

Диоксид взаимодействует с оксидом четырехвалентной и шестивалентной серы. Получается кислота серная. Метод ее синтеза называют нитрозным.

В водной среде можно растворить оксид азота. Азотная кислота является результатом данной реакции. Такой процесс называют диспропорционированием. Промежуточным компонентом считается кислота азотистая, которая быстро распадается.

Если растворить азота четырехвалентного оксид в щелочи, то происходит образование растворов нитратов и нитритов. Можно использовать его жидкую форму для взаимодействия с металлом, тогда получится безводная соль.

Описание оксида пятивалентного азота

Его также называют диазотным пентаоксидом, нитратом нитрония, нитриловым нитратом или азотным ангидридом.

Существует в форме бесцветных кристаллов, которые обладают летучестью и неустойчивостью. Их стабильность наблюдается при низкой температуре. Такую структуру образуют нитрат- и нитрит-ионы.

В газообразном виде вещество имеет форму ангидрида NO 2 −O−NO 2 .

Оксид азота пятивалентный обладает свойствами кислотными. Он легко разлагается с выделением кислорода.

Вещество реагирует с водой, в результате получается азотная кислота.

Щелочи растворяют ангидрид с выделением солей нитратов.

Как получают оксиды азота

Закись N 2 O образуется при острожном нагревании аммония нитрата в сухом виде, однако такой способ может сопровождаться взрывом.

Предпочтительным методом получения оксида одновалентного является воздействие кислотой азотной в концентрированном виде на кислоту сульфаминовую. Главным условием считается нагревание.

Нитрозил, или NO, - это особый оксид азота, получение которого осуществляется при взаимодействии молекул N 2 и O 2 . Важным условием такого процесса является сильное нагревание свыше 1000 °C.

Природный способ получения связан с грозовыми разрядами в атмосферном воздухе. Такой оксид быстро соединяется с кислородными молекулами и формируется диоксид.

Лабораторный метод синтеза NO связан с реакцией металлов и неконцентрированной кислоты азотной. Примером такой реакции может быть взаимодействие меди с HNO 3 .

Другой способ образования моноокиси азота - реакция хлорида железа двухвалентного с натрия нитритом и кислотой соляной. Результатом процесса являются железа трехвалентного и натрия хлориды, вода и сама окись.

В промышленных масштабах его добывают за счет окисления аммиачных молекул во время нагревания и под высоким давлением. Ускорителем процесса является платина или хрома трехвалентного оксид.

Диоксид, или NO 2, получается при взаимодействии мышьяка трехвалентного оксида с 50 % кислотой азотной, которую наносят по каплям на поверхность твердого реагента. Образуется смесь из оксидов двухвалентного и четырехвалентного азота.

Если ее охладить до температуры -30 °С, то синтезируется ангидрид азотистый, или N 2 O 3 .

В порошкообразном виде он получается в случае пропускания тока электрического сквозь газообразную его форму.

Если на крахмальный порошок подействовать кислотой азотной с концентрацией 50 %, то выделяется оксид двухвалентного и четырехвалентного азота, газ углекислый и вода. В дальнейшем из полученных первых двух соединений формируется молекула N 2 O 3 .

В результате теплового расщепления свинцового нитросоединения выделяется свободный кислород и оксид свинца.

Ангидрид, или N 2 O 5, образуется благодаря отщеплению молекулы воды от кислоты азотной действием фосфора оксида пятивалентного.

Другой способ его синтеза является пропускание сухого хлора сквозь безводный серебряный нитрат.

Если на диоксид азотный подействовать молекулами озона, то формируется N 2 O 5 .

Оксидом азота называется инертный газ, который не обладает ароматическими качествами и цветом. Есть несколько соединений:

· Оксид (I) несолеобразующий. При условии высокой концентрации может спровоцировать возбуждение нервной системы. По-другому его называют веселящим газом. Свое применение оксид азота нашел как наркоз слабого действия в медицине;

· Монооксид азота – это газ, не обладающий цветом. Свойством оксида азота (II) является слабая степень растворимости в воде;

· Оксид (III) – это жидкость, обладающая темно-синим цветом. В нормальных условиях проявляет неустойчивость. При условии взаимодействия с водой способен образовывать азотистую кислоту;

· Оксид (IV) обладает газообразной формой, его окрас – бурый. В таком состоянии вещество тяжелее воздуха, поэтому способно легко сжиматься. Одним из свойств оксида азота является способность взаимодействовать с водой и щелочными растворами; Оксид (V) является веществом в кристаллической форме без цвета. Проявляет свойства сильного окислителя

Оксид азота (II) (Монооксид азота, окись азота, нитрозил-радикал) NO

Рассмотрим оксид азота (II)NO - несолеобразующий оксид азота. Он представляет собой бесцветный газ, плохо растворимый в воде. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.
Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N 2 O 2 . Жидкий оксид азота(II) на 25 % состоит из молекул N 2 O 2 , а твердый оксид целиком состоит из них.

Получение.
Оксид азота (II) - единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200-1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах:

и тотчас же реагирует с кислородом:

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется "закалкой" и используется при одном из способов получения азотной кислоты.
В лаборатории его обычно получают взаимодействием 30%-ной HNO 3 с некоторыми металлами, например, с медью:

Более чистый, не загрязнённый примесями NO можно получить по реакциям:

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии Pt, Cr 2 O 3 (как катализаторов):

Химические свойства.
При комнатной температуре и атмосферном давлении окисление NO кислородом воздуха происходит мгновенно:


Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя:

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.
Физиологическое действие.
Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия. Темно-зелёные круги в клетках - ядра, в некоторых из ядер, в свою очередь, заметны ядрышки (светло-зелёные).
Как и все оксиды азота (кроме N 2 O), NO - токсичен, при вдыхании поражает дыхательные пути.
За два последних десятилетия было установлено, что эта молекула NO обладает широким спектром биологического действия, которое условно можно разделить на регуляторное, защитное и вредное. NO, участвует в регуляции систем внутри и межклеточной сигнализации. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение, предотвращает агрегацию тромбоцитов и адгезию нейтрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO также обладает цитотоксическими и цитостатическими свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. С нарушением биосинтеза и метаболизма NO связаны такие заболевания, как эссенциальная артериальная гипертензия, ишемическая болезнь сердца, инфаркт миокарда, первичная легочная гипертензия, бронхиальная астма, невротическая депрессия, эпилепсия, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона), сахарный диабет и др.
Оксид азота может синтезироваться несколькими путями. Растения используют неферментативную фотохимическую реакцию между NO 2 и каротиноидами.
Характерной особенностью NO является способность быстро (менее чем за 5 секунд) диффундировать через мембрану синтезировавшей его клетки в межклеточное пространство и легко (без участия рецепторов) проникать в клетки-мишени. Внутри клетки он активирует одни энзимы и ингибирует другие, таким образом, участвуя в регуляции клеточных функций. По сути, монооксид азота является локальным тканевым гормоном. NO играет ключевую роль в подавлении активности бактериальных и опухолевых клеток путем либо блокирования некоторых их железосодержащих ферментов, либо путем повреждения их клеточных структур оксидом азота или свободными радикалами, образующимися из оксида азота. Одновременно в очаге воспаления накапливается супероксид, который вызывает повреждение белков и липидов клеточных мембран, что и объясняет его цитотоксическое действие на клетку-мишень. Следовательно, NO, избыточно накапливаясь в клетке, может действовать двояко: с одной стороны вызывать повреждение ДНК и с другой - давать провоспалительный эффект.
Оксид азота способен инициировать образование кровеносных сосудов. В случае инфаркта миокарда оксид азота играет положительную роль, так как индуцирует новый сосудистый рост, но при раковых заболеваниях тот же самый процесс вызывает развитие опухолей, способствуя питанию и росту раковых клеток. С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. Повреждение ДНК под действием NO является одной из причин развития апоптоза (запрограммированный процесс клеточного "самоубийства", направленный на удаление клеток, утративших свои функции). В экспериментах наблюдалось дезаминирование дезоксинуклеозидов, дезоксинуклеотидов и неповрежденной ДНК при воздействии раствора, насыщенного NO. Этот процесс ответствен за повышение чувствительности клеток к алкилирующим агентам и ионизирующему излучению, что используется в антираковой терапии.

Сегодня мы начинаем знакомство с важнейшими классами неорганических соединений. Неорганические вещества по составу делятся, как вы уже знаете, на простые и сложные.


ОКСИД

КИСЛОТА

ОСНОВАНИЕ

СОЛЬ

Э х О у

Н n A

А – кислотный остаток

Ме(ОН) b

ОН – гидроксильная группа

Me n A b

Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы начинаем с класса оксидов.

ОКСИДЫ

Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых кислород, с валентность равной 2. Лишь один химический элемент - фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .
Называются они просто - "оксид + название элемента" (см. таблицу). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Формула

Название

Формула

Название

оксид углерода (II)

Fe 2 O 3

оксид железа (III)

оксид азота (II)

CrO 3

оксид хрома (VI)

Al 2 O 3

оксид алюминия

оксид цинка

N 2 O 5

оксид азота (V)

Mn 2 O 7

оксид марганца (VII)

Классификация оксидов

Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.

Оксиды металлов Ме х О у

Оксиды неметаллов неМе х О у

Основные

Кислотные

Амфотерные

Кислотные

Безразличные

I, II

Ме

V-VII

Me

ZnO,BeO,Al 2 O 3 ,

Fe 2 O 3 , Cr 2 O 3

> II

неМе

I, II

неМе

CO, NO, N 2 O

1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксиды металлов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):

2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII (Например, CrO 3 -оксид хрома (VI), Mn 2 O 7 - оксид марганца (VII)):


3). Амфотерные оксиды – это оксиды, которым соответствуют основания и кислоты. К ним относятся оксиды металлов главных и побочных подгрупп с валентностью III , иногда IV , а также цинк и бериллий (Например, BeO , ZnO , Al 2 O 3 , Cr 2 O 3 ).

4). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II (Например, N 2 O , NO , CO ).

Вывод:характер свойств оксидов в первую очередь зависит от валентности элемента.

Например, оксиды хрома:

CrO ( II - основный);

Cr 2 O 3 ( III - амфотерный);

CrO 3 ( VII - кислотный).

Классификация оксидов

(по растворимости в воде)

Кислотные оксиды

Основные оксиды

Амфотерные оксиды

Растворимы в воде.

Исключение – SiO 2

(не растворим в воде)

В воде растворяются только оксиды щелочных и щелочноземельных металлов

(это металлы

I «А» и II «А» групп,

исключение Be , Mg )

С водой не взаимодействуют.

В воде не растворимы

Выполните задания:

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выпишите оксиды и классифицируйте их.

Получение оксидов

Тренажёр "Взаимодействие кислорода с простыми веществами"

1. Горение веществ (Окисление кислородом)

а) простых веществ

Тренажёр

2Mg +O 2 =2MgO

б) сложных веществ

2H 2 S+3O 2 =2H 2 O+2SO 2

2.Разложение сложных веществ

(используйте таблицу кислот, см. приложения)

а) солей

СОЛЬ t = ОСНОВНЫЙ ОКСИД+КИСЛОТНЫЙ ОКСИД

СaCO 3 =CaO+CO 2

б) Нерастворимых оснований

Ме(ОН) b t = Me x O y + H 2 O

Cu (OH) 2 t =CuO+H 2 O

в) кислородсодержащих кислот

Н n A = КИСЛОТНЫЙ ОКСИД + H 2 O

H 2 SO 3 =H 2 O+SO 2

Физические свойства оксидов

При комнатной температуре большинство оксидов - твердые вещества (СаО, Fe 2 O 3 и др.), некоторые - жидкости (Н 2 О, Сl 2 О 7 и др.) и газы (NO, SO 2 и др.).

Химические свойства оксидов

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ

1. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

2. Основной оксид + Кислота = Соль + Н 2 О (р. обмена)

3 K 2 O + 2 H 3 PO 4 = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Вода = Щёлочь (р. соединения)

Na 2 O + H 2 O = 2 NaOH

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

1. Кислотный оксид + Вода = Кислота (р. соединения)

С O 2 + H 2 O = H 2 CO 3 , SiO 2 – не реагирует

2. Кислотный оксид + Основание = Соль + Н 2 О (р. обмена)

P 2 O 5 + 6 KOH = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

4. Менее летучие вытесняют более летучие из их солей

CaCO 3 + SiO 2 = CaSiO 3 + CO 2

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ

Взаимодействуют как с кислотами, так и со щелочами.

ZnO + 2 HCl = ZnCl 2 + H 2 O

ZnO + 2 NaOH + H 2 O = Na 2 [ Zn (OH ) 4 ] (в растворе)

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (при сплавлении)

Применение оксидов

Некоторые оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:

SO 3 + H 2 O = H 2 SO 4

CaO + H 2 O = Ca ( OH ) 2

В результате часто получаются очень нужные и полезные соединения. Например, H 2 SO 4 – серная кислота, Са(ОН) 2 – гашеная известь и т.д.

Если оксиды нерастворимы в воде, то люди умело используют и это их свойство. Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для приготовления белой масляной краски (цинковые белила). Поскольку ZnO практически не растворим в воде, то цинковыми белилами можно красить любые поверхности, в том числе и те, которые подвергаются воздействию атмосферных осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и подсушивающий порошок для наружного применения.

Такими же ценными свойствами обладает оксид титана (IV) – TiO 2 . Он тоже имеет красивый белый цвет и применяется для изготовления титановых белил. TiO 2 не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей белого цвета. Он входит в состав эмалей для металлической и керамической посуды.

Оксид хрома (III) – Cr 2 O 3 – очень прочные кристаллы темно-зеленого цвета, не растворимые в воде. Cr 2 O 3 используют как пигмент (краску) при изготовлении декоративного зеленого стекла и керамики. Известная многим паста ГОИ (сокращение от наименования “Государственный оптический институт”) применяется для шлифовки и полировки оптики, металлических изделий, в ювелирном деле.

Благодаря нерастворимости и прочности оксида хрома (III) его используют и в полиграфических красках (например, для окраски денежных купюр). Вообще, оксиды многих металлов применяются в качестве пигментов для самых разнообразных красок, хотя это – далеко не единственное их применение.

Задания для закрепления

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выберите из перечня: основные оксиды, кислотные оксиды, безразличные оксиды, амфотерные оксиды и дайте им названия .

3. Закончите УХР, укажите тип реакции, назовите продукты реакции

Na 2 O + H 2 O =

N 2 O 5 + H 2 O =

CaO + HNO 3 =

NaOH + P 2 O 5 =

K 2 O + CO 2 =

Cu(OH) 2 = ? + ?

4. Осуществите превращения по схеме:

1) K → K 2 O → KOH → K 2 SO 4

2) S→SO 2 →H 2 SO 3 →Na 2 SO 3

3) P→P 2 O 5 →H 3 PO 4 →K 3 PO 4