» » Как увеличивается масса при скорости. Зависимость массы от скорости релятивистская динамика Что такое скорость бесконечной массы

Как увеличивается масса при скорости. Зависимость массы от скорости релятивистская динамика Что такое скорость бесконечной массы

С точки зрения классической механики масса тела не зависит от его движения. Если масса покоящегося тела равна m 0 , то и для движущегося тела эта масса останется точно такой же. Теория относительности показывает, что в действительности это не так. Масса тела т , движущегося со скоростью v, выражается через массу покоя следующим образом:

m = m 0 / √(1 - v 2 /c 2) (5)

Отметим сразу же, что скорость, фигурирующая в формуле (5), может быть измерена в любой инерциальной системе. В разных инерциальных системах тело имеет разную скорость, в разных инерциальных системах у него будет также и разная масса.

Масса — такая же относительная величина, как скорость, время, расстояние. Нельзя говорить о величине массы, пока не будет фиксирована система отсчета, в которой мы изучаем тело.

Из сказанного ясно, что, описывая тело, нельзя просто сказать, что его масса такая-то. Например, предложение «масса шарика 10 г» с точки зрения теории относительности совершенно неопределенно. Численное значение массы шарика ничего еще не говорит нам до тех пор, пока не будет указана инерциальная система, по отношению к которой измерена эта масса. Обычно масса тела задается в инерциальной системе, связанной с самим телом, т. е. задается масса покоя.

В табл. 6 приведена зависимость массы тела от его скорости. При этом предполагается, что масса покоящегося тела составляет 1 а. Скорости меньше 6000 км/сек в таблице не приводятся, так как при таких скоростях отличие массы от массы покоя ничтожно мало. При больших же скоростях эта разница становится уже заметной. Чем больше скорость тела, тем больше его масса. Так, например, при движении со скоростью 299 700 км/сек масса тела увеличивается уже почти в 41 раз. При больших скоростях даже ничтожное увеличение скорости значительно увеличивает массу тела. Это особенно заметно на рис. 41, где графически изображена зависимость массы от скорости.

Рис. 41. Зависимость массы от скорости (масса покоя тела равна 1 г)

В классической механике изучаются только медленные движения, для которых масса тела совершенно незначительно отличается от массы покоя. При изучении медленных движений массу тела можем считать равной массе покоя. Ошибка, которую мы при этом совершаем, практически незаметна.

Если скорость движения тела приближается к скорости света, то масса при этом растет неограниченно или, как говорят, масса тела становится бесконечной. Только в одном единственном случае тело может приобрести скорость, равную скорости света.
Из формулы (5) видно, что в том случае, если тело будет двигаться со скоростью света, т. е. если v = с и √(1 - v 2 /c 2), то должна быть равна нулю и величина m 0 .

Если бы этого не было, то формула (5) потеряла бы всякий смысл, так как деление конечного числа на нуль — недопустимая операция. Конечное число, деленное на нуль, равняется бесконечности — результат, который не имеет определенного физического смысла. Однако мы можем осмыслить выражение «нуль, деленный на нуль». Отсюда и следует, что в точности со скоростью света могут двигаться только объекты, у которых масса покоя равняется нулю. Телами в обычном понимании такие объекты называть нельзя.

Равенство массы покоя нулю означает, что тело с такой массой вообще не может покоиться, а должно всегда двигаться со скоростью с. Объект с нулевой массой покоя, то свет, точнее говоря, фотоны (кванты света). Фотоны никогда и ни в одной инерциальной системе не могут покоиться, они всегда движутся со скоростью с. Тела с массой покоя, отличной от нуля, могут находиться в покое или двигаться с различными скоростями, но с меньшими скоростями света. Скорости света они никогда не могут достигнуть.

Полученная выше связь изменения массы с изменением энергии не касается перехода из одной системы в другую, она связана с вопросом о природе электромагнитного излучения. Но возможность изменения массы тела повлечет за собой соответствующие изменения в динамике. Проследим это на примере вычисления кинетической энергии.

Пусть тело массы m обладает скоростью u . Энергия его движения может быть вычислена по работе, которую совершили внешние силы:

Если использовать II закон Ньютона, то

Интегрирование уравнения (5.42) приведет к известному выражению для кинетической энергии.

Совсем иначе будет обстоять дело, если поставить под сомнение постоянство массы, предположение о котором молчаливо содержится в (5.42): масса вынесена из под знака дифференциала и при сообщении системе энергии остается постоянной. В свете же новых представлений это совсем не так.

Действительно, если масса может меняться, то ее тоже нужно дифференцировать. Тогда

Заменяя изменение энергии через изменение массы по полученному выше закону (5.40), получим:

Последнее равенство содержит две переменные и при интегрировании их следует разделять:

где m 0 – масса в той системе, где тело покоится. Эту систему, как правило, связывают непосредственно с самой движущейся частицей. m – масса частицы в той системе, относительно которой она движется. В результате интегрирования получим:

Зависимость массы от скорости (5.46) аналогична подобной для длительности события (5.17): время события минимально в той системе, где это событие происходит. Так же и масса минимальна в той системе, где тело покоится.

Уравнение (5.46) можно проверить на опыте там, где частицы движутся со скоростями, близкими к скорости света, то есть в микромире. Возрастание массы с увеличением скорости впервые было замечено в циклотронах – ускорителях первого поколения. Этот эффект приводил к тому, что дальнейшее ускорение частиц становилось невозможным. В результате конструкцию циклотрона пришлось менять и создавать ускорители, учитывающие рост массы частицы при увеличении скорости.

Здесь уместно заметить, что существует частица, которая может двигаться только со скоростью света, при уменьшении скорости – торможении – она прекращает свое существование, передавая свои энергию и импульс другим телам (либо превращается в другие частицы). Эта частица носит название фотон – частица света. Для него равно нулю. Поэтому, если для остальных частиц интегрирование (5.40) в пределах от до m дает

Теория относительности - мистификация ХХ века Секерин Владимир Ильич

6.3. Рост массы в зависимости от скорости

Представление зависимости массы от скорости занимает особое положение в современной физике. История формирования соотношения между массой и энергией изложена В. В. Чешевым в работе , где, в частности, сказано: «Представление о возрастании массы электрона было отчасти инициировано гипотезой эфира. В 1881 году Дж. Дж. Томсон, исходя из теоретических соображений, указал, что «электрически заряженное тело из-за магнитного поля, которое оно вызывает, согласно теории Максвелла, так должно вести себя, как будто его масса увеличивается на некоторую величину, зависящую от его заряда и формы». В дальнейшем Томсон показал, что масса движущегося заряда должна возрастать с возрастанием его движения. Опыты Кауфмана закрепили представление о возрастании массы движущегося электрона» .

Первоначальное, неуверенное предположение Томсона о наблюдаемом «как будто» бы росте массы в настоящее время переросло в уверенность эквивалентности между массой и энергией, закрепленной в известной формуле Е = mc 2 , где Е - энергия, m - масса. Для нашего же случая существенным является следующее замечание из цитируемой работы: «Результаты экспериментов Кауфмана наводят на мысль, что действие, оказываемое со стороны поля на движущийся заряд, отличается от его же действия на заряд покоящийся» .

Это явление как будто проявляется при эксплуатации ускорителей заряженных частиц. Но в ускорителях заряженных частиц наблюдается не изменение массы частиц в зависимости от скорости (это наблюдать невозможно), а необъяснимое в современных физических представлениях изменение ускорения заряженных частиц при контролируемых электрическом и магнитном полях.

Из второго закона Ньютона a = F/m, где а - ускорение, F - сила, m - масса, видно, что ускорение зависит и от силы, и от массы. Поэтому более логичным представляется объяснение наблюдаемого ускорения не ростом массы, а результатом изменения сил взаимодействия электрического и магнитного полей с заряженными частицами, движущимися в этих полях.

Изменение сил взаимодействия определяется конечной скоростью распространения возмущения (изменения) напряженности полей. Неизменность сил взаимодействия при движении взаимодействующих тел возможна только в том случае, если скорость распространения возмущения бесконечна.

Рис. 20

Как бы быстро ни был перемещен заряд q в точку К электрического поля напряженностью Е (рис. 20), созданного заряженными пластинами В и Д, положение, показанное на рис. 21, может иметь место только через конечный интервал времени, определяемый скоростью распространения возмущения в поле Е.

Рис. 21

Полагаем, что взаимодействие поля с заряженной частицей в вакууме происходит со скоростью с, скоростью распространения электромагнитного поля, при этом сохраняется равенство импульса силы моменту количества движения. Тогда сила взаимодействия F (v) электрического поля напряженностью Е и частицы, имеющий заряд q и двигающийся в этом поле со скоростью v, будет равна:

где? - угол между векторами напряженности Е и скорости v.

Под воздействием ускоряющего поля возрастает скорость, а вместе с ней кинетическая энергия частицы. При этом происходит определенное изменение конфигурации ускоряющего поля и собственного поля ускоряемой частицы, которое приводит к увеличению ее потенциальной энергии, т. е. переходу потенциальной энергии ускоряющего поля в кинетическую энергию и потенциальную энергию ускоряемого заряда. Полная энергия частицы А, равная qU (U - пройденная разность потенциалов), слагается из ее кинетической энергии - E k и потенциальной - Е p

Кинетическая энергия ускоряемой частицы ограничена пределом

потенциальная же энергия ускоряемой частицы, возможно предела не имеет, пока не виден. Поэтому полная энергия ускоряемой частицы, несмотря на ограничение скорости, продолжает расти и определяется только пройденной разностью потенциалов. Данный процесс обратим, при взаимодействии разогнанной частицы с тормозящим полем происходит освобождение запасенной энергии.

Сила Лоренца - F (v), действующая на движущийся в магнитном поле заряд, определяется аналогичным образом:

где В - индукция, ? - угол между направлениями скорости и индукции. Сила Лоренца направлена перпендикулярно к плоскости, в которой лежат векторы B и v.

Из книги Приключения Мистера Томпкинса автора Гамов Георгий

Глава 1 Ограничение скорости В тот день все банки были закрыты - выходной, и мистер Томпкинс, скромный служащий солидного городского банка, встал позже обычного и не спеша позавтракал. Пора было позаботиться о досуге, и мистер Томпкинс решил, что было бы неплохо сходить

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Из книги Теория относительности - мистификация ХХ века автора Секерин Владимир Ильич

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Из книги Что такое теория относительности автора Ландау Лев Давидович

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Сохранение массы При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется. А что происходит

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но справедливы ли законы сохранения в

Из книги автора

Из книги автора

2. Вычисление скорости света Впервые идея о способе измерения скорости света была высказана Г. Галилеем в 1607 г. в следующем виде. Два наблюдателя с фонарями находятся на известном друг от друга расстоянии в прямой видимости. Первый из них открывает свой фонарь и, отмечая

Из книги автора

4.7. Измерение скорости света Солнца В конце 40-х гг. ХХ века, во время подготовки в СССР дискуссии о сущности теории относительности, С. И. Вавиловым, президентом АН СССР, было решено поставить лабораторный опыт по проверке достоверности постулата с = const. В качестве

Из книги автора

Вычисление скорости Вычисление начальной скорости ядра, которое никогда не должно упасть на Землю. Чтобы найти искомую скорость, спросим себя сначала: почему всякое ядро, выброшенное пушкой горизонтально, в конце концов, падает на Землю? Потому что земное притяжение

Из книги автора

Скорости капризничают Какую скорость имеет пассажир относительно полотна железной дороги, если он идет к голове поезда со скоростью 5 километров в час, а поезд движется со скоростью 50 километров в час? Ясно, что скорость человека относительно полотна дороги равна 50 + 5 = 55

Из книги автора

Как складывать скорости Если я ждал полчаса и еще час, то всего я потерял времени полтора часа. Если мне дали рубль, а затем еще два, то я всего получил три рубля. Если я купил 200 г винограда, а затем еще 400 г, то у меня будет 600 г винограда. Про время, массу и другие подобные

Из книги автора

Скорости молекул Теория указывает, что при одной температуре средние кинетические энергии молекул mvср2/2 одинаковы. При нашем определении температуры эта средняя кинетическая энергия поступательного движения молекул газа пропорциональна абсолютной температуре. В виде

Из книги автора

3.9. Массы и плотности астероидов Поскольку энергия, выделяющаяся при столкновении тела с Землей, пропорциональна массе тела, получение оценки массы является необходимым элементом оценивания угрозы со стороны каждого потенциально опасного тела.Масса m, объем v и средняя

В опыте по измерению массы электрона с помощью масс-спектрографа на фотопластинке обнаруживается только одна полоска. Так как заряд каждого электрона равен одному элементарному заряду, мы приходим к заключению, что все электроны обладают одной и той же массой.

Масса, однако, оказывается непостоянной. Она растет при увеличении разности потенциалов , ускоряющей электроны в масс-спектрографе (рис. 351), Так как кинетическая энергия электрона прямо пропорциональна ускоряющей разности потенциалов , то отсюда следует, что масса электрона растет с его кинетической энергией. Опыты приводят к следующей зависимости массы от энергии:

, (199.1)

где - масса электрона, обладающего кинетической энергией , - постоянная величина, - скорость света в вакууме . Из формулы (199.1) вытекает, что масса покоящегося электрона (т. е. электрона с кинетической энергией ) равна . Величина получила поэтому название массы покоя электрона.

Измерения с различными источниками электронов (газовый разряд, термоэлектронная эмиссия, фотоэлектронная эмиссия и др.) приводят к совпадающим значениям массы покоя электрона. Масса эта оказывается крайне малой:

Таким образом, электрон (покоящийся или медленно движущийся) почти в две тысячи раз легче атома легчайшего вещества - водорода.

Величина в формуле (199.1) представляет собой добавочную массу электрона, обусловленную его движением. Пока эта добавка мала, можно при вычислении кинетической энергии приближенно заменить на , и положить . Тогда отсюда видно, что наше предположение о малости добавочной массы по сравнению с массой покоя равносильно условию, что скорость электрона много меньше скорости света . Напротив, когда скорость электрона приближается к скорости света, добавочная масса становится большой.

Альберт Эйнштейн (1879-1955) в теории относительности (1905 г.) теоретически обосновал соотношение (199.1). Он доказал, что оно применимо не только к электронам, но и к любым частицам или телам без исключения, причем под нужно понимать массу покоя рассматриваемой частицы или тела. Выводы Эйнштейна были проверены в дальнейшем в разнообразных опытах и полностью подтвердились. Теоретическая формула Эйнштейна, выражающая зависимость массы от скорости, имеет вид

(199.2)

Таким образом, масса любого тела возрастает при увеличении его кинетической энергии или скорости. Однако, как и для электрона, добавочная масса, обусловленная движением, заметна только тогда, когда скорость движения приближается к скорости света. Сравнивая выражения (199.1) и (199.2), получим формулу для кинетической энергии движущегося тела, учитывающую зависимость массы от скорости:

(199.3)

В релятивистской механике, (т. е. механике, основанной на теории относительности) так же как и в классической, импульс тела определяется как произведение его массы на скорость. Однако теперь масса сама зависит от скорости (см. (196.2)}, и релятивистское выражение для импульса имеет вид

(199.4)

В механике Ньютона масса тела считается величиной постоянной, не зависящей от его движения. Это означает, что ньютонова механика (точнее, 2-й закон Ньютона) применима только к движениям тел со скоростями очень малыми по сравнению со скоростью света. Скорость света колоссальна; при движении земных или небесных тел всегда выполняется условие , и масса тела практически неотличима от его массы покоя. Выражения для кинетической энергии и импульса (199.3) и (199.4) при переходят в соответствующие формулы для классической механики (см. упражнение 11 в конце главы).

Ввиду этого при рассмотрении движения таких тел можно и нужно пользоваться механикой Ньютона.

Иначе обстоит дело в мире мельчайших частиц вещества - электронов, атомов. Здесь нередко приходится сталкиваться с быстрыми движениями, когда скорость частицы уже не мала по сравнению со скоростью света. В этих случаях механика Ньютона неприменима и нужно пользоваться более точной, но и более сложной механикой Эйнштейна; зависимость массы частицы от ее скорости (энергии) - один из важных выводов этой новой механики.

Другим характерным выводом релятивистской механики Эйнштейна является заключение о невозможности движения тел со скоростью, большей скорости света в вакууме. Скорость света является предельной скоростью движения тел.

Существование предельной скорости движения тел можно рассматривать как следствие возрастания массы со скоростью: чем больше скорость, тем тяжелее тело и тем труднее дальнейшее увеличение скорости (так как ускорение уменьшается с увеличением массы).

С новыми пространственно-временными представлениями не согласуются при больших скоростях движения законы механики Ньютона. Лишь при малых скоростях движения, когда справедливы клас-г сические представления о пространстве и времени, второй закон Ньютона не меняет своей формы при переходе от одной инерциальной системы отсчета к другой (выполняется принцип относительности). Но при больших скоростях движения этот закон в своей обычной (классической) форме несправедлив. Согласно второму закону Ньютона (9.4) постоянная сила, действуя на тело продолжительное время, может сообщить телу сколь угодно большую скорость. Но в действительности скорость света в вакууме является предельной, и ни при каких условиях тело не может двигаться со скоростью, превышающей скорость света в вакууме. Требуется совсем небольшое изменение уравнения движения тел, чтобы это уравнение было верным при больших скоростях движения. Предварительно перейдем к той форме записи второго закона динамики, которой пользовался сам Ньютон: АР - В At где р =mv - импульс тела. В этом уравнении масса тела считалась независимой от скорости. Поразительно, что и при больших скоростях движения уравнение (9.5) не меняет своей формы. Изменения касаются лишь массы. При увеличении скорости тела его масса не остается постоянной; она тоже увеличивается. Зависимость массы от скорости можно найти, исходя из предположения, что закон сохранения импульса справедлив и при новых представлениях о пространстве и времени. Расчеты слишком сложны. Приведем лишь конечный результат. Если через т0 обозначить массу покоящегося тела, то масса т того же тела, но двигающегося со скоростью v, определяется формулой1 На рисунке 227 представлена зависимость массы тела от его скорости. Из рисунка видно, что возрастание массы тем больше, чем ближе скорость движения тела к скорости света с. При скоростях движения, много меньших скорости света, выражение 2 чрезвычайно мало отличается от единицы. Так, при скорости современной космической ракеты 10 км/с получаем Неудивительно поэтому, что заметить увеличение массы с ростом ско- В современной теоретической физике существует тенденция называть массой только массу покоя т0, а понятие релятивистской массы (9.6) не вводить. рости при таких сравнительно небольших скоростях движения невозможно. Но элементарные частицы в современных ускорителях заряженных частиц достигают огромных скоростей. Если скорость частицы всего лишь на 90 км/с меньше скорости света, то ее масса увеличивается в 40 раз. Мощные ускорители для электронов способны разгонять эти частицы до скоростей, которые меньше скорости света лишь на 35-50 м/с. При этом масса электрона возрастает примерно в 2000 раз. Чтобы такой электрон удерживался на круговой орбите, на него со стороны магнитного поля должна действовать сила, в 2000 раз большая, чем можно было бы предполагать, не учитывая зависимость массы от скорости. Для расчета траекторий быстрых частиц пользоваться механикой Ньютона уже нельзя. С учетом соотношения (9.6) импульс тела равен: (9.7) m0v Р = Основной же закон релятивистской динамики записывается в прежней форме: ЬР -р At Однако импульс тела здесь определяется формулой (9.7), а не просто произведением m0v. Таким образом, масса, считавшаяся со времен Ньютона неизменной, в действительности зависит от скорости. По мере увеличения скорости движения масса тела, определяющая его инертные свойства, увеличивается. При v-*c масса тела в соответствии с уравнением (9.6) возрастает неограниченно (/л- поэтому ускорение стремится к нулю и скорость практически перестает возрастать, как бы долго ни действовала сила. Необходимость пользоваться релятивистским уравнением движения при расчете ускорителей заряженных частиц означает, что теория относительности в наше время стала инженерной наукой. Принцип соответствия. Законы динамики Ньютона и классические представления о пространстве и времени можно рассматривать как частный случай релятивистских законов, справедливых при скоростях движения, много меньших скорости света. Это проявление так называемого принципа соответствия, согласно которому любая теория, претендующая на более глубокое описание явлений и на более широкую сферу применимости, чем старая, должна включать последнюю как предельный случай. Принцип соответствия впервые был сформулирован Нильсом Бором применительно к связи квантовой и классической теорий. Великий ученый раньше всех понял суть дела. Релятивистское уравнение движения, учитывающее зависимость массы от скорости, применяется при конструировании ускорителей элементарных частиц и других релятивистских приборов. 1. Запишите формулу зависимости массы тела от скорости его движения. 2. При каком условии можно массу тела считать не зависящей от скорости!