» » Азотосодержащие органические соединения. Взаимодействие с кислотами

Азотосодержащие органические соединения. Взаимодействие с кислотами

Амины - органические производные аммиака NH 3 , в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы:

Простейший представитель - метиламин:

Классификация. Амины классифицируют по двум структурным признакам:

  • по количеству радикалов, связанных с атомом азота, различают: первичные (один радикал), вторичные (два радикала), третичные (три радикала) (табл. 7.2);
  • по характеру углеводородного радикала амины подразделяются на алифатические (жирные) - производные алканов, ароматические и смешанные (или жирноароматические).

Таблица 7.2

Номенклатура аминов. Названия большинства аминов образуются из названий углеводородного радикала (радикалов в порядке увеличения) и суффикса -амин. Первичные амины также часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH 2 . Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:

Аминокислотами называются соединения, молекулы которых содержат одновременно амино- и карбоксильную группы. Простейшим представителем их является аминоуксусная кислота (глицин):

В составе молекулы аминокислоты могут содержаться несколько карбоксильных или аминогрупп, а также другие функциональные группы. В зависимости от положения аминогруппы по отношению к карбоксилу различают альфа- (а), бетта- (Р), гамма- (у), дельта- (Д), элсмлол-аминокислоты (е) и т.д.:


2-аминопропановая кислота (сс-аминопропиновая, аланин);


Альфа-аминокислоты играют важнейшую роль в процессах жизнедеятельности живых организмов, так как являются теми соединениями, из которых строится молекула любого белка. Все а-аминокислоты, часто встречающиеся в живых организмах, имеют тривиальные названия, которые обычно и употребляются. (Представители некоторых альфа-аминокислот приведены в табл. 7.3.)

Таблица 7.3

Аминокислоты - твердые кристаллические вещества с высокой температурой плавления, при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Важнейшим химическим свойством амнокислот является межмолекулярное взаимодействие а-аминокислот, которое приводит к образованию пептидов. При взаимодействии двух а-аминокислот образуется дипептид. Межмолекулярное взаимодействие трех а-аминокислот приводит к образованию трипептида и т.д. Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь СО-NH - пептидной связью.

Аминокислоты находят применение во многих сферах. Их используют в качестве пищевых добавок. Так, лизином, триптофаном и треонином обогащают растительные белки, а метионин включают в блюда из сои. При выработке пищевых продуктов аминокислоты находят применение в роли усилителей вкуса и добавок. Благодаря выраженному мясному вкусу широко используется L-энантиомер мо- нонатриевой соли глутаминовой кислоты. Глицин добавляют как подсластитель, бактериостатическое вещество и антиоксидант. Являясь не только структурными элементами белков и других эндогенных соединений, аминокислоты имеют большое функциональное значение, некоторые из них выступают в качестве нейромедиаторных веществ, другие нашли самостоятельное применение в качестве лекарственных средств. Аминокислоты применяются в медицине в качестве парентерального (т.е., минуя желудочно-кишечный тракт) питания больных, с заболеваниями пищеварительных и других органов. Их также применяют для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота и т.п.). Аминокислоты применяются в животноводстве и ветеринарии для питания и лечения животных, а также в микробиологической, и химической промышленности.

Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

Амины

Амины — органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Соответственно, обычно выделяют три типа аминов:

Амины, в которых аминогруппа связана непосредственно с ароматическим кольцом, называются ароматическими аминами.

Простейшим представителем этих соединений является аминобензол , или анилин :

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподеленной электронной пары. Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продуктом формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура

Для аминов характерна структурная изомерия:

изомерия углеродного скелета:

изомерия положения функциональной группы:

Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия ):

${CH_3-CH_2-CH_2-NH_2}↙{\text"первичный амин (пропиламин)"}$

${CH_3-CH_2-NH-CH_3}↙{\text"вторичный амин (метилэтиламин)"}$

Как видно из приведенных примеров, для того, чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшинства), и добавляют суффикс -амин .

Физические и химические свойства аминов

Физические свойства.

Простейшие амины (метил амин, диметиламин, триметиламин) — газообразные вещества. Остальные низшие амины — жидкости, которые хорошо растворяются в воде. Имеют характерный запах, напоминающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи. Это приводит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин — маслянистая жидкость, ограниченно растворимая в воде, кипящая при температуре $184°С$.

Химические свойства.

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары.

1. Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет неподеленной пары электронов может образовывать ковалентную связь по донорно-акцепторному механизму, выступая в роли донора. В связи с этим амины, как и аммиак, способны присоединять катион водорода, т.е. выступать в роли основания:

$NH_3+H^{+}→{NH_4^{+}}↙{\text"ион аммония"}$

$CH_3CH_2—NH_2+H^{+}→CH_3—{CH_2—NH_3^{+}}↙{\text"ион этиламмония"}$

Известно, что реакция аммиака с водой приводит к образованию гидроксид-ионов:

$NH_3+H_2O⇄NH_3·H_2O⇄NH_4^{+}+OH^{-}$.

Раствор амина в воде имеет щелочную реакцию:

$CH_3CH_2-NH_2+H_2O⇄CH_3-CH_2-NH_3^{+}+OH^{-}$.

Аммиак, реагируя с кислотами, образует соли аммония. Амины также способны вступать в реакцию с кислотами:

$2NH_3+H_2SO_4→{(NH_4)_2SO_4}↙{\text"сульфат аммония"}$,

$CH_3—CH_2—NH_2+H_2SO_4→{(CH_3—CH_2—NH_3)_2SO_4}↙{\text"сульфат этиламмония"}$.

Основные свойства алифатических аминов выражены сильнее, чем у аммиака. Повышение электронной плотности превращает азот в более сильного донора пары электронов, что повышает его основные свойства:

2. Амины горят на воздухе с образованием углекислого газа, воды и азота:

$4CH_3NH_2+9O_2→4CO_2+10H_2O+2N_2$

Аминокислоты

Аминокислоты — гетерофункциональные соединения, которые обязательно содержат две функциональные группы: аминогруппу $—NH_2$ и карбоксильную группу $—СООН$, связанные с углеводородным радикалом.

Общую формулу простейших аминокислот можно записать так:

Так как аминокислоты содержат две различные функциональные группы, которые оказывают влияние друг на друга, характерные реакции отличаются от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа $—NH_2$ определяет основные свойства аминокислот, т.к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа $—СООН$ (карбоксильная группа) определяет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные органические соединения.

Со щелочами они реагируют как кислоты:

С сильными кислотами — как основания-амины:

Кроме того, аминогруппа в аминокислоте вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль:

Так как аминокислоты в водных растворах ведут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концентрацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше $200°С$. Они растворимы в воде и нерастворимы в эфире. В зависимости от радикала $R—$ они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около $150$) выделяют протеиногенные аминокислоты (около $20$), которые входят в состав белков. Они представляют собой L-формы. Примерно половина из этих аминокислот относятся к незаменимым , т.к. они не синтезируются в организме человека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, лизин, треонин, цистеин, метионин, гистидин, триптофан. В организм человека данные вещества поступают с пищей. Если их количество в пище будет недостаточным, нормальное развитие и функционирование организма человека нарушаются. При отдельных заболеваниях организм не в состоянии синтезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группировки $—NH—CO—$, например:

${nNH_2—(CH_2)_5—COOH}↙{\text"аминокапроновая кислота"}→{(…—NH—(CH_2)_5—COO—…)_n}↙{\text"капрон"}+(n+1)H_2O$.

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов.

Для получения синтетических волокон пригодны аминокислоты с расположением аминои карбоксильной групп на концах молекул.

Полиамиды $α$-аминокислот называются пептидами . В зависимости от числа остатков аминокислот различают дипептиды, пептиды, полипептиды. В таких соединениях группы $—NH—CO—$ называют пептидными.

Некоторые аминокислоты, входящие в состав белков.

Белки

Белками, или белковыми веществами, называют высокомолекулярные (молекулярная масса варьируется от $5-10$ тыс. до $1$ млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (от греч. protos — первый, важный). Число остатков аминокислот в молекуле белка очень сильно колеблется и иногда достигает нескольких тысяч. Каждый белок обладает своей, присущей ему, по следовательностью расположения аминокислотных остатков.

Белки выполняют разнообразные биологические функции: каталитические (ферменты), регуляторные (гормоны), структурные (коллаген, фиброин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Белки — основа биомембран, важнейшей составной части клетки и клеточных компонентов. Они играют ключевую роль в жизни клетки, составляя как бы материальную основу ее химической деятельности.

Исключительное свойство белка — самоорганизация структуры , т.е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое другое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки — важнейшая составная часть пищи человека и животных, поставщик необходимых аминокислот.

Строение белков

Все белки образованы двадцатью разными $α$-аминокислотами, общую формулу которых можно представить в виде

где радикал R может иметь самое разнообразное строение.

Белки представляют собой полимерные цепи, состоящие из десятков тысяч, миллионов и более остатков $α$-аминокислот, связанных между собой пептидными связями. Последовательность аминокислотных остатков в молекуле белка называют его первичной структурой.

Для белковых тел характерны огромные молекулярные массы (до миллиарда) и почти макроразмеры молекул. Такая длинная молекула не может быть строго линейной, поэтому ее участки изгибаются и сворачиваются, что приводит к образованию водородных связей с участием атомов азота и кислорода. Образуется регулярная спиралевидная структура, которую называют вторичной структурой.

В белковой молекуле могут возникать ионные взаимодействия между карбоксильными и аминогруппами различных аминокислотных остатков и образование дисульфидных мостиков. Эти взаимодействия приводят к появлению третичной структуры .

Белки с $M_r > 50000$ состоят, как правило, из нескольких полипептидных цепей, каждая из которых уже имеет первичную, вторичную и третичную структуры. Говорят, что такие белки обладают четвертичной структурой.

Свойства белков

Белки — амфотерные электролиты. При определенном значении $рН$ среды (оно называется изоэлектрической точкой) число положительных и отрицательных зарядов в молекуле белка одинаково.

Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в воде наименьшая. Способность белков снижать растворимость при достижении электронейтральности их молекул используется для выделения из растворов, например, в технологии получения белковых продуктов.

Гидратация. Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличиваются. Набухание отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности белковой макромолекулы гидрофильные амидные ($—СО—NH—$, пептидная связь), аминные ($—NH_2$) и карбоксильные ($—СООН$) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности молекулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаждению, а следовательно, способствует устойчивости растворов белка. В изоэлектрической точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этилового спирта. Это приводит к выпадению белков в осадок. При изменении $рН$ среды макромолекула белка становится заряженной, и его гидратационная способность меняется.

При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями . Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохранять свою форму.

Различная гидрофильность клейковинных белков — один из признаков, характеризующих качество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Гидрофильность белков зерна и муки играет важную роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебопекарном производстве, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков. При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы, т.е. ее нативной пространственной структуры. Первичная структура, а следовательно, и химический состав белка не меняются. Изменяются физические свойства: снижается растворимость, способность к гидратации, теряется биологическая активность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых химических групп, облегчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используются в пищевой и биотехнологии.

Пенообразование. Под процессом пенообразования понимают способность белков образовывать высококонцентрированные системы «жидкость — газ», называемые пенами. Устойчивость пены, в которой белок является пенообразователем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразователей широко используются в кондитерской промышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые качества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых продуктов. Для пищевой промышленности можно выделить два важных процесса: 1) гидролиз белков под действием ферментов; 2) взаимодействие аминогрупп белков или аминокислот с карбонильными группами восстанавливающих сахаров. Под влиянием протеаз-ферментов, катализирующих гидролитическое расщепление белков, последние распадаются на более простые продукты (поли- и дипептиды) и в итоге на аминокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков. Реакцию гидролиза с образованием аминокислот в общем виде можно записать так:

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Цветные реакции. Используют следующие реакции:

ксантопротеиновую, при которой происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентрированной азотной кислотой, сопровождающееся появлением желтой окраски;

биуретовую, при которой происходит взаимодействие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами $Cu^{2+}$ и полипептидами. Реакция сопровождается появлением фиолетово-синей окраски.

Используя данный видеоурок, все желающие смогут получить представление о теме "Азотсодержащие органические соединения". При помощи этого видеоматериала вы узнаете об органических соединениях, имеющих в своём составе азот. Учитель расскажет об азотосодержащих органических соединениях, их составе и свойствах.

Тема: Органические вещества

Урок: Азотсодержащие органические соединения

В большинстве природных органических соединений азот входит в состав NH 2 - аминогруппы. Органические вещества, молекулы которых содержат аминогруппу , называются аминами. Строение молекул аминов аналогично строению аммиака, и поэтому свойства этих веществ сходны.

Аминами называют производные аммиака, в молекулах которого один или несколько атомов водорода замещены углеводородными радикалами. Общая формула аминов - R - NH 2.

Рис. 1. Шаростержневые модели молекулы метиламина ()

Если замещен один атом водорода, то образуется первичный амин. Например, метиламин

(см. Рис. 1).

Если замещены 2 атома водорода, то образуется вторичный амин. Например, диметиламин

При замещении всех 3 атомов водорода в аммиаке, образуется третичный амин. Например, триметиламин

Разнообразие аминов определяется не только числом замещенных атомов водорода, но и составом углеводородных радикалов. С n Н 2 n +1 - N Н 2 - это общая формула первичных аминов.

Свойства аминов

Метиламин, диметиламин, триметиламин - это газы с неприятным запахом. Говорят, что они обладают запахом рыбы. Благодаря наличию водородной связи, они хорошо растворяются в воде, спирте, ацетоне. Из-за водородной связи в молекуле метиламина наблюдается и большое различие в температурах кипения метиламина (t кип.= -6,3 ° С) и соответствующего углеводорода метана CH 4 (t кип.= -161,5 ° С). Остальные амины являются жидкими или твердыми, при нормальных условиях, веществами, обладающие неприятным запахом. Только высшие амины практически не имеют запаха. Способность аминов вступать в реакции, подобные аммиаку, обусловлена также наличием в их молекуле «неподеленной» пары электронов (см. Рис. 2).

Рис. 2. Наличие у азота «неподеленной» пары электронов

Взаимодействие с водой

Щелочную среду в водном растворе метиламина можно обнаружить с помощью индикатора. Метиламин СН 3 - N Н 2 - тоже основание, но иного типа. Его основные свойства обусловлены способностью молекул присоединять катионы H + .

Суммарная схема взаимодействия метиламина с водой:

СН 3 - N Н 2 + Н-ОН → СН 3 - N Н 3 + + ОН -

МЕТИЛАМИН ИОН МЕТИЛ АММОНИЯ

Взаимодействие с кислотами

Подобно аммиаку, амины взаимодействуют с кислотами. При этом образуются твердые солеподобные вещества.

С 2 Н 5 - N Н 2 + НС l → С 2 Н 5 - N Н 3 + + С l -

ЭТИЛАМИН ХЛОРИД ЭТИЛ АММОНИЯ

Хлорид этиламмония хорошо растворяется в воде. Раствор этого вещества проводит электрический ток. При взаимодействии хлорида этиламмония со щелочью образуется этиламин.

С 2 Н 5 - N Н 3 + С l - + N аОН → С 2 Н 5 - N Н 2 + N аС l + Н 2 О

При горении аминов образуются не только оксиды углерода и вода, но и молекулярный азот .

4СН 3 - N Н 2 + 9О 2 → 4 СО 2 + 10 Н 2 О + 2 N 2

Смеси метиламина с воздухом взрывоопасны.

Низшие амины используют для синтеза лекарственных средств, пестицидов, а также при производстве пластмасс. Метиламин - токсичное соединение. Он раздражает слизистые оболочки, угнетает дыхание, отрицательно действует на нервную систему, внутренние органы.

Подведение итога урока

Вы узнали еще один класс органических веществ - амины. Амины относятся к азотсодержащим органическим соединениям. Функциональная группа аминов - NН 2 , называемая аминогруппой. Амины можно рассматривать как производные аммиака, в молекулах которого один или несколько атомов водорода замещены на углеводородный радикал. Рассмотрели химические и физические свойства аминов.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009.

2. Попель П.П. Химия. 9 класс: Учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С. Кривля. - К.: ИЦ «Академия», 2009. - 248 с.: ил.

3. Габриелян О.С. Химия. 9 класс: Учебник. - М.: Дрофа, 2001. - 224 с.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009. - №№ 13-15 (с. 173).

2. Вычислите массовую долю азота в метиламине.

3. Напишите реакцию горения пропиламина. Укажите сумму коэффициентов продуктов реакции.

Лекция: Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

Амины, особенности их строения

Вам уже известно, что молекулы органических соединений состоят из атомов углерода, водорода и кислорода. Но среди них есть и такие, которые содержат атомы азота. Именно азотсодержащие органические соединения, такие как аминокислоты, белки и нуклеиновые кислоты, являются основой жизни на Земле. Самыми простыми азотсодержащими соединениями являются амины.

Амины – это органические соединения, являющиеся производными аммиака, в молекуле которых один или несколько атомов водорода замещены на углеводородные радикалы (R).

Исходя из данного утверждения, т.е. по числу аминогрупп NH 2 амины подразделяются на:

    первичные,

    вторичные и

    третичные.

Атом азота в молекуле амина всегда готов предоставить свою неподеленную электронную пару другому атому, поэтому он является донором. Таким образом, связь катиона водорода с атомом азота в молекуле амина происходит с помощью донорно-акцепторного механизма. Исходя из этого, амины, как и аммиак, обладают достаточно выраженными основными свойствами.

В зависимости от типа радикала, связанного с атомом азота, амины подразделяются на:

    алифатические (CH 3 -N<) и

    ароматические (C 6 H 5 -N<).

Изомерия алифатических аминов:

Алифатические амины, иначе называемые предельными, являются более сильными основаниями, чем аммиак. Это обусловлено тем, что в аминах углеводородные заместители имеют положительный индуктивный (+I) эффект. Так же, из - за этого, на атоме азота возрастает электронная плотность. Данный процесс заметно облегчает его взаимодействие с катионом Н + .

Изомерия ароматических аминов:

Ароматические амины проявляют более слабые основные свойства по сравнению с аммиаком. Это объясняется тем, что неподеленная электронная пара атома азота сдвигается в сторону ароматической π-системы бензольного кольца. Впоследствии, электронная плотность на атоме азота постепенно снижается.

Химические свойства аминов

Наличие электронной пары на атоме азота наделяет амины основными свойствами. Первичные предельные амины, в силу более сильных основных свойств, взаимодействуют с водой несколько лучше аммиака. В свою очередь, основность вторичных предельных аминов больше первичных. Проявление основных свойств третичными аминами не так однозначно, потому что атом азота в них, нередко экранирован углеводородными радикалами, что мешает проявлению его основных свойств.

    Амины вступают в обратимые реакции с водой. Водный р-р аминов является щелочной средой, что является следствием диссоциации образующихся оснований. Общий вид реакции выглядит следующим образом:

RNH 2 + H 2 O <-> RNH 3 + + OH -

    Свободные предельные амины и их водные р-ры взаимодействуют с кислотами с образованием солей. К примеру:

CH 3 NH 2 + H 2 SO 4 → HSO 4

C 6 H 5 NH 2 + HCl → Cl

    Соли аминов представляют собой аналоги солей аммония и являются твердыми веществами. Они хорошо растворяются в воде и плохо в неполярных органических растворителях. В реакциях с щелочами при нагревании из солей аминов высвобождаются свободные амины:

[CH 3 NH 3 ]Cl + NаОH CH 3 NH 2 + Cl + H 2 O

    Первичные предельные амины взаимодействуют с азотистой кислотой с образованием спиртов, газообразного азота N 2 и воды:

RNH 2 + HNO 2 ROH + N 2 + H 2 O

Это качественная реакция первичных предельных аминов и применяется для их различения от вторичных и третичных.

Вторичные амины в такой же реакции образуют масляные жидкости с запахом - N -нитрозамины:

R 2 NH + HO-N=O R 2 N-N=O + H 2 O

Третичные амины с азотистой кислотой не взаимодействуют.

  • Амины вступают в реакции нуклеофильного замещения:

CH 3 CH 2 Br + CH 3 CH 2 NH 2 → (CH 3 CH 2 ) 2 NH 2 + Br - CH 2 CH 3

  • Взаимодействие первичных и вторичных аминов с карбоновыми кислотами приводит к их ацилированию, в результет образуются важнейшие органические соединения амиды:

    Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

4C n H 2n+3 N + (6n+3)O 2 → 4nCO 2 + (4n+6)H 2 O

Рассмотрим характерные химические свойства анилина (аминобензола) - простейшего ароматического амина. Аминогруппа в молекуле данного вещества непосредственно соединена с ароматическим кольком. Основные свойства анилина намного слабее алифатических аминов. Поэтому реакция анилина с водой и слабыми кислотами (например, угольной) не идёт.

    Анилин реагирует с сильными и средними неорганическими кислотами с образованием фениламмония. К примеру:

С 6 Н 5 N Н 2 + HCl → С 6 Н 5 N Н 3 С l

Соли фениламмония C 6 H 5 NH 3 + хорошо растворимы в воде, но не­растворимы в неполярных органических растворителях.

    Аминогруппа ароматических аминов, в частности анилина, втянутая в ароматическое кольцо снижает электронную плотность на атоме азота, но увеличивает ее в ароматическом ядре. Поэтому реакции электрофильного замещения (с галогенами) протекают значительно легче, особенно в орто- и пара- положениях. К примеру, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Это качественная реакция на анилин.

    Анилин реагирует с азотистой кислотой при t 0 0 С, образуются соли диазония, имеющие большое практическое значение и применяемые для синтеза азокрасителей и других соединений:

C 6 H 5 NH 2 + KNO 2 + 2HCl → + Cl - + KCl + 2H 2 O

Продуктами приведенной реакции являются хлорид фенилдиазония, хлорид калия и вода.

При проведении реакции данного типа при высокой t выделяется азот, а анилин превращается в фенол:

C 6 H 5 NH 2 + NaNO 2 + H 2 SO 4 → C 6 H 5 -OH + N 2 + NaHSO 4 + H 2 O

    Алкилирование анилина галогенпроизводными углеводородов образует вторичные и третичные амины.

Химические свойства аминокислот

Аминокислоты - органические соединения, молекулы которых имеют две функциональные группы – амино (-NH 2) и карбокси- (-COOH).

Общая формула аминокислот: (NH2)xR(COOH)y, где x и y чаще всего равны 1 или 2.

Наличие в молекулах данных соединений амино- и карбокси- групп объясняет химические свойства аминокислот, схожие с аминами и карбоновыми кислотами. Поэтому аминокислоты проявляют основные свойства, характерные для соединений, содержащих аминогруппы и ксилотные свойства, характерные для соединений, содержащих карбоксильную группу. Следовательно, аминокислоты - амфотерные органические соединения.

  • В реакциях с щелочами аминокислоты проявляют кислотные свойства:

H 2 N-СH 2 -СООН + NаOН → H 2 N-СH 2 -СООН - Nа + + H 2 O

  • В реакциях этерификации со спиртами также проявляют кислотные свойства:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

    В реакциях с сильными кислотами проявляют основные свойства:

NH 2 CH 2 COOH + HCl → + Cl -

    Реакция с азотистой кислотой протекает как в случаях с первичными аминами:

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

    Алкилирование аминокислоты:

NH 2 CH 2 COOH + CH 3 I → + I -

    В реакциях друг с другом аминокислоты образуют дипептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-. К примеру, в реакции глицина и аланина образуется дипептид глицилаланин:

Проведение данной реакции без соблюдения специфических условий синтеза приведет к образованию не глицилаланина, а аланилглицина.




Соединения, содержащие в структуре своих молекул атомы азота, широко распространены в природе (белковые вещества, физиологически активные соединения, полимерные материалы и т.д.). К наиболее простым относятся:

а) нитрозосоединения

б) нитросоединения

в
) амины:

г) диазосоединения

д) азосоединения

ж) нитрилы

з) аминоспирты, аминокислоты, аминосахара и т.д.

Нитросоединения

Нитросоединения – вещества, содержащие в своем составе нитрогруппу –NO 2 (может быть одна или несколько). В зависимоси от углеводоодного радикала различают алифатические (насыщенные и ненасыщенные), ациклические, ароматические, гетероциклические. По типу углерода, с которым связана нитрогруппа – первичные, вторичные, третичные нитросоединения.

Стронение нитрогруппы отличается рядом особенностей, которые влияют на физические и химические свойства нитросоединений. Установлено, что оба атома кислорода в нитрогруппе абсолютно равноценны и строение нитрогруппы может быть изображено в виде:

т.е электронная плотность распределена равномерно

При названии нитросоединений к названию соответствующего углеводорода добавляется приставка нитро-:

Изомерия связана со строением углеводородного радикала и положением нитрогруппы.

СПОСОБЫ ПОЛУЧЕНИЯ

1. Нитрование алканов (реакция Коновалова)

2. Нитрование аренов

3. Алкилирование нитритов галогенопроизводными

4. Окисление первичных ароматических аминов перкислотами

Физические свойства

Нитросоединения алифатические – высококипящие жидкости с приятным запахом, плохо или совсем не растворимые в воде. Начиная с С 4 – ρ>1. Ароматические нитросоединения – жидкости или твердые вещества, имеющие запах горького миндаля, ядовиты. Из-за наличия семиполярной связи в молекулах нитросоединения обладают повышенной полярностью, высокими t кип. и t пл. , большим электрическим дипольным моментом. При накоплении в молекуле нитрогрупп полинитросоединения становятся взрывчатыми.

ХИМИЧЕСКИЕ СВОЙСТВА

Химические свойства обусловлены наличием нитрогруппы, строением углеводородного радикала и влиянием их друг на друга.

1. Восстановление. Проводится в кислой, щелочной либо нейтральной среде до образования первичных аминов. В зависимости от условий и характера восстановителя образуются различные промежуточные продукты.

1.1. Восстановление в кислой среде Fe или Sn. Промежуточные продукты выделить не удается:

1.2. Восстановление в нейтральной среде осуществляется Zn. Можно остановить реакцию и выделить фенилгидроксиламин (стадии 1, 2, 3).

1.3. Восстановление в щелочной среде позволяет выделить промежуточно образующиеся азоксибензол, азобензол и гидразобензол:

Любые продукты реакции восстановления можно получить электрохимическим путем, подобрав соответствующий режим электролиза.

2. Окислительно-восстановительные реакции . Так как нитрогруппа обладает достаточно сильным окислительным действием, которое может проявляться внутримолекулярно при подборе соответствующих условий. При этом атом азота – восстанавливается, а соседний с ним атом углерода – окисляется.

Первичные нитросоединения под действием концентрированных минеральных кислот при нагревании образуют карбоновую кислоту и гидроксиламин:

Под действием разбавленных минеральных кислот из первичных аминов образуются альдегиды, из вторичных – кетоны (реакция Нефа):

В ароматических аминах окисляется углеводородная цепочка (если такая имеется), находящаяся в о -положении по отношению к нитрогруппе:

3. Действие щелочей (таутомерия нитросоединений). Реакция протекает только для первичных и вторичных нитросоединений (третичные со щелочами не реагируют). Так как группа –NO 2 обладает сильными акцепторными свойствами, водород в α-положении по отношению к ней обладает повышенной подвижностью. Поэтому нитросоединения могут медленно растворяться в щелочах с образованием соли аци-формы, которая при дальнейшем подкислении переходит в аци-нитроформу (нитроновую кислоту), а последняя – в нитроформу. Такой переход форм друг в друга называется таутомерным.

4. Действие азотистой кислоты . Позволяет различить первичные и вторичные нитросоединения (третичные – не реагируют). Реакция также обусловлена подвижностью водорода в α-положении. Первичные при взаимодействии с HNO 2 образуют α-нитрозонитросоединения, таутомерные с нитроловыми кислотами:

Щелочные соли нитроловых кислот имеют ярко-красный цвет.

Вторичные нитросоединения с HNO 2 образуют псевдонитролы:

Растворы псевдонитролов в эфире и хлороформе имеют синий цвет.

5. Конденсация с альдегидами . Подвижность водорода в α-положении позволяет провести реакции конденсации с альдегидами по альдольно-кротоновому типу.

Если для конденсации используется бензальдегид, промежуточный альдоль из-за своей неустойчивости практически сразу переходит в β-нитростиролов:

6. Реакции углеводородных радикалов . Алифатические нитросоединения могут быть прогалогенированы в присутствии щелочей в α-положение.

Непредельные нитросоединения проявляют все свойства кратных связей (кроме реакции восстановления). Присоединение к α, β-кратным связям идет против правила Марковникова, так как группа –NO 2 проявляет сильные акцепторные свойства.

Для ароматических нитросоединений реакции электрофильного замещения протекают более трудно, чем для бензола, так как нитрогруппа является заместителем 2-го рода (электроноакцепторный заместитель), затрудняет реакции с электрофильными реагентами.

Реакции с нуклеофильными реагентами нитрогруппа облегчает. При кипячении с КОН образуется смесь о - и п -нитрофенолятов калия:

При увеличении числа нитрогрупп, стоящих в м -положении по отношению друг к другу, нитросоединения проявляют еще большую реакционноспособность по отношению к нуклеофильным реагентам. Тринитробензол в щелочной среде окисляется очень слабыми окислителями (железосинеродистым калием) до пикриновой кислоты: