» » Формулы по планиметрии для егэ. Основные определения, теоремы и формулы планиметрии

Формулы по планиметрии для егэ. Основные определения, теоремы и формулы планиметрии

СПРАВОЧНЫЙ МАТЕРИАЛ ПО ГЕОМЕТРИИ ДЛЯ 7-11 КЛАССОВ.

Уважаемые родители! Если Вы ищите репетитора по математике для Вашего ребёнка, то это объявление для Вас. Предлагаю скайп-репетиторство: подготовка к ОГЭ, ЕГЭ, ликвидация пробелов в знаниях. Ваши выгоды очевидны:

1) Ваш ребенок находится дома, и Вы можете быть за него спокойны;

2) Занятия проходят в удобное для ребенка время, и Вы даже можете присутствовать на этих занятиях. Объясняю я просто и доступно на всем привычной школьной доске.

3) Другие важные преимущества скайп-занятий додумаете сами!

P.S. Друзья, конечно, это бесплатно!

Дорогие друзья! Готовитесь к ОГЭ или ЕГЭ?

Вам в помощь «Справочник по геометрии 7-9» .

Определение параллелограмма.

Параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны: AB||CD, AD||DC .

Противоположные стороны параллелограмма равны: AB=CD, AD=DC.

Противоположные углы параллелограмма равны:

A= C, B= D.

Сумма углов параллелограмма, прилежащих к одной его стороне составляет 180°. Например, ∠A+ B=180°.

Любая диагональ параллелограмма делит его на два равных треугольника. Δ ABD=Δ BCD.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. AO=OC, BO=OD. Пусть АС=d 1 и BD=d 2 , ∠COD=α. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:

  • Если две противоположные стороны четырехугольника параллельны и равны, то этот четырехугольник - параллелограмм.
  • Если противоположные стороны четырехугольника попарно равны, то этот четырехугольник — параллелограмм.
  • Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.

Площадь параллелограмма.

1) S=ah;

2) S=ab∙sinα;

Прямоугольник — это параллелограмм, у которого все углы прямые. ABCD — прямоугольник. Прямоугольник обладает всеми свойствами параллелограмма.

Диагонали прямоугольника равны.

AC=BD. Пусть АС=d 1 и BD=d 2 , ∠COD=α.

d 1 =d 2 – диагонали прямоугольника равны. α – угол между диагоналями.

Квадрат диагонали прямоугольника равен сумме квадратов сторон прямоугольника:

(d 1) 2 =(d 2) 2 =a 2 +b 2 .

Площадь прямоугольника можно найти по формулам:

1) S=ab; 2) S=(½)· d²∙sinα; (d- диагональ прямоугольника).

Около любого прямоугольника можно описать окружность, центр которой – точка пересечения диагоналей; диагонали являются диаметрами окружности.

Ромб.

Ромб — это параллелограмм, у которого все стороны равны.

ABCD — ромб.

Ромб обладает всеми свойствами параллелограмма.

Диагонали ромба взаимно перпендикулярны.

AC | BD.

Диагонали ромба являются биссектрисами его углов.

Площадь ромба.

1) S=ah;

2) S=a 2 ∙sinα;

3) S=(½) d 1 ∙d 2 ;

4) S= P∙r, где P – периметр ромба, r – радиус вписанной окружности.

Квадрат.

Все стороны квадрата равны, диагонали квадрата равны и пересекаются под прямым углом.

Диагональ квадрата d=a√2.

Площадь квадрата. 1) S=a 2 ; 2) S=(½) d 2 .

Трапеция.

Основания трапеции AD||BC, MN-средняя линия

Площадь трапеции равна произведению полусуммы ее оснований на высоту:

S=(AD+BC)∙BF/2 или S=(a+b)∙h/2.

В равнобедренной (равнобокой) трапеции длины боковых сторон равны; углы при основании равны.

Площадь любого четырехугольника.

  • Площадь любого четырехугольника равна половине произведения его диагоналей на синус угла между ними:

S=(½) d 1 ∙d 2 ∙sinβ.

  • Площадь любого четырехугольника равна половине произведения его периметра на радиус вписанной окружности:

Вписанные и описанные четырехугольники.

В выпуклом четырехугольнике, вписанном в круг, произведение диагоналей равно сумме произведений противоположных сторон (теорема Птолемея).

AC∙BD=AB∙DC+AD∙BC.

Если суммы противолежащих углов четырехугольника равны по 180°, то около четырехугольника можно описать окружность . Обратное утверждение также верно.

Если суммы противолежащих сторон четырехугольника равны (a+c=b+d), то в этот четырехугольник можно вписать окружность. Обратное утверждение также верно.

Окружность, круг.

1) Длина окружности С=2πr;

2) Площадь круга S=πr 2 ;

3) Длина дуги АВ:

4) Площадь сектора АОВ:

5) Площадь сегмента (выделенная область):

(«-» берут, если α<180°; «+» берут, если α>180°), ∠AOB=α – центральный угол. Дуга l видна из центра O под углом α.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c²=a²+b².

Площадь прямоугольного треугольника.

S Δ =(½) a∙b, где a и b — катеты или S Δ =(½) c∙h, где с — гипотенуза, h –высота, проведенная к гипотенузе.

Радиус вписанной в прямоугольный треугольник окружности.

Пропорциональные отрезки в прямоугольном треугольнике.

Высота, проведенная из вершины прямого угла к гипотенузе есть средняя пропорциональная величина между проекциями катетов на гипотенузу: h 2 =a c ∙b c ;

а каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией данного катета на гипотенузу: a 2 =c∙a c и b 2 =c∙b c (произведение средних членов пропорции равно произведению ее крайних членов: h, a, b — средние члены соответствующих пропорций ).

Теорема синусов.

В любом треугольнике стороны пропорциональны синусам противолежащих углов.

Следствие из теоремы синусов.

Каждое из отношений стороны к синусу противолежащего угла равно 2R, где R — радиус окружности, описанной около треугольника.

Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других ее сторон без удвоенного произведения этих сторон на косинус угла между ними.

Свойства равнобедренного треугольника.

В равнобедренном треугольнике (длины боковых сторон равны ) высота, проведенная к основанию, является медианой и биссектрисой. Углы при основании равнобедренного треугольника равны.

Сумма внутренних углов любого треугольника составляет 180°, т. е. ∠1+∠2+∠3=180°.

Внешний угол треугольника (∠4) равен сумме двух внутренних, не смежных с ним, т. е. ∠4=∠1+∠2.

Средняя линия треугольника соединяет середины боковых сторон треугольника.

Средняя линия треугольника параллельна основанию и равна его половине: MN=AC/2.

Площадь треугольника.

Формула Герона.

Центр тяжести треугольника.

Центр тяжести треугольника — точка пересечения медиан, которая делит каждую медиану в отношении 2:1, считая от вершины.

Длина медианы, проведенной к стороне а:

Медиана делит треугольник на два равновеликих треугольника, площадь каждого из этих двух треугольников равна половине площади данного треугольника.

Биссектриса угла треугольника.

1) Биссектриса угла любого треугольника делит противоположную сторону на части, соответственно пропорциональные боковым сторонам треугольника:

2) если AD=β a , то длина биссектрисы:

3) Все три биссектрисы треугольника пересекаются в одной точке.

Центр окружности, вписанной в треугольник , лежит на пересечении биссектрис углов треугольника.

Площадь треугольника S Δ =(½) P∙r, где P=a+b+c, r-радиус вписанной окружности.

Радиус вписанной окружности можно найти по формуле:

Центр окружности, описанной около треугольника , лежит на пересечении серединных перпендикуляров к сторонам треугольника.

Радиус окружности, описанной около любого треугольника:

Радиус окружности, описанной около прямоугольного треугольника , равен половине гипотенузы: R=АВ/2;

Медианы прямоугольных треугольников, проведенных к гипотенузе, равны половине гипотенузы (это радиусы описанной окружности) OC=OC 1 =R.

Формулы для радиусов вписанных и описанных окружностей правильных многоугольников.

Окружность, описанная около правильного n-угольника.

Окружность, вписанная в правильный n-угольник.

Сумма внутренних углов любого выпуклого n-угольника равна 180°(n-2).

Сумма внешних углов любого выпуклог0 n-угольника равна 360°.

Прямоугольный параллелепипед.

Все грани прямоугольного параллелепипеда — прямоугольники. a, b, c – линейные размеры прямоугольного параллелепипеда (длина, ширина, высота).

1) Диагональ прямоугольного параллелепипеда d 2 =a 2 +b 2 +c 2 ;

2) Боковая поверхность S бок. =P осн. ∙Н или S бок. =2 (a+b)·c;

3) Полная поверхность S полн. =2S осн. +S бок. или

S полн. =2 (ab+ac+bc);

4) Объем прямоугольного параллелепипеда V=S осн. ∙Н илиV=abc.

1) Все грани куба – квадраты со стороной а.

2) Диагональ куба d=a√3.

3) Боковая поверхность куба S бок. =4а 2 ;

4) Полная поверхность куба S полн. =6а 2 ;

5) Объем куба V=a 3 .

Прямой параллелепипед (в основании лежит параллелограмм или ромб, боковое ребро перпендикулярно основанию).

1) Боковая поверхность S бок. =P осн. ∙Н.

2) Полная поверхность S полн. =2S осн. +S бок.

3) Объем прямого параллелепипеда V=S осн. ∙Н.

Наклонный параллелепипед.

В основании параллелограмм или прямоугольник или ромб или квадрат, а боковые ребра НЕ перпендикулярны плоскости основания.

1) Объем V=S осн. ∙Н;

2) Объем V=S сеч. ∙l , где l боковое ребро, S сеч. -площадь сечения наклонного параллелепипеда, проведенного перпендикулярно боковому ребру l .

Прямая призма.

Боковая поверхность S бок. =P осн. ∙Н;

Полная поверхность S полн. =2S осн. +S бок. ;

Объем прямой призмы V=S осн. ∙Н.

Наклонная призма.

Боковая и полная поверхности, а также объем можно находить по тем же формулам, что и в случае прямой призмы. Если известна площадь сечения призмы, перпендикулярного ее боковому ребру, то объем V=S сеч. ∙l, где l- боковое ребро, S сеч. -площадь сечения, перпендикулярного боковому ребру l .

Пирамида.

1) боковая поверхность S бок. равна сумме площадей боковых граней пирамиды;

2) полная поверхность S полн. =S осн. +S бок. ;

3) объем V=(1/3) S осн. ∙Н.

4) У правильной пирамиды в основании лежит правильный многоугольник, а вершина пирамиды проектируется в центр этого многоугольника, т. е. в центр описанной и вписанной окружностей.

5) Апофема l –это высота боковой грани правильной пирамиды. Боковая поверхность правильной пирамиды S бок. =(½) P осн. ∙l .

Теорема о трех перпендикулярах.

Прямая, проведенная на плоскости через основание наклонной, перпендикулярно ее проекции, перпендикулярна и самой наклонной.

Обратная теорема. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции этой наклонной.

Усеченная пирамида.

Если S и s соответственно площади оснований усеченной пирамиды, то объем любой усеченной пирамиды

где h-высота усеченной пирамиды.

Боковая поверхность правильной усеченной пирамиды

где P и p соответственно периметры оснований правильной усеченной пирамиды,

l -апофема (высота боковой грани правильной усеченной пирамиды).

Цилиндр.

Боковая поверхность S бок. =2πRH;

Полная поверхность S полн. =2πRH+2πR 2 или S полн. =2πR (H+R);

Объем цилиндра V=πR 2 H.

Конус.

Боковая поверхность S бок. = πRl ;

Полная поверхность S полн. =πRl +πR 2 или S полн. =πR (l +R);

Объем пирамиды V=(1/3)πR 2 H. Здесь l – образующая, R — радиус основания, H – высота.

Шар и сфера.

Площадь сферы S=4πR 2 ; Объем шара V=(4/3)πR 3 .

R – радиус сферы (шара).

Н а этой странице собраны теоремы планиметрии, которые репетитор по математике может использовать в подготовке способного ученика к серьезному экзамену: олимпиаде или экзамену в МГУ (в подготовке на Мехмат МГУ, ВМК), к олимпиаде в Высшей Школе Экономики, к олимпиаде в Финансовой Академии и в МФТИ. Знание этих фактов открывает перед репетитором большие возможности по составлению конкурсных задач. Достаточно «обыграть» какую-нибудь упомянутую теорему на числах или дополнить ее элементы несложными взаимосвязями с другими математическими объектами, и получится вполне приличная олимпиадная задачка. Многие свойства присутствуют в сильных школьных учебниках в качестве задач на доказательство и специально не выносятся в заголовки и разделы параграфов. Я постарался исправить этот недостаток.

Математика — необъятный предмет, а количество фактов, которые можно выделять как теоремы — бесконечно. Репетитор по математике не может физически знать и помнить все. Поэтому какие-то хитрые взаимосвязи между геометрическими объектами каждый раз открываются преподавателю заново. Собрать все их на одной странице сразу — невозможно физически. Поэтому я буду заполнять страницу постепенно, по мере использования теорем на своих уроках.

Советую начинающим репетиторам по математике быть осторожнее в использовании дополнительных справочных материалов, поскольку большинство этих фактов школьники не знают.

Репетитор по математике о свойствах геометрических фигур

1) Серединный перпендикуляр к стороне треугольника пересекается с биссектрисой противоположного ей угла на окружности, описанной около данного треугольника. Это следует из равенства дуг, на которые серединный перпендикуляр делит нижнюю дугу, и из теоремы о вписанном угле в окружность.

2) Если из одной вершины в треугольнике проведены биссектриса b, медиана m и высота h, то биссектриса будет лежать между двумя другими отрезками, а длины всех отрезков подчиняются двойному неравенству .

3) В произвольном треугольнике расстояние от любой его вершины до его ортоцентра (точки пересечения высот) в 2 раза больше расстояния от центра описанной около этого треугольника окружности до противоположной этой вершине стороны. Для доказательства можно провести через вершины треугольника прямые, параллельные его высотам. Затем использовать подобие исходного и полученного треугольника.

4) Точка пересечения медиан M любого треугольника (его центр тяжести) вместе с ортоцентром треугольника H и центром описанной окружности (точка O) лежат на одной примой, причем . Это следует из предыдущего свойства и из свойства точки пересечения медиан.

5) Продолжение общей хорды двух пересекающихся окружностей делит отрезок их общей касательной на две равные части. Это свойство верно независимо от характера этого пересечения (то есть от расположения центров окружностей). Для доказательства можно воспользоваться свойством квадрата отрезка касательной.

6) Если в треугольнике проведена биссектриса его угла, то её квадрат равен разности произведений сторон угла и отрезков, на которые биссектриса делит противоположную сторону.

То есть имеет место следующее равенство

7) Знакома ли Вам ситуация, когда к гипотенузе проводится высота из вершины прямого угла? Наверняка. А знаете ли Вы, что все треугольники, которые при этом получаются подобны? Наверняка знаете. Тогда наверняка не знаете, что любые соответствующие элементы этих треугольников образуют равенство, повторяющее теорему Пифагора, то есть, например, , где и — радиусы вписанных окружностей в малые треугольники, а — радиус окружности, вписанной в большой треугольник.

8) Если вам попался произвольный четырехульник со всеми известными сторонами a,b,c и d, то его площадь можно легко посчитать по по формуле, напоминающей формулу Герона:
, где x – сумма любых двух противоположных углов четырехугольника. Если данный четырехугольника является вписанным в окружность, то и формула принимает вид:
и называется формулой Брахмагупты

9) Если ваш четырехугольник описан около окружности (то есть окружность в него вписана), то площадь четырехугольника вычисляется по формуле

1

Дрёмова О.Н. (, МБОУ СОШ «Аннинского Лицея»)

1. Геометрия 7-9 классы: учеб. для общеобразоват. учреждений / А.В. Погорелов. – 10-я изд. – М.: Просвещение, 2016. – 240 с.

2. http://ru.solverbook.com

3. http://ege-study.ru

4. https://reshyege.ru/

5. http:// www.fmclass.ru/math.phpid = 4850e0880794e

6. http://tehtab.ru

7. https://ege.sdamgia.ru/problemid = 50847

8. http://alexlarin.net/ege17.html

Данная статья является реферативным изложением основной работы. Полный текст научной работы, приложения, иллюстрации и иные дополнительные материалы доступны на сайте IV Международного конкурса научно - исследовательских и творческих работ учащихся «Старт в науке» по ссылке: https://school-science.ru/1017/7/770.

Гипотеза, актуальность, цель, задачи проекта, объект и предмет исследований, результаты

Цель : Выявить, доказать малоизвестные теоремы, свойства геометрии.

Задачи исследования:

1. Изучить учебную и справочную литературу.

2. Собрать малоизвестный теоретический материал, необходимый для решения планиметрических задач.

3. Разобраться в доказательствах малоизвестных теорем и свойств.

4. Найти и решить задачи КИМов ЕГЭ, на применение этих малоизвестных теорем и свойств.

Актуальность: В ЕГЭ в заданиях по математике, часто встречаются задачи по геометрии, решение, которых вызывают некоторые затруднения, и заставляют тратить много времени. Умение решать такие задачи является неотъемлемым условием успешной сдачи ЕГЭ профильного уровня по математике. Но есть решение этой проблемы, некоторые из данных задач можно с лёгкостью решить, используя теоремы, свойства, которые являются малоизвестными, и им не уделяется внимание в школьном курсе математики. На мой взгляд, этим можно объяснить мой интерес к теме исследования и её актуальность.

Объект исследования: геометрические задачи КИМов ЕГЭ.

Предмет исследования: малоизвестные теоремы и свойства планиметрии.

Гипотеза: Существуют малоизвестные теоремы и свойства геометрии, знание которых облегчит решение некоторых планиметрических задач КИМов ЕГЭ.

Методы исследования:

1) Теоретический анализ и поиск информации о малоизвестных теоремах и свойствах;

2) Доказательство теорем и свойств

3) Поиск и решение задач с применением данных теорем и свойств

В математике, а в целом в геометрии присутствует огромное количество различных теорем, свойств. Известно много теорем и свойств для решения планиметрических задач, которые актуальны и по сей день, но являются малоизвестными, и очень полезными для решения задач. При изучение данного предмета усваиваются лишь основные, всеми известные теоремы и способы решения геометрических задач. Но помимо этого существует довольно большое количество различных свойств и теорем, которые упрощают решение той, или иной задачи, но мало кто про них знает вообще. В КИМах ЕГЭ решать задачи по геометрии можно в разы проще, зная эти малоизвестные свойства и теоремы. В КИМах задачи по геометрии встречаются в номерах в 8, 13, 15 и 16. Малоизвестные теоремы и свойсва, описанные в моей работе, упрощают в разы решение планиметрических задач.

Теорема о биссектрисе углов треугольника

Теорема: биссектриса угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.

Доказательство.

Рассмотрим треугольник АВС и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке М продолжением стороны АВ. Так как ВК - биссектриса угла АВС, то ∠АВК = ∠КВС. Далее, ∠АВК = ∠ВМС, как соответственные углы при параллельных прямых, и ∠КВС = ∠ВСМ, как накрест лежащие углы при параллельных прямых. Отсюда ∠ВСМ = ∠ВМС, и поэтому треугольник ВМС - равнобедренный, откуда ВС = ВМ. По теореме о параллельных прямых, пересекающих стороны угла, имеем АК: КС = АВ: ВМ = АВ: ВС, что и требовалось доказать.

Рассмотрим задачи, при решении которых используется свойство биссектрис треугольника.

Задача № 1. В треугольнике ABC биссектриса AH делит сторону BC на отрезки, длины которых равны 28 и 12. Найдите периметр треугольника ABC, если AB - AC = 18.

AВС - треугольник

АH - биссектриса

Пусть AC = X тогда AB = X + 18

По свойству биссектрисы угла альфа, AB·HC = BH·AC;

28·X = 12·(х + 18)х = 13,5,

значит AC = 13,5, откуда

AB = 13,5 + 18 = 31,5BC = 28 + 12 = 40,

P = AB + BC + AC = 85

Теорема о медианах треугольника

Теорема. Медианы треугольника пересекаются в одной точке и делятся в ней в отношении 2:1, считая от вершины.

Доказательство. В треугольнике A BC проведем медианы AA1 и CC1 и их точку пересечения обозначим M.

Через точку C1 проведем прямую, параллельную AA1 и ее точку пересечения с BC обозначим D.

Тогда D - середина BA1, следовательно, CA1:A1D = 2:1.

По теореме Фалеса, CM:MC1 = 2:1. Таким образом, медиана AA1 пересекает медиану CC1 в точке M, делящей медиану CC1 в отношении 2:1.

Аналогично, медиана BB1 пересекает медиану CC1 в точке, делящей медиану CC1 в отношении 2:1, т.е. точке M.

Задача № 1. Докажите, что медиана треугольника лежит ближе к большей стороне, т.е. если в треугольнике ABC, AC>BC, то для медианы CC1 выполняется неравенство ACC1< BCC1.

Продолжим медиану CC1и отложим отрезок C1B, равный AC1. Треугольник AC1D равен треугольнику BC1C по двум сторонам и углу между ними. Следовательно, AD = BC, ADC1 = BCC1. В треугольнике ACD AC> AD. Так как против большей стороны треугольника лежит больший угол, то ADC1>ACD. Следовательно, выполняется неравенство ACC1

Задача № 2. Площадь треугольника ABC равна 1. Найдите площадь треугольника, стороны которого равны медианам данного треугольника.

ABC-треугольник

Пусть AA1, BB1, CC1 - медианы треугольника ABC, пересекающиеся в точке M. Продолжим медиану CC1 и отложим отрезок C1D, равный MC1.

Площадь треугольника BMC равна 1/3, и его стороны равны 2/3 медиан исходного треугольника. Следовательно, площадь треугольника, стороны которого равны медианам данного треугольника, равна 3/4.Выведем формулу, выражающую медианы треугольника через его стороны. Пусть стороны треугольника ABC равны a, b, c. Искомую длину медианы CD обозначим mc. По теореме косинусов имеем:

Складывая эти два равенства и учитывая, что cosADC = -cosBDC, получаем равенство: из которого находим .

Теорема о средних линиях треугольника

Теорема: три средние линии треугольника делят его на 4 равных треугольника, подобных данному с коэффициентом подобия ½

Доказательство:

Пусть ABC - треугольник. С1 - середина АВ, А1 - середина ВС, В1- середина АС.

Докажем, что треугольники AС1В1, BС1А1, А1В1C, С1В1А1 равны.

Так как С1 А1 В1 - середины, то AС1 = С1B, BА1 = А1C, AВ1 = В1C.

Используем свойство среднее линии:

С1А1 = 1/2 ·AC = 1/2 ·(AВ1 + В1C) = 1/2 ·(AВ1 + AВ1) = AВ1

Аналогично С1В1 = А1C, А1В1 = АС1.

Тогда в треугольниках AС1В1, BА1С1, A1В1C, С1В1А1

AС1 = BС1 = А1В1 = А1В1

AВ1 = С1А1 = В1C = C1A1

С1В1 = BА1 = А1C = С1В1

Значит треугольники равны по трем сторонам, из этого следует, что

А1/B1 = A1C1/AC = B1C1/BC = ½

Теорема доказана.

Рассмотрим решение задач с применением свойства средних линий треугольника.

Задача № 1. Дан треугольник АBС со сторонами 9,4 и 7. Найдите периметр треугольника C1A1B1вершинами которого являются середины данных сторон

Дано: треугольник - АВС

9,4,7-стороны треугольника

По свойству подобия треугольников: 3 средние линии треугольника делят его на 4 равные треугольника, подобные данному с коэффициентом 1/2.

C1A1 = 9/2 = 4.5 A1B1 = 4/2 = 2 C1B1 = 7/2 = 3.5 отсюда периметр равен = 4,5 + 2 + 3,5 = 10

Свойство касательной к окружности

Теорема: квадрат касательной равен произведению секущей на её внешнюю часть.

Доказательство.

Проведём отрезки AK и BK.Треугольники AKM и BKM подобны т. к. угол M у них общий. А углы AKM и B равны, так как каждый из них измеряется половиной дуги AK. Следовательно, MK/MA = MB/MK, или MK2 = MA·MB.

Примеры решения задач.

Задача № 1. Из точки А вне окружности проведены секущая, длиной 12 см и касательная, длина которой в 2 раза меньше отрезка секущей, находящегося внутри окружности. найдите длину касательной.

ACD-секущая

Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной,

то есть AD·АC = АB2. ИлиAD·(AD-2АB) = АB2.

Подставляем известные значения: 12(12-2АB) = АB2 или АB2 + 24·АB-144.

АB = -12 + 12v2 = 12(v2-1)

Свойство сторон описанного четырёхугольника

Теорема: у четырёхугольника, описанного около окружности, суммы длин противоположных сторон равны

Доказательство:

По свойству касательной AP = AQ, DP = DN,CN = CM,и BQ = BM, получаем, что

AB + CD = AQ + BQ + CN + DNиBC + + AD = BM + CM + AP + DP.

Следовательно

AB + CD = BC + AD

Рассмотрим примеры решения задач.

Задача № 1. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как 1:2:3. Найдите большую сторону этого четырехугольника, если известно, что его периметр равен 32.

ABCD - четырёхугольник

AB:BC:CD = 1:2:3

Пусть сторона AB = x, тогда AD = 2х, а DC = 3х. По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит х + 3х = BC + 2х, откуда ВС = 2х, тогда периметр четырехугольника равен 8X.

Получаем, что х = 4, а большая сторона равна 12.

Задача № 2. Около окружности описана трапеция, периметр которой равен 40. Найдите ее среднюю линию.

ABCD-трапеция, l - средняя линия

Решение: Средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны a и c, а боковые стороны b и d.По свойству описанного четырехугольника, a + c = b + d, и значит, периметр равен 2(a + c).

Получаем, что а + с = 20, откуда L = 10

Формула Пика

Теорема Пика: площадь многоугольника равна:

где Г - число узлов решетки на границе многоугольника

В - число узлов решетки внутри многоугольника.

Например, для вычисления площади четырёхугольника, изображённого на рисунке, считаем:

Г = 7, В = 23,

откуда S = 7:2 + 23 - 1 = 25,5.

Площадь любого многоугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

В некоторых случаях и вовсе можно применить готовую формулу площади треугольника или четырёхугольника. Но в отдельных случаях данные методы применить либо невозможно, либо процесс их применения является трудоёмким, неудобным.

Чтобы вычислить площадь многоугольника, изображенного на рисунке, применяя формулу Пика, имеем: S = 8/2 + 19-1 = 22.

Заключение

В ходе исследований подтвердилась гипотеза о том, что в геометрии существуют малоизвестные из школьного курса теоремы и свойства, которые упрощают решение некоторых планиметрических задач, в том числе и задач КИМов ЕГЭ.

Мне удалось найти такие теоремы и свойства и применить их к решению задач, и доказать, что их применение сводит огромные решения некоторых задач, к решениям за пару минут. Применение описанных в моей работе теорем, свойств в отдельных случаях позволяет решить задачу сходу и устно, и позволяет сохранить больше времени на ЕГЭ и просто при их решение в школе.

Я считаю, что материалы моих исследований могут быть полезны выпускникам при подготовке к сдаче ЕГЭ по математике.

Библиографическая ссылка

Хворов И.И. МАЛОИЗВЕСТНЫЕ ТЕОРЕМЫ ПЛАНИМЕТРИИ // Международный школьный научный вестник. – 2018. – № 3-2. – С. 184-188;
URL: http://school-herald.ru/ru/article/view?id=544 (дата обращения: 02.01.2020).

В статье приведена самая важная теоретическая информация и необходимые для решения конкретных задач формулы. По полочкам разложены важные утверждения и свойства фигур.

Определение и важные факты

Планиметрия - это раздел геометрии, рассматривающий объекты на плоской двумерной поверхности. Можно выделить некоторые подходящие примеры: квадрат, круг, ромб.

Среди всего прочего стоит выделить точку и прямую. Они являются двумя основными понятиями планиметрии.

Уже на них строятся все остальное, например:


Аксиомы и теоремы

Подробнее разберемся с аксиомами. В планиметрии это наиважнейшие правила, по которым работает вся наука. Да и не только в ней. По определению, речь идет об утверждениях, не требующих доказательств.

Аксиомы, которые буду рассмотрены ниже, входят в так называемую Евклидовую геометрию.

  • Есть две точки. Через них всегда можно провести единственную прямую.
  • Если существует прямая, то есть точки, которые на ней лежат, и точки, не лежащие на ней.

Это 2 утверждения принято называть аксиомами принадлежности, а следующие - порядка:

  • Если на прямой расположены три точки, то одна из них обязательно находится между двумя другими.
  • Плоскость делится любой прямой на две части. Когда концы отрезка лежат на одной половине, то значит и весь объект принадлежит ей. В ином случае исходная прямая и отрезок имеют точку пересечения.

Аксиомы мер:

  • Каждый отрезок имеет длину, отличную от нуля. Если точка разбивает его на несколько частей, то их сумма будет равна полной длине объекта.
  • У каждого угла есть определенная градусная мера, которая не равна нулю. Если разбить его лучом, то исходный угол будет равен сумме образованных.

Параллельность:

  • На плоскости расположена прямая. Через любую точку, не принадлежащую ей, можно провести лишь одну прямую, параллельную данной.

Теоремы в планиметрии - это уже не совсем фундаментальные утверждения. Обычно их принимают как факт, но каждая из них имеет доказательство, построенное на основных понятиях, упомянутых выше. Кроме того, их очень много. Разобрать все будет довольно трудно, но в представленном материале будут присутствовать некоторые из них.

Со следующими двумя стоит ознакомиться пораньше:

  • Сумма смежных углов равна 180 градусам.
  • Вертикальные углы имеют одинаковую величину.

Эти две теоремы могут пригодиться в решении геометрических задач, связанных с n-угольниками. Они довольно просты и интуитивно понятны. Стоит их запомнить.

Треугольники

Треугольник - это геометрическая фигура, состоящая из трех последовательно соединенных отрезков. Классифицируют их по нескольким признакам.

По сторонам (соотношения выплывают из названий):


По углам:

  • остроугольный;
  • прямоугольный;
  • тупоугольный.

Два угла независимо от ситуации всегда будут острыми, а третий определяется первой частью слова. То есть у прямоугольного треугольника один из углов равен 90 градусам.

Свойства:

  • Чем больше угол, тем больше противоположная ему сторона.
  • Сумма всех углов - 180 градусов.
  • Площадь можно вычислить по формуле: S = ½ ⋅ h ⋅ a, где a - сторона, h - проведенная к ней высота.
  • Всегда можно вписать окружность в треугольник или же описать ее вокруг него.

Об одной из основных формул планиметрии говорит теорема Пифагора. Работает она исключительно для прямоугольного треугольника и звучит так: квадрат гипотенузы равен сумме квадратов катетов: AB 2 = AC 2 + BC 2 .

Под гипотенузой подразумевают сторону, противоположную углу 90°, а под катетами - прилежащие.

Четырехугольники

Информации на эту тему чрезвычайно много. Ниже приведена лишь самая важная.

Некоторые разновидности:

  1. Параллелограмм - противоположные стороны равны и попарно параллельны.
  2. Ромб - параллелограмм, чьи стороны имеют одинаковую длину.
  3. Прямоугольник - параллелограмм с четырьмя прямыми углами
  4. Квадрат - одновременно ромб и прямоугольник.
  5. Трапеция - лишь две противоположные стороны параллельны.

Свойства:

  • Сума внутренних углов равна 360 градусам.
  • Площадь всегда можно вычислить по формуле: S=√(p-a)(p-b)(p-c)(p-d), где p - половина периметра, a, b, c, d - стороны фигуры.
  • Если вокруг четырехугольник можно описать окружность, тогда его называю выпуклым, если нет - невыпуклым.

Укажем для начала несколько основных свойств различных типов углов:

  • Смежные углы в сумме равны 180 градусов.
  • Вертикальные углы равны между собой.

Теперь перейдем к свойствам треугольника. Пусть имеется произвольный треугольник:

Тогда, сумма углов треугольника :

Запомните также, что сумма любых двух сторон треугольника всегда больше третьей стороны . Площадь треугольника через две стороны и угол между ними:

Площадь треугольника через сторону и высоту опущенную на неё:

Полупериметр треугольника находится по следующей формуле:

Формула Герона для площади треугольника:

Площадь треугольника через радиус описанной окружности:

Формула медианы (медиана - линия проведенная через некоторую вершину и середину противоположной стороны в треугольнике):

Свойства медиан:

  • Все три медианы пересекаются в одной точке.
  • Медианы делят треугольник на шесть треугольников одинаковой площади.
  • В точке пересечения медианы делятся в отношении 2:1, считая от вершин.

Свойство биссектрисы (биссектриса - линия, которая делит некоторый угол на два равных угла, т.е. пополам):

Важно знать: Центр вписанной в треугольник окружности лежит на пересечении биссектрис (все три биссектрисы пересекаются в этой одной точке). Формулы биссектрисы:

Основное свойство высот треугольника (высота в треугольнике - линия проходящая через некоторую вершину треугольника перпендикулярно противоположной стороне):

Все три высоты в треугольнике пересекаются в одной точке. Положение точки пересечения определяется типом треугольника:

  • Если треугольник остроугольный, то точка пересечения высот находится внутри треугольника.
  • В прямоугольном треугольнике высоты пересекаются в вершине прямого угла.
  • Если треугольник тупоугольный, то точка пересечения высот находится за пределами треугольника.

Еще одно полезное свойство высот треугольника:

Теорема косинусов :

Теорема синусов :

Центр окружности описанной около треугольника лежит на пересечении посерединных перпендикуляров. Все три посерединных перпендикуляра пересекаются в одной этой точке. Посерединный перпендикуляр - линия проведенная через середину стороны треугольника перпендикулярно ей.

Радиус окружности, вписанной в правильный треугольник:

Радиус окружности, описанной около правильного треугольника:

Площадь правильного треугольника:

Теорема Пифагора для прямоугольного треугольника (c - гипотенуза, a и b - катеты):

Радиус окружности, вписанной в прямоугольный треугольник:

Радиус окружности, описанной вокруг прямоугольного треугольника:

Площадь прямоугольного треугольника (h - высота опущенная на гипотенузу):

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Подобные треугольники - треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого. В подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т.п.) пропорциональны. Сходственные стороны подобных треугольников - стороны, лежащие напротив равных углов. Коэффициент подобия - число k , равное отношению сходственных сторон подобных треугольников. Отношение периметров подобных треугольников равно коэффициенту подобия. Отношение длин биссектрис, медиан, высот и серединных перпендикуляров равно коэффициенту подобия. Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Признаки подобия треугольников:

  • По двум углам. Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.
  • По двум сторонам и углу между ними. Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, то треугольники подобны.
  • По трём сторонам. Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.

Трапеция

Трапеция - четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна. Длина средней линии трапеции:

Площадь трапеции:

Некоторые свойства трапеций:

  • Средняя линия трапеции параллельна основаниям.
  • Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.
  • В трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон находятся на одной прямой.
  • Диагонали трапеции разбивают её на четыре треугольника. Треугольники, сторонами которых являются основания - подобны, а треугольники, сторонами которых являются боковые стороны - равновелики.
  • Если сумма углов при любом основании трапеции равна 90 градусов, то отрезок соединяющий середины оснований равен полуразности оснований.
  • У равнобедренной трапеции углы при любом основании равны.
  • У равнобедренной трапеции диагонали равны.
  • В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований.

Параллелограмм

Параллелограмм - это четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Площадь параллелограмма через сторону и высоту опущенную на неё:

Площадь параллелограмма через две стороны и угол между ними:

Некоторые свойства параллелограмма:

  • Противоположные стороны параллелограмма равны.
  • Противоположные углы параллелограмма равны.
  • Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
  • Сумма углов, прилежащих к одной стороне, равна 180 градусов.
  • Сумма всех углов параллелограмма равна 360 градусов.
  • Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон.

Квадрат

Квадрат - четырёхугольник, у которого все стороны равны, а все углы равны по 90 градусов. Площадь квадрата через длину его стороны:

Площадь квадрата через длину его диагонали:

Свойства квадрата – это все свойства параллелограмма, ромба и прямоугольника одновременно.

Ромб и прямоугольник

Ромб - это параллелограмм, у которого все стороны равны. Площадь ромба (первая формула - через две диагонали, вторая - через длину стороны и угол между сторонами):

Свойства ромба:

  • Ромб является параллелограммом. Его противолежащие стороны попарно параллельны.
  • Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.
  • Диагонали ромба являются биссектрисами его углов.

Прямоугольник - это параллелограмм, у которого все углы прямые (равны 90 градусам). Площадь прямоугольника через две смежные стороны:

Свойства прямоугольника:

  • Диагонали прямоугольника равны.
  • Прямоугольник является параллелограммом - его противоположные стороны параллельны.
  • Стороны прямоугольника являются одновременно его высотами.
  • Квадрат диагонали прямоугольника равен сумме квадратов двух его не противоположных сторон (по теореме Пифагора).
  • Около любого прямоугольника можно описать окружность, причем диагональ прямоугольника равна диаметру описанной окружности.

Произвольные фигуры

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников ):

Обобщённая теорема Фалеса: Параллельные прямые отсекают на секущих пропорциональные отрезки.

Сумма углов n -угольника:

Центральный угол правильного n -угольника:

Площадь правильного n -угольника:

Окружность

Теорема о пропорциональных отрезках хорд:

Теорема о касательной и секущей:

Теорема о двух секущих:

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство центральных углов и хорд:

Свойство центральных углов и секущих:

Длина окружности :

Длина дуги окружности:

Площадь круга :

Площадь сектора:

Площадь кольца:

Площадь кругового сегмента:

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.