» » Программирование авр микроконтроллеров. Устройство и программирование микроконтроллеров AVR

Программирование авр микроконтроллеров. Устройство и программирование микроконтроллеров AVR

ВВЕДЕНИЕ. Микроконтроллеры, их возникновение и применение
Предыстория микроконтроллеров
Электроника в греческом стиле
Почему AVR?
Что дальше?

ЧАСТЬ I. ОБЩИЕ ПРИНЦИПЫ УСТРОЙСТВА И ФУНКЦИОНИРОВАНИЯ ATMEL AVR

Глава 1. Обзор микроконтроллеров Atmel AVR

Семейства AVR
Особенности практического использования МК AVR

Глава 2. Общее устройство, организация памяти, тактирование, сброс

Память программ
Память данных (ОЗУ, SRAM)
Энергонезависимая память данных (EEPROM)
Способы тактирования
Сброс
Особенности подключения дополнительной внешней памяти данных

Глава 3. Знакомство с периферийными устройствами

Порты ввода-вывода
Таймеры-счетчики
Аналого-цифровой преобразователь
Последовательные порты
U ART
Интерфейс SPI
Интерфейс TWI (12С)
Универсальный последовательный интерфейс USI

Глава 4. Прерывания и режимы энергосбережения

Прерывания
Разновидности прерываний
Режимы энергосбережения
Потребление МК AVR
Потребление МК AYR и режимы энергосбережения

ЧАСТЬ II. ПРОГРАММИРОВАНИЕ МИКРОКОНТРОЛЛЕРОВ ATMEL AVR

Глава 5. Общие принципы программирования МК семейства AVR

Ассемблер или С?
Способы и средства программирования AVR
Редактор кода
Об AVR Studio
Обустройство ассемблера
Программаторы
О hex-файлах
Команды, инструкции и нотация AVR-ассемблера
Числа и выражения
Директивы и функции
Общая структура AVR-программы
Обработка прерываний
RESET
Простейшая программа
Задержка
Программа счетчика
Использование прерываний
Задержка по таймеру
Программа счетчика с использованием прерываний
О конфигурационных битах

Глава 6. Система команд AVR

Команды передачи управления и регистр SREG
Команды проверки-пропуска
Команды логических операций
Команды сдвига и операции с битами
Команды арифметических операций
Команды пересылки данных
Команды управления системой
Выполнение типовых процедур на ассемблере
О стеке, локальных и глобальных переменных

Глава 7. Арифметические операции

Стандартные арифметические операции
Умножение многоразрядных чисел
Деление многоразрядных чисел
Операции с дробными числами
Генератор случайных чисел
Операции с числами в формате BCD
Отрицательные числа в МК

Глава 8. Программирование таймеров

8- и 16-разрядные таймеры
Формирование заданного значения частоты
Отсчет времени
Точная коррекция времени
Частотомер и периодомер
Частотомер
Периодомер
Управление динамической индикацией
LED-индикаторы и их подключение
Программирование динамической индикации
Таймеры в режиме PWM

Глава 9. Использование EEPROM

Еще раз о сохранности данных в EEPROM
Запись и чтение EEPROM
Хранение констант в EEPROM

Глава 10. Аналоговый компаратор и АЦП

Аналого-цифровые операции и их погрешности
Работа с аналоговым компаратором
Интегрирующий АЦП на компараторе
Принцип работы и расчетные формулы
Программа интегрирующего АЦП
Встроенный АЦП
Пример использования АЦП
Программа

Глава 11. Программирование SPI

Основные операции через SPI
Аппаратный вариант
Программный вариант
О разновидностях энергонезависимой памяти
Запись и чтение flash-памяти через SPI
Программа обмена с памятью 45DB011В по SPI
Запись и чтение flash-карт
Подключение карт ММС
Подача команд и инициализация ММС
Запись и чтение ММС

Глава 12. Интерфейс TWI (12С) и его практическое использование

Базовый протокол 12С
Программная эмуляция протокола 12С
Запись данных во внешнюю энергонезависимую память
Режимы обмена с памятью АТ24
Программа
Часы с интерфейсом 12С
Запись данных
Чтение данных

Глава 13. Программирование UART/USART

Инициализация UART
Передача и прием данных
Пример установки часов DS1307 с помощью UART
Приемы защиты от сбоев при коммуникации
Проверка на четность
Как организовать корректный обмен
Дополнительные возможности USART
Реализация интерфейсов RS-232 и RS-485
Преобразователи уровня для RS-232
RS-485

Глава 14. Режимы энергосбережения и сторожевой таймер

Программирование режима энергосбережения
Пример прибора с батарейным питанием
Доработка программы
Использование сторожевого таймера

ПРИЛОЖЕНИЯ

Приложение 1. Основные параметры микроконтроллеров Atmel AVR

Приложение 2. Команды Atmel AVR
Арифметические и логические команды
Команды операций с битами
Команды сравнения
Команды передачи управления
Команды безусловного перехода и вызова подпрограмм
Команды проверки-пропуска и команды условного перехода
Команды переноса данных
Команды управления системой

Приложение 3. Тексты программ
Демонстрационная программа обмена данными с flash-памятью 45DB011В по интерфейсу SPI
Процедуры обмена по интерфейсу 12С

Приложение 4. Обмен данными с персональным компьютером и отладка программ через UART
Работа с COM-портом в Delphi
COM-порт и Windows API
Работа с СОМ через готовые компоненты
Установка линии RTS в DOS и Windows
Программа СОМ2000
Отладка программ с помощью терминальной программы

Приложение 5. Словарь часто встречающихся аббревиатур и терминов
Соответствие терминов на русском их переводу на английский
Соответствие терминов на английском их переводу на русский

Литература
Предметный указатель

Микроконтроллеры (далее МК) прочно вошли в нашу жизнь, на просторах интернета можно встретить очень много интересных схем, которые исполнены на МК. Чего только нельзя собрать на МК: различные индикаторы, вольтметры, приборы для дома (устройства защиты, коммутации, термометры…), металлоискатели, разные игрушки, роботы и т.д. перечислять можно очень долго. Первую схему на микроконтроллере я увидел лет 5-6 назад в журнале радио, и практически сразу же перелистнул страницу, подумав про себя "все равно не смогу собрать". Действительно, в то время МК для меня были чем то очень сложным и непонятым устройством, я не представлял как они работают, как их прошивать, и что делать с ними в случае неправильной прошивки. Но около года назад, я впервые собрал свою первую схему на МК, это была схема цифрового вольтметра на 7 сегментных индикаторах, и микроконтроллере ATmega8. Так получилось, что микроконтроллер я купил случайно, когда стоял в отделе радиодеталей, парень передо мной покупал МК, и я тоже решил купить, и попробовать собрать что-нибудь. В своих статьях я расскажу вам про микроконтроллеры AVR , научу вас работать с ними, рассмотрим программы для прошивки, изготовим простой и надежный программатор, рассмотрим процесс прошивки и самое главное проблемы, которые могут возникнуть и не только у новичков.

Основные параметры некоторых микроконтроллеров семейства AVR:

Микроконтроллер

Память FLASH

Память ОЗУ

Память EEPROM

Порты ввода/вывода

U питания

Дополнительные параметры МК AVR mega:

Рабочая температура: -55…+125*С
Температура хранения: -65…+150*С
Напряжение на выводе RESET относительно GND: max 13В
Максимальное напряжение питания: 6.0В
Максимальный ток линии ввода/вывода: 40мА
Максимальный ток по линии питания VCC и GND: 200мА

Расположение выводов моделей ATmega 8X

Расположение выводов моделей ATmega48x, 88x, 168x

Расположение выводов у моделей ATmega8515x

Расположение выводов у моделей ATmega8535x

Расположение выводов у моделей ATmega16, 32x

Расположение выводов у моделей ATtiny2313

В конце статьи прикреплён архив с даташитами на некоторые микроконтроллеры

Установочные FUSE биты MK AVR

Запомните, запрограммированный фьюз – это 0, не запрограммированный – 1. Осторожно стоит относиться к выставлению фьюзов, ошибочно запрограммированный фьюз может заблокировать микроконтроллер. Если вы не уверены какой именно фьюз нужно запрограммировать, лучше на первый раз прошейте МК без фьюзов.

Самыми популярными микроконтроллерами у радиолюбителей являются ATmega8, затем идут ATmega48, 16, 32, ATtiny2313 и другие. Микроконтроллеры продаются в TQFP корпусах и DIP, новичкам рекомендую покупать в DIP. Если купите TQFP, будет проблематичнее их прошить, придется купить или и паять плату т.к. у них ножки располагаются очень близко друг от друга. Советую микроконтроллеры в DIP корпусах, ставить на специальные панельки, это удобно и практично, не придется выпаивать МК если приспичит перепрошить, или использовать его для другой конструкции.

Почти все современные МК имеют возможность внутрисхемного программирования ISP, т.е. если ваш микроконтроллер запаян на плату, то для того чтобы сменить прошивку нам не придется выпаивать его с платы.

Для программирования используется 6 выводов:
RESET - Вход МК
VCC - Плюс питания, 3-5В, зависит от МК
GND - Общий провод, минус питания.
MOSI - Вход МК (информационный сигнал в МК)
MISO - Выход МК (информационный сигнал из МК)
SCK - Вход МК (тактовый сигнал в МК)

Иногда еще используют вывода XTAL 1 и XTAL2, на эти вывода цепляется кварц, если МК будет работать от внешнего генератора, в ATmega 64 и 128 вывода MOSI и MISO не применяются для ISP программирования, вместо них вывода MOSI подключают к ножке PE0, a MISO к PE1. При соединении микроконтроллера с программатором, соединяющие провода должны быть как можно короче, а кабель идущий от программатора на порт LPT так-же не должен быть слишком длинным.

В маркировке микроконтроллера могут присутствовать непонятные буквы с цифрами, например Atmega 8L 16PU, 8 16AU, 8A PU и пр. Буква L означает, что МК работает от более низкого напряжения, чем МК без буквы L, обычно это 2.7В. Цифры после дефиса или пробела 16PU или 8AU говорят о внутренней частоте генератора, который есть в МК. Если фьюзы выставлены на работу от внешнего кварца, кварц должен быть установлен на частоту, не превышающей максимальную по даташиту, это 20МГц для ATmega48/88/168, и 16МГц для остальных атмег.

Микроконтроллеры являются небольшими, но одновременно очень удобными приспособлениями для тех, кто желает создавать различные удивительные роботизированные или автоматизированные вещи у себя дома. В рамках этой статьи будет рассмотрено программирование AVR для начинающих, различные аспекты и нюансы этого процесса.

Общая информация

Микроконтроллеры можно встретить везде. Они есть в холодильниках, стиральных машинах, телефонах, станках на производстве, умных домах и ещё во множестве различных технических устройств. Их повсеместное применение обусловлено возможностью замены более сложных и масштабных аналоговых схем устройств. Программирование МК AVR позволяет обеспечить автономное управление над электронными устройствами. Эти микроконтроллеры можно представить как простейший компьютер, что может взаимодействовать с внешней техникой. Так, им под силу открывать/закрывать транзисторы, получать данные с датчиков и выводить их на экраны. Также микроконтроллеры могут осуществлять различную обработку входной информации подобно персональному компьютеру. Если освоить программирование AVR с нуля и дойти до уровня профессионала, то откроются практически безграничные возможности для управления различными устройствами с помощью портов ввода/вывода, а также изменения их кода.

Немного о AVR

В рамках статьи будет рассмотрено семейство микроконтроллеров, выпускаемых фирмой Atmel. Они имеют довольно неплохую производительность, что позволяет использовать их во многих любительских устройствах. Широко применяются и в промышленности. Можно встретить в такой технике:

  1. Бытовой. Стиральные машины, холодильники, микроволновые печи и прочее.
  2. Мобильной. Роботы, средства связи и так далее.
  3. Вычислительной. Системы управления периферийными устройствами, материнские платы.
  4. Развлекательной. Украшения и детские игрушки.
  5. Транспорт. Системы безопасности и управления двигателем автомобиля.
  6. Промышленное оборудование. Системы управления станками.

Это, конечно же, не все сферы. Они применяются там, где выгодно использовать не набор управляющих микросхем, а один микроконтроллер. Это возможно благодаря низкому энергопотреблению и Для написания программ используются языки С и Assembler, немного изменённые под семейство микроконтроллеров. Такие изменение необходимы из-за слабых вычислительных возможностей, которые исчисляются, как правило, в десятках килобайт. AVR-программирование без изучения этих языков не представляется возможным.

Как получить свой первый микроконтроллер?

AVR-программирование требует:

  1. Наличия необходимой среды разработки.
  2. Собственно самих микроконтроллеров.

Второй пункт рассмотрим подробнее. Существует три возможности обзавестись требуемым устройством:

  1. Купить непосредственно сам микроконтроллер.
  2. Обзавестись устройством в составе конструктора (например - Arduino).
  3. Собрать микроконтроллер самостоятельно.

В первом пункте ничего сложного нет, поэтому сразу перейдём ко второму и третьему.

Обзавестись устройством в составе конструктора

В качестве примера будет выбран известный Arduino. Это по совместительству удобная платформа для быстрой и качественной разработки различных электронных устройств. Плата Arduino включает в себя определённый набор компонентов для работы (существуют различные конфигурации). В неё обязательно входит AVR-контроллер. Этот подход позволяет быстро начать разработку устройства, не требует специальных умений и навыков, имеет значительные возможности в плане подключения дополнительных плат, а также в интернете можно найти много информации на интересующие вопросы. Но не обошлось и без минусов. Покупая Arduino, человек лишает себя возможности более глубоко окунуться в AVR-программирование, лучше узнать микроконтроллер, специфику его работы. Также негатива добавляет и относительно узкая линейка моделей, из-за чего часто приходится покупать платы под конкретные задачи. Особенностью также является и то, что программирование на "СИ" здесь отличается довольно сильно от стандартной формы. Несмотря на все свои недостатки, Arduino подходит для изучения новичкам. Но злоупотреблять не стоит.

Самостоятельная сборка

Следует отметить, что микроконтроллеры AVR отличаются достаточной дружелюбностью к новичкам. Собрать их самостоятельно можно с доступных, простых и дешевых комплектующих. Если говорить о плюсах, то такой подход позволяет лучше ознакомиться с устройством, самостоятельно выбирать необходимые комплектующие, подгоняя конечный результат под выдвигаемые требования, использование стандартных языков программирования и дешевизна. Из минусов можно отметить только сложность самостоятельной сборки, когда она осуществляется впервые, и нет нужных знаний и навыков.

Как работать?

Итак, допустим, что вопрос с микроконтроллером решился. Далее будет считаться, что он был приобретён или же куплен самостоятельно. Что ещё нужно, чтобы освоить AVR-программирование? Для этой цели нужна среда разработки (в качестве базиса подойдёт и обычный блокнот, но рекомендую остановиться на Notepad++). Хотя существуют и другие программы для программирования AVR, приведённое обеспечение сможет справиться со всеми требованиями. Также необходим программатор. Его можно приобрести в ближайшем магазине, заказать по интернету или собрать самостоятельно. Не помешает и печатная плата. Она не обязательна, но её использование позволяет сэкономить свои нервы и время. Также покупается/создаётся самостоятельно. И последнее - это источник питания. Для AVR необходимо обеспечить поступление напряжения на 5В.

Где и как учиться?

Создавать шедевры с нуля не получиться. Здесь необходимы знания, опыт и практика. Но где их взять? Существует несколько путей. Первоначально можно самостоятельно выискивать нужную информацию в мировой сети. Можно записать на курсы программирования (дистанционные или очные) для получения базовых навыков работы. Каждый подход имеет свои преимущества. Так, дистанционные курсы программирования будут более дешевыми, а может и бесплатными. Но если что-то не будет получаться, то при очных занятиях опытный разработчик сможет быстрее найти причину проблемы. Также не лишним будет ознакомиться с литературой, что находится в свободном доступе. Конечно, на одних книгах выехать не получится, но получить базовые знания про устройство, программирование на "СИ", "Ассемблере" и о других рабочих моментах можно.

Порты ввода/вывода

Это чрезвычайно важная тема. Без понимания того, как работают порты ввода/вывода, не представляется возможным внутрисхемное программирование AVR вообще. Ведь взаимодействие микроконтроллера с внешними устройствами осуществляется именно при их посредничестве. На первый взгляд новичка может показаться, что порт - это довольно запутанный механизм. Чтобы избежать такого впечатления, не будем детально рассматривать схему его работы, а только получим общее представление об этом. Рассмотрим программную реализацию. В качестве примера устройства был выбран микроконтроллер AtMega8 - один из самых популярных из всего семейства AVR. Порт ввода/вывода представляет собой три регистра, которые отвечают за его работу. На физическом уровне они реализовываются как ножки. Каждой из них соответствует определённый бит в управляющем реестре. Каждая ножка может работать как для ввода информации, так и для её вывода. Например, на неё можно повесить функцию зажигания светодиода или обработку нажатия кнопки. Кстати, три регистра, о которых говорилось, это: PORTx, PINx и DDRx. Каждый из них является восьмиразрядным (не забываем, что мы рассматриваем AtMega8). То есть один бит занимается определённой ножкой.

Работа регистров

Наиболее весомым в плане ориентации является управляющий DDRx. Он также является восьмиразрядным. Значения для него могут быть записаны 0 или 1. Как меняется работа контроллера при использовании нулей и единицы? Если в определённом бите выставить 0, то соответствующая ему ножка будет переключена в режим входа. И с неё можно будет считывать данные, что идут с внешних устройств. Если установить 1, то микроконтроллер сможет управлять чем-то (например, дать приказ транзистору пропустить напряжение и зажечь светодиод). Вторым по важности является PORTx. Он занимается управлением состояния ножки. Давайте рассмотрим пример. Допустим, у нас есть порт вывода. Если мы устанавливаем логическую единицу в PORTx, то посылается сигнал от микроконтроллера управляющему устройству начать работу. Например, зажечь светодиод. При установлении нуля он будет гаситься. То есть работать с управляющим регистром DDRx постоянно, нет надобности. И напоследок давайте о PINx. Этот регистр отвечает за отображение состояния ножки контроллера, когда она настроена на состояние ввода. Следует отметить, что PINx может работать исключительно в режиме чтения. Записать в него ничего не получится. Но вот прочитать текущее состояние ножки - это без проблем.

Работа с аналогами

AVR не являются единственными микроконтроллерами. Этот рынок поделен между несколькими крупными производителями, а также между многочисленными китайскими имитирующими устройствами и самоделками. Во многом они подобны. К примеру, программирование PIC/AVR сильно не отличается. И если есть понимание чего-то одного, то понять всё остальное будет легко. Но начинать путь рекомендуем всё же с AVR благодаря его грамотной структуре, дружелюбности к разработчику и наличию большого количества вспомогательных материалов, из-за чего процесс разработки можно значительно ускорить.

Техника безопасности

Когда будет вестись программирование микроконтроллеров AVR на "СИ" или на "Ассемблере", то необходимо работать очень осторожно. Дело в том, что выставив определённую комбинацию регистров и изменив внутренние настройки, можно спокойно заблокировать микроконтроллер. Особенно это касается фьюзов. Если нет уверенности в правильности своих действий, то лучше отказаться от их использования. Это же относится и к программаторам. Если покупать заводскую аппаратуру, то она будет прошивать микроконтроллеры без проблем. При сборке своими руками может возникнуть печальная ситуация, при которой программатор заблокирует устройство. Это может произойти как из-за ошибки в программном коде, так и через неполадки в нём самом. Кстати, об ещё одном (на этот раз позитивном) моменте, который ранее вскользь упоминался, но так и не был раскрыт полностью. Сейчас практически все современные микроконтроллеры обладают функцией внутрисхемного программирования. Что это значит? Допустим, что устройство было запаяно на плате. И чтобы сменить его прошивку, сейчас не нужно его выпаивать, ведь такое вмешательство может повредить сам микроконтроллер. Достаточно подключиться к соответствующим выводам и перепрограммировать его при их посредстве.

Какую модель выбрать?

В рамках статьи была рассмотрена AtMega8. Это довольно посредственный за своими характеристиками микроконтроллер, которого, тем не менее, хватает для большинства поделок. Если есть желание создать что-то масштабное, то можно брать уже своеобразных монстров вроде Atmega128. Но они рассчитаны на более опытных разработчиков. Поэтому, если нет достаточного количества опыта, то лучше начинать с небольших и простых устройств. К тому же они и значительно дешевле. Согласитесь, одно дело случайно заблокировать микроконтроллер за сто рублей, а совсем иное - за полтысячи. Лучше набить себе руку и разобраться в различных аспектах функционирования, чтобы в последующем не терять значительные суммы. Первоначально можно начать с AtMega8, а потом уже ориентироваться по своим потребностям.

Заключение

Вот и была рассмотрена тема программирования AVR в самых общих чертах. Конечно, ещё о многом можно рассказывать. Так, к примеру, не было рассмотрено маркирование микроконтроллеров. А оно может о многом сказать. Так, в основном микроконтроллеры работают на напряжении в 5В. Тогда как наличие, к примеру, буквы L может сказать о том, что для работы устройства достаточно только 2,7 В. Как видите, порой знания о маркировке могут сыграть очень важную роль в плане корректной и долговечной работы устройств. Время функционирования микроконтроллеров - это тоже интересная тема. Каждое устройство рассчитано на определённый период. Так, некоторые могут отработать тысячу часов. Другие же имеют гарантийный запас в 10 000!


В этом учебном курсе по avr я постарался описать все самое основное для начинающих программировать микроконтроллеры avr . Все примеры построены на микроконтроллере atmega8 . Это значит, что для повторения всех уроков вам понадобится всего один МК. В качестве эмулятора электронных схем используется Proteus - на мой взгляд, - лучший вариант для начинающих. Программы во всех примерах написаны на компиляторе C для avr CodeVision AVR. Почему не на каком-нибудь ассемблере? Потому что начинающий и так загружен информацией, а программа, которая умножает два числа, на ассемблере занимает около ста строк, да и в сложных жирных проектах используют С. Компилятор CodeVision AVR заточен под микроконтроллеры atmel, имеет удобный генератор кода, неплохой интерфейс и прямо с него можно прошить микроконтроллер.

В этом учебном курсе будет рассказано и показано на простых примерах как:

  • Начать программировать микроконтроллеры, с чего начать, что для этого нужно.
  • Какие программы использовать для написания прошивки для avr, для симуляции и отладки кода на ПК,
  • Какие периферийные устройства находятся внутри МК, как ими управлять с помощью вашей программы
  • Как записать готовую прошивку в микроконтроллер и как ее отладить
  • Как сделать печатную плату для вашего устройства
Для того, чтобы сделать первые шаги на пути программирования МК, вам потребуются всего две программы:
  • Proteus - программа-эмулятор (в ней можно разработать схему, не прибегая к реальной пайке и потом на этой схеме протестировать нашу программу). Мы все проекты сначала будем запускать в протеусе, а потом уже можно и паять реальное устройство.
  • CodeVisionAVR - компилятор языка программирования С для AVR. В нем мы будем разрабатывать программы для микроконтроллера, и прямо с него же можно будет прошить реальный МК.
После установки Proteus, запускаем его
Он нам предлагает посмотреть проекты которые идут с ним, мы вежливо отказываемся. Теперь давайте создадим в ней самую простую схему. Для этого кликнем на значок визуально ничего не происходит. Теперь нужно нажать на маленькую букву Р (выбрать из библиотеки) в панели списка компонентов, откроется окно выбора компонентов
в поле маска вводим название компонента, который мы хотим найти в библиотеке. Например, нам нужно добавить микроконтроллер mega8
в списке результатов тыкаем на mega8 и нажимаем кнопку ОК . У нас в списке компонентов появляется микроконтроллер mega8
Таким образом добавляем в список компонентов еще резистор, введя в поле маска слово res и светодиод led

Чтобы разместить детали на схеме, кликаем на деталь, далее кликаем по полю схемы, выбираем место расположения компонента и еще раз кликаем. Для добавления земли или общего минуса на схему слева кликаем "Терминал" и выбираем Ground. Таким образом, добавив все компоненты и соединив их, получаем вот такую простенькую схемку
Все, теперь наша первая схема готова! Но вы, наверное, спросите, а что она может делать? А ничего. Ничего, потому что для того, чтобы микроконтроллер заработал, для него нужно написать программу. Программа - это список команд, которые будет выполнять микроконтроллер. Нам нужно, чтобы микроконтроллер устанавливал на ножке PC0 логический 0 (0 вольт) и логическую 1 (5 вольт).

Написание программы для микроконтроллера

Программу мы будем писать на языке С в компиляторе CodeVisionAVR. После запуска CV, он спрашивает нас, что мы хотим создать: Source или Project Мы выбираем последнее и нажимаем кнопку ОК. Далее нам будет предложено запустить мастер CVAVR CodeWizard (это бесценный инструмент для начинающего, потому как в нем можно генерировать основной скелет программы) выбираем Yes
Мастер запускается с активной вкладкой Chip, здесь мы можем выбрать модель нашего МК - это mega8, и частоту, на которой будет работать МК (по умолчанию mega8 выставлена на частоту 1 мегагерц), поэтому выставляем все, как показано на скриншоте выше. Переходим во вкладку Ports
У микроконтроллера atmega8 3 порта: Port C, Port D, Port B. У каждого порта 8 ножек. Ножки портов могут находиться в двух состояниях:
  • Выход
С помощью регистра DDRx.y мы можем устанавливать ножку входом или выходом. Если в
  • DDRx.y = 0 - вывод работает как ВХОД
  • DDRx.y = 1 вывод работает на ВЫХОД
Когда ножка сконфигурирована как выход, мы можем выставлять на ней лог 1 (+5 вольт) и логический 0 (0 вольт). Это делается записью в регистр PORTx.y. Далее будет подробно рассказано про порты ввода-вывода. А сейчас выставляем все, как показано на скриншоте, и кликаем File->Generate, Save and Exit. Дальше CodeWizard предложит нам сохранить проект, мы его сохраняем и смотрим на код:

#include //библиотека для создания временных задержек void main(void) { PORTB=0x00; DDRB=0x00; PORTC=0x00; DDRC=0x01; // делаем ножку PC0 выходом PORTD=0x00; DDRD=0x00; // Timer/Counter 0 initialization TCCR0=0x00; TCNT0=0x00; // Timer/Counter 1 initialization TCCR1A=0x00; TCCR1B=0x00; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00; // Timer/Counter 2 initialization ASSR=0x00; TCCR2=0x00; TCNT2=0x00; OCR2=0x00; // External Interrupt(s) initialization MCUCR=0x00; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x00; // Analog Comparator initialization ACSR=0x80; SFIOR=0x00; while (1) { }; }


Здесь вам может показаться все страшным и незнакомым, но на самом деле все не так. Код можно упростить, выкинув инициализацию неиспользуемых нами периферийных устройств МК. После упрощения он выглядит так:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1) { }; }


Всё хорошо. Но для того, чтобы светодиод замигал, нам нужно менять логический уровень на ножке PC0. Для этого в главный цикл нужно добавить несколько строк:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1)//главный цикл программы {// открывается операторная скобка главного цикла программы PORTC.0=1; //выставляем на ножку 0 порта С 1 delay_ms(500); //делаем задержку в 500 милисекунд PORTC.0=0; //выставляем на ножку 0 порта С 0 delay_ms(500); //делаем задержку в 500 милисекунд };// закрывается операторная скобка главного цикла программы }


Все, теперь код готов. Кликаем на пиктограму Build all Project files, чтобы скомпилировать (перевести в инструкции процессора МК) нашу программу. В папке Exe, которая находится в нашем проекте, должен появиться файл с расширением hex, это и есть наш файл прошивки для МК. Для того, чтобы нашу прошивку скормить виртуальному микроконтроллеру в Proteus, нужно два раза кликнуть на изображении микроконтроллера в протеусе. Появится вот такое окошко
кликаем на пиктограму папки в поле Program File, выбераем hex - файл нашей прошивки и нажимаем кнопку ОК. Теперь можно запустить симуляцию нашей схемы. Для этого нажимаем кнопку "Воспроизвести" в нижнем левом углу окна Протеус.

Урок 0.

Итак, сегодня мы открываем цикл уроков программирования микроконтроллеров семейства AVR.

Сегодня будут рассмотрены следующие вопросы:

  1. Что такое микроконтроллер?
  2. Где применяются микроконтроллеры?

Вступление.

Микроконтроллеры везде. В телефонах, стиральных машинах, «умных домах»,станках на заводе а так же ещё в бесчисленном множестве технических устройств. Их повсеместное применение позволяет заменить сложные аналоговые схемы, более сжатыми цифровыми.

Так что же такое, микроконтроллер?

Микроконтроллер (Micro Controller Unit, MCU ) - микросхема, предназначенная для управления электронными устройствами.Можно представить его в виде простейшего компьютера, способного взаимодействовать с внешними устройствами.Например, открывать и закрывать транзисторы, получать данные с датчиков температуры, выводить данные на lcd экраны и т. д. . К тому же, микроконтроллер может производить различную обработку входных данных, как и Ваш персональный компьютер.

То есть, микроконтроллеры открывают нам практически безграничные возможности управления какими либо устройствами, благодаря наличию портов I/0(портов ввода(input)/вывода(output)), а так же возможности их программирования.

Где используются микроконтроллеры?

  1. Бытовая техника(Стиральные машины, микроволновые печи и.т.д.).
  2. Мобильная техника(Роботы, робототехнические системы, средства связи и др.).
  3. Промышленное оборудование(Системы управления станками).
  4. Вычислительная техника(Материнские платы,системы управления периферийными устройствами).
  5. Развлекательная техника(Детские игрушки, украшения).
  6. Транспорт(Системы управления двигателем автомобиля, системы безопасности)

Это далеко не полный список сфер применения микроконтроллеров. Часто, очень выгодно заменить набор управляющих микросхем одним микроконтроллером, ввиду упрощения производства, снижения энергопотребления.

Начало знакомства с AVR

AVR — семейство микроконтроллеров фирмы Atmel.Обладают достаточной производительностью для большинства любительских устройств. Так же находят широкое применение в промышленности.