» » Стронций 90 его характеристики. Литературный обзор

Стронций 90 его характеристики. Литературный обзор

Стронций -90 - чистый бета-излучатель с периодом полураспада 29.12 лет. 90Sr - чистый бета-излучатель с максимальной энергией 0,54 эВ. При распаде он образует дочерний радионуклид 90Y с периодом полураспада 64 ч. Как и 137Сs, 90Sr может находиться в растворимой и нерастворимой в воде формах. Особенности поведения этого радионуклида в организме человека. Практически весь попавший в организм стронция-9О центрируется в костной ткани. Объясняется это тем, что стронций - химический аналог кальция, а соединения кальция - основной минеральный компонент кости. У детей минеральный обмен в костных тканях интенсивней, чем у взрослых, поэтому в их скелете стронций-90 накапливается в большем количестве, но и выводится быстрее .

Для человека период его полувыведения стронция-90 - 90-154 суток . От депонированного в костной ткани стронция-90 страдает, в первую очередь, красный костный мозг - основная кроветворная ткань, которая к тому же очень радиочувствительная. От стронция-90 накопленного в тазовых костях, облучаются генеративные ткани. Поэтому для этого радионуклида установлены низкие ПДК - примерно в 100 раз ниже, чем для цезия-1З7.

В организм стронций-90 поступает только с пищей, причем в кишечнике всасывается до 20% от его поступления. Наибольшее содержание этого радионуклида в костной ткани жителей северного полушария было фиксировано в 1963-1965 гг. Тогда этот скачок был вызван глобальными выпадениями радиоактивных осадков от интенсивных испытаний ядерного оружия в атмосфере в 1961-1962 гг.

После аварии на чернобыльской АЭС вся территория со значительным загрязнением стронцием-90 оказалась в пределах 30- километровой зоны. Большое количество стронция-90 попало в водоемы, но в речной воде его концентрация нигде не превышала предельно допустимой для питьевой воды (кроме реки Припять в начале мая 1986 г. в ее нижнем течении).

Биологический период полувыведения для стронция-90 из мягких тканей – 5-8 суток, для костей – до 150 суток (16% выводится с Тэфф равным 3360 суток).

Отдал. Последствия - признаки извращения и замедленной перестройки кости, а также резкое сокращение ее кровеносной сети.

55.Цезий-137 период полурасспада,поступление в организм.

Цезий-137 - бета-излучатель с периодом полураспада 30.174 года. 137Сs открыт в 1860 г. немецкими учеными Кирхгофом и Бунзеном. Название получил от латинского слова caesius - голубой, по характерной яркой линии в синей области спектра. В настоящее время известно несколько изотопов цезия. Наибольшее практическое значение имеет 137Сs, один из наиболее долгоживущих продуктов деления урана.

Ядерная энергетика является источником поступления 137Сs в окружающую среду. Согласно опубликованным данным в 2000 году реакторами АЭС всех стран мира в атмосферу было выброшено около 22,2 х 1019 Бк 137Сs. Выброс 137Сs осуществляется не только в атмосферу, но и в океаны с атомных подводных лодок, танкеров, ледоколов, оснащенных ядерно-энергетическими установками. По своим химическим свойствам цезий близок к рубидию и калию - элементам 1 группы. Изотопы цезия при любом пути поступления в организм хорошо всасываются .

После аварии на ЧАЭС во внешнюю среду поступило 1.0 МКи цезия-137. В настоящее время это основной дозообразующий радионуклид на территориях, пострадавших от аварии на Чернобыльской АЭС. От его содержания и поведения во внешней среде зависит пригодность загрязненных территорий для полноценной жизни.

Почвы Украинско-Белорусского Полесья имеют специфическую особенность - цезий-137 плохо фиксируется ими и, как следствие, он легко поступает в растения через корневую систему.

Изотопы цезия, являясь продуктами деления урана, включаются в биологический круговорот и свободно мигрируют по различным биологическим цепочкам. В настоящее время 137Сs обнаруживается в организме различных животных и человека. Следует отметить, что стабильный цезий входит в состав организма человека и животных в количествах от 0,002 до 0,6 мкг на 1 г мягкой ткани.

Всасывание 137Сs в ЖКТ животных и человека составляет 100% . В отдельных участках ЖКТ всасывание 137Сs происходит с различной скоростью. Через дыхательные пути в организм человека поступление 137Сs составляет 0,25% величины, поступающей с пищевым рационом. После перорального поступления цезия значительные количества всосавшегося радионуклида секретируются в кишечник, затем реабсорбируются в нисходящих отделах кишечника. Степень реабсорбции цезия может существенно различаться у разных видов животных. Поступив в кровь, он сравнительно равномерно распределяется по органам и тканям. Путь поступления и вид животного не влияют на характер распределения изотопа.

Определение 137Сs в организме человека проводят по измерению гамма-излучения от тела и бета-, гамма-излучению от выделений (моча, кал). Для этой цели используют бета-гамма-радиометры и счетчик излучений человека (СИЧ). По отдельным пикам спектра, соответствующим различным гамма-излучателям, можно определить их активность в организме. С целью профилактики радиационных поражений 137Сs все работы с жидкими и твердыми соединениями рекомендуется проводить в герметичных боксах. Для предупреждения попадания цезия и его соединений внутрь организма необходимо использовать средства индивидуальной защиты и соблюдать правила личной гигиены.

Эффективный период полувыведения долгоживущих изотопов определяется в основном биологическим периодом полувыведения, короткоживущих – периодом полураспада. Биологический период полувыведения разнообразен – от нескольких часов (криптон, ксенон, радон) до нескольких лет (скандий, иттрий, цирконий, актиний). Эффективный период полувыведения колеблется от нескольких часов (натрий-24,медь-64), суток (йод-131, фосфор-23, сера-35), до десятков лет (радий-226, стронций-90).

Биологический период полувыведения для цезия-137 из организма равен 70 суткам, из мышц, легких и скелета – 140 суток.


Источники герметизируются с помощью клея. Состоят из подложки с нанесенным на нее препаратом с радионуклидами стронций-90+иттрий-90, помещенной между корпусом и крышкой источника.

Область применения:
Радиоизотопные приборы

Примечание:
Источники по классам прочности соответствуют С 34444 по ГОСТ 25926 (ISO 2919). Назначенный срок службы - 3,5 года с даты выпуска. Контроль герметичности производится в соответствии с ГОСТ Р 51919-2002 (ИСО 9978:1992(Е)) иммерсионным методом, предел прохождения - 200 Бк (~5 нКи). Источники поставляются комплектами, состоящими из одного источника БИС-Р и одного источника БИС-К или девяти источников БИС-6А и одного источника БИС-Ф. По заказу допускается поставка отдельных источников, входящих в комплект.

Основные технические характеристики:
Представляют собой подложку толщиной 1,1 max мм, на рабочую поверхность которой (углубление) нанесен слой радиоактивного препарата, защищенный пленкой окиси металла. Назначенный срок службы - 10 лет с даты выпуска.

Область применения:
Для поверки и градуировки радиометрической аппаратуры в качестве мер активности радионуклидов.

Примечание:
Источники по классам прочности соответствуют С 24324 по ГОСТ 25926 (ISO 2919). Контроль герметичности производится в соответствии с ГОСТ Р 51919-2002 (ИСО 9978:1992(Е)) методом сухого мазка с нерабочей поверхности, предел прохождения - 2 Бк (~0,05 нКи). Источники поставляются поштучно, наборами и комплектами.

* Измеренные значения активности радионуклидов не отличаются от номинальных более чем на 30%.

Природный стронций состоит из четырех стабильных изотопов 88 Sr (82,56%), 86 Sr (9,86%), 87 Sr (7,02%) и 84 Sr (0,56%). Распространенность изотопов стронция варьируетcя в связи с образованием 87 Sr за счет распада природного 87 Rb. По этой причине точный изотопный состав стронция в породе или минерале, которые содержат рубидий, зависит от возраста и отношения Rb/Sr в данной породе или минерале.

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в том числе 90 Sr (Т 1/2 = 29,12 года), образующийся при делении урана. Степень окисления +2, очень редко +1.

История открытия элемента.

Свое название стронций получил от минерала стронцианита, найденного в 1787 в свинцовом руднике около Стронциана (Шотландия). В 1790 английским химиком Адером Кроуфордом (Crawford Ader) (1748–1795) было показано, что стронцианит содержит новую, еще неизвестную «землю». Эту особенность стронцианита установил также и немецкий химик Мартин Генрих Клапрот (Klaproth Martin Heinrich) (1743–1817). Английский химик Т.Хоп (Hope T.) в 1791 доказал, что в стронцианите содержится новый элемент. Он четко разграничил соединения бария, стронция и кальция, используя, помимо других методов, характерную окраску пламени: желто-зеленую для бария, ярко-красную для стронция и оранжево-красную для кальция.

Независимо от западных ученых, петербургский академик Тобиаш (Товий Егорович) Ловиц (1757–1804) в 1792, исследуя минерал барит, пришел к заключению, что в нем, помимо оксида бария, в качестве примеси находится и «стронцианова земля». Он сумел извлечь из тяжелого шпата более 100 г новой «земли» и исследовал ее свойства. Результаты этой работы были опубликованы в 1795. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление... Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей... Мне оставалось только проверить... замечательное свойство стронциановой земли – окрашивать спиртовое пламя в карминово-красный цвет, и, действительно, моя соль... обладала в полной мере этим свойством».

В свободном виде стронций первым выделил английский химик и физик Гемфри Дэви в 1808. Металлический стронций был получен при электролизе его увлажненного гидроксида. Выделявшийся на катоде стронций соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Распространенность стронция в природе и его промышленное получение. Содержание стронция в земной коре составляет 0,0384%. Он является пятнадцатым по распространенности и следует сразу за барием, немного уступая фтору. В свободном виде стронций не встречается. Он образует около 40 минералов. Наиболее важный из них – целестин SrSO 4 . Добывают также стронцианит SrCO 3 . Стронций присутствует в качестве изоморфной примеси в различных магниевых, кальциевых и бариевых минералах.

Стронций содержится и в природных водах. В морской воде его концентрация составляет 0,1 мг/л. Это означает, что в водах Мирового океана содержатся миллиарды тонн стронция. Минеральные воды, содержащие стронций, считают перспективным сырьем для выделения этого элемента. В океане часть стронция концентрируется в железомарганцевых конкрециях (4900 т в год). Стронций накапливается также простейшими морскими организмами – радиоляриями, скелет которых построен из SrSO 4 .

Доскональная оценка мировых промышленных ресурсов стронция не проводилась, но полагают, что они превышают 1 млрд. т.

Наиболее крупные залежи целестина – в Мексике, Испании и Турции. В России подобные месторождения есть в Хакассии, Пермской и Тульской области. Однако потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%. Специалисты считают, что добыча стронция в недавно открытом Кишертском месторождении (Пермская область) может повлиять на ситуацию на мировом рынке этого продукта. Цена на пермский стронций может оказаться примерно в 1,5 раза ниже, чем на американский, стоимость которого сейчас составляет около 1200 долл. за тонну.

Характеристика простого вещества и промышленное получение металлического стронция.

Металлический стронций имеет серебристо-белую окраску. В неочищенном состоянии он окрашен в бледно-желтый цвет. Это сравнительно мягкий металл, легко режется ножом. При комнатной температуре стронций имеет кубическую гранецентрированную решетку (a -Sr); при температуре выше 231° С превращается в гексагональную модификацию (b -Sr); при 623° С переходит в кубическую объёмноцентрированную модификацию (g -Sr). Стронций относится к легким металлам, плотность его a -формы 2,63г/см3 (20° С). Температура плавления стронция равна 768° С, температура кипения составляет 1390° С.

Являясь щелочноземельным металлом, стронций активно реагирует с неметаллами. При комнатной температуре металлический стронций покрывается пленкой из оксида и пероксида. При нагревании на воздухе воспламеняется. Стронций легко образует нитрид, гидрид и карбид. При повышенных температурах стронций реагирует с диоксидом углерода:

5Sr + 2CO 2 = SrC 2 + 4SrO

Металлический стронций взаимодействует с водой и кислотами, выделяя из них водород:

Sr + 2H 3 O + = Sr 2+ + H 2 ­ + 2H 2 O

Реакция не идет в тех случаях, когда образуются малорастворимые соли.

Стронций растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Sr(NH 3) 6 , постепенно разлагающийся до амида Sr(NH 2) 2 .

Для получения металлического стронция из природного сырья целестиновый концентрат сначала восстанавливают при нагревании углем до сульфида стронция. Затем сульфид стронция обрабатывают соляной кислотой, а полученный хлорид стронция обезвоживают. Стронцианитовый концентрат разлагают обжигом при 1200° С, а затем растворяют образовавшийся оксид стронция в воде или кислотах. Нередко стронцианит сразу растворяют в азотной или соляной кислоте.

Металлический стронций получают электролизом смеси расплавленных хлорида стронция (85%) и хлорида калия или аммония (15%) на никелевом или железном катоде при 800° С. Полученный этим методом стронций обычно содержит 0,3–0,4% калия.

Используют также высокотемпературное восстановление оксида стронция алюминием:

4SrO + 2Al = 3Sr + SrO·Al 2 O 3

Для металлотермического восстановления оксида стронция применяют также кремний или ферросилиций. Процесс ведут при 1000° С в вакууме в стальной трубке. Хлорид стронция восстанавливают металлическим магнием в атмосфере водорода.

Крупнейшими производителями стронция являются Мексика, Испания, Турция и Великобритания.

Несмотря на довольно большое содержание в земной коре, широкого применения металлический стронций еще не нашел. Как и другие щелочноземельные металлы, он способен очищать черный металл от вредных газов и примесей. Это свойство дает стронцию перспективу применения в металлургии. Кроме того, стронций является легирующей добавкой к сплавам магния, алюминия, свинца, никеля и меди.

Металлический стронций поглощает многие газы и поэтому используется в качестве геттера в электровакуумной технике.

Соединения стронция.

Преобладающая степень окисления (+2) для стронция обусловлена, в первую очередь, его электронной конфигурацией. Он образует многочисленные бинарные соединения и соли. В воде хорошо растворимы хлорид, бромид, иодид, ацетат и некоторые другие соли стронция. Большинство солей стронция мало растворимы; среди них сульфат, фторид, карбонат, оксалат. Малорастворимые соли стронция легко получаются обменными реакциями в водном растворе.

Многие соединения стронция имеют необычное строение. Например, изолированные молекулы галогенидов стронция заметно изогнуты. Валентный угол составляет ~120° для SrF 2 и ~115° – для SrCl 2 . Это явление можно объяснить с помощью sd- (а не sp-) гибридизации.

Оксид стронция SrO получают прокаливанием карбоната или дегидратацией гидроксида при температуре красного каления. Энергия решетки и температура плавления этого соединения (2665° С) очень высоки.

При прокаливании оксида стронция в кислородной среде при высоком давлении образуется пероксид SrO 2 . Получен также желтый надпероксид Sr(O 2) 2 . При взаимодействии с водой оксид стронция образует гидроксид Sr(OH) 2 .

Оксид стронция – компонент оксидных катодов (эмиттеров электронов в электровакуумных приборах). Он входит в состав стекла кинескопов цветных телевизоров (поглощает рентгеновское излучение), высокотемпературных сверхпроводников, пиротехнических смесей. Его применяют как исходное вещество для получения металлического стронция.

В 1920 американец Хилл впервые применил матовую глазурь, в состав которой входили оксиды стронция, кальция и цинка, однако этот факт остался незамеченным, и новая глазурь не стала конкурентом традиционных свинцовых глазурей. Лишь в годы Второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. Это вызвало лавину исследований: в разных странах появились десятки рецептур стронциевых глазурей. Стронциевые глазури не только менее вредны по сравнению со свинцовыми, но и более доступны (карбонат стронция в 3,5 раза дешевле свинцового сурика). При этом им свойственны все положительные качества свинцовых глазурей. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе оксидов кремния и стронция готовят также эмали – непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» – разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280–1300° C, затем температуру снижают до 150–220° C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800–850° C – соли плавятся в трещинах и герметизируют их.

Гидроксид стронция Sr(OH)2 считают умеренно сильным основанием. Он не очень хорошо растворим в воде, поэтому его можно осадить при действии концентрированного раствора щелочи:

SrCl 2 + 2KOH(конц) = Sr(OH) 2 Ї + 2KCl

При обработке кристаллического гидроксида стронция пероксидом водорода образуется SrO 2 ·8H 2 O.

Гидроксид стронция может применяться для выделения сахара из патоки, однако обычно используют более дешевый гидроксид кальция.

Карбонат стронция SrCO 3 мало растворим в воде (2·10 –3 г в 100 г при 25° С). В присутствии избытка диоксида углерода в растворе он превращается в гидрокарбонат Sr(HCO 3) 2 .

При нагревании карбонат стронция разлагается на оксид стронция и диоксид углерода. Он взаимодействует с кислотами с выделением диоксида углерода и образованием соответствующих солей:

SrCO 2 + 3HNO 3 = Sr(NO 3) 2 + CO 2 ­ + H 2 O

Основные сферы карбоната стронция в современном мире – производство кинескопов для цветных телевизоров и компьютеров, керамических ферритовых магнитов, керамических глазурей, зубной пасты, антикоррозионных и фосфоресцирующих красок, высокотехнологичной керамики, в пиротехнике. Наиболее емкими направлениями потребления являются первые два. При этом спрос на карбонат стронция в производстве телевизионного стекла повышается с ростом популярности телеэкранов более крупных размеров. Возможно, развитие технологии производства плоских телеэкранов снизит спрос на карбонат стронция для телевизионных дисплеев, однако эксперты в промышленности считают, что в ближайшие 10 лет плоские телеэкраны не станут значительными конкурентами традиционных.

Европа потребляет львиную долю карбоната стронция для производства ферритовых стронциевых магнитов, которые используются в автомобильной промышленности, где они применяются для магнитных задвижек в дверцах автомобилей и тормозных системах. В США и Японии карбонат стронция используют преимущественно в производстве телевизионного стекла.

В течение многих лет крупнейшими в мире производителями карбоната стронция являлись Мексика и Германия, производственные мощности по выпуску этого товара в которых сейчас составляют соответственно 103 тыс. и 95 тыс. т в год. В Германии используют в качестве сырья импортный целестин, а мексиканские заводы работают на местном сырье. В последнее время годовые мощности по производству карбоната стронция расширились в Китае (примерно до 140 тыс. т). Китайский карбонат стронция активно продается в Азии и Европе.

Нитрат стронция Sr(NO 3) 2 хорошо растворим в воде (70,5 г в 100 г при 20° С). Его получают взаимодействием металлического стронция, оксида, гидроксида или карбоната стронция с азотной кислотой.

Нитрат стронция – компонент пиротехнических составов для сигнальных, осветительных и зажигательных ракет. Он окрашивает пламя в карминово-красный цвет. Хотя другие соединения стронция придают пламени такую же окраску, в пиротехнике предпочитают использовать именно нитрат: он не только окрашивает пламя, но одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород. При этом сначала образуется нитрит стронция, который затем превращается в оксиды стронция и азота.

В России соединения стронция широко использовались в пиротехнических составах. Во времена Петра Первого (1672–1725) их применяли для получения «потешных огней», устраивавшихся при проведении различных торжеств и празднеств. Академик А.Е.Ферсман назвал стронций «металлом красных огней».

Сульфат стронция SrSO 4 мало растворим в воде (0,0113 г в 100 г при 0° С). При нагревании выше 1580° С он разлагается. Его получат осаждением из растворов солей стронция сульфатом натрия.

Сульфат стронция используется как наполнитель при изготовлении красок и резины и утяжелитель в буровых растворах.

Хромат стронция SrCrO 4 осаждается в виде желтых кристаллов при смешивании растворов хромовой кислоты и гидроксида бария.

Дихромат стронция, образующийся при действии кислот на хромат, хорошо растворим в воде. Для перевода хромата стронция в дихромат достаточно такой слабой кислоты, как уксусная:

2SrCrO 4 + 2CH 3 COOH = 2Sr 2+ + Cr 2 O 7 2– + 2CH 3 COO – + H 2 O

Так его можно отделить от менее растворимого хромата бария, который удается превратить в дихромат только действием сильных кислот.

Хромат стронция обладает высокой светостойкостью, он очень устойчив к воздействию высоких температур (до 1000° С), обладает хорошими пассивирующими свойствами по отношению к стали, магнию и алюминию. Хромат стронция применяется как желтый пигмент в производстве лаков и художественных красок. Его называют «стронциановый желтый». Он входит в состав грунтовок на основе водорастворимых смол и особенно грунтовок на основе синтетических смол для легких металлов и сплавов (авиагрунтовок).

Титанат стронция SrTiO 3 не растворяется в воде, однако переходит в раствор под действием горячей концентрированной серной кислоты. Его получают спеканием оксидов стронция и титана при 1200–1300° С или соосажденных труднорастворимых соединений стронция и титана выше 1000° С. Титанат стронция применяют как сегнетоэлектрик, он входит в состав пьезокерамики. В технике сверхвысоких частот он служит в качестве материала для диэлектрических антенн, фазовращателей и других устройств. Пленки из титаната стронция используют при изготовлении нелинейных конденсаторов и датчиков инфракрасного излучения. С их помощью создают слоистые структуры диэлектрик – полупроводник – диэлектрик – металл, которые применяются в фотоприемниках, запоминающих устройствах и других приборах.

Гексаферрит стронция SrO·6Fe 2 O 3 получают спеканием смеси оксида железа (III) и оксида стронция. Это соединение используют в качестве магнитного материала.

Фторид стронция SrF 2 мало растворим в воде (чуть более 0,1 г в 1 л раствора при комнатной температуре). Он не взаимодействует с разбавленными кислотами, но переходит в раствор под действием горячей соляной кислоты. В криолитовых копях Гренландии найден минерал, содержащий фторид стронция – ярлит NaF·3SrF 2 ·3AlF 3 .

Фторид стронция используется в качестве оптического и ядерного материла, компонента специальных стекол и люминофоров.

Хлорид стронция SrCl 2 хорошо растворим в воде (34,6% по массе при 20° С). Из водных растворов ниже 60,34° С кристаллизуется гексагидрат SrCl 2 ·6H 2 O, расплывающийся на воздухе. При более высоких температурах он теряет сначала 4 молекулы воды, затем еще одну, а при 250° С полностью обезвоживается. В отличие от гексагидрата хлорида кальция гексагидрат хлорида стронция мало растворим в этаноле (3,64% по массе при 6° С), что используется для их разделения.

Хлорид стронция используется в пиротехнических составах. Его применяют также в холодильной технике, медицине, косметике.

Бромид стронция SrBr 2 гигроскопичен. В насыщенном водном растворе его массовая доля составляет 50,6% при 20° С. Ниже 88,62° С из водных растворов кристаллизуется гексагидрат SrBr 2 ·6H 2 O, выше этой температуры – моногидрат SrBr 3 ·H 2 O. Гидраты полностью обезвоживаются при 345° С.

Бромид стронция получают реакцией стронция с бромом или оксида (либо карбоната) стронция с бромоводородной кислотой. Он используется в качестве оптического материала.

Иодид стронция SrI 2 хорошо растворим в воде (64,0% по массе при 20° С), хуже – в этаноле (4,3% по массе при 39° С). Ниже 83,9° С из водных растворов кристаллизуется гексагидрат SrI 2 ·6H 2 O, выше этой температуры – дигидрат SrI 2 ·2H 2 O.

Иодид стронция служит в качестве люминесцентного материала в сцинтилляционных счетчиках.

Сульфид стронция SrS получают при нагревании стронция с серой или восстановлением сульфата стронция углем, водородом и другими восстановителями. Его бесцветные кристаллы разлагаются водой. Сульфид стронция применяется как компонент люминофоров, фосфоресцирующих составов, средств для удаления волос в кожевенной промышленности.

Карбоксилаты стронция можно получить при взаимодействии гидроксида стронция с соответствующими карбоновыми кислотами. Стронциевые соли жирных кислот («стронциевые мыла») используют для изготовления специальных консистентных смазок.

Стронциеорганические соединения . Чрезвычайно активные соединения состава SrR 2 (R = Me, Et, Ph, PhCH 2 и т.д.) могут быть получены при использовании HgR 2 (часто лишь при низкой температуре).

Бис(циклопентадиенил)стронций является продуктом прямой реакции металла с или с самим циклопентадиеном

Биологическая роль стронция.

Стронций – составная часть микроорганизмов, растений и животных. У морских радиолярий скелет состоит из сульфата стронция – целестина. Морские водоросли содержат 26–140 мг стронция на 100 г сухого вещества, наземные растения – около 2,6, морские животные – 2–50, наземные животные – около 1,4, бактерии – 0,27–30. Накопление стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения содержания стронция и других элементов, главным образом кальция и фосфора, в окружающей среде.

Животные получают стронций с водой и пищей. Некоторые вещества, например полисахариды водорослей, препятствует усвоению стронция. Стронций накапливается в костной ткани, в золе которой содержится около 0,02% стронция (в других тканях – около 0,0005%).

Соли и соединения стронция относятся к малотоксичным веществам, однако при избытке стронция поражаются костная ткань, печень и мозг. Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает «уровскую болезнь» у человека и животных (по названию реки Уров в Восточном Забайкалье) – поражение и деформацию суставов, задержку роста и другие нарушения.

Особенно опасны радиоактивные изотопы стронция.

В результате ядерных испытаний и аварий на АЭС в окружающую среду поступило большое количество радиоактивного стронция-90, период полураспада которого составляет 29,12 года. До тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от радиоактивного стронция росло из года в год.

В течение года после завершения атмосферных ядерных взрывов в результате самоочищения атмосферы большая часть радиоактивных продуктов, в том числе стронция-90, выпала из атмосферы на поверхность земли. Загрязнение природной среды за счет выведения из стратосферы радиоактивных продуктов ядерных взрывов, проводившихся на полигонах планеты в 1954–1980, сейчас играет второстепенную роль, вклад этого процесса в загрязнение атмосферного воздуха 90 Sr на два порядка меньше, чем от ветрового подъема пыли с почвы, загрязненной при ядерных испытаниях и в результате радиационных аварий.

Стронций-90, наряду с цезием-137, являются основными загрязняющими радионуклидами на территории России. На радиационную обстановку существенно влияет наличие загрязненных зон, появившихся вследствие аварий на Чернобыльской АЭС в 1986 и на ПО «Маяк» в Челябинской области в 1957 («Кыштымская авария»), а также в окрестностях некоторых предприятий ядерно-топливного цикла.

Сейчас время средние концентрации 90 Sr в воздухе за пределами территорий, загрязненных в результате Чернобыльской и Кыштымской аварий, вышли на уровни, наблюдавшиеся до аварии на Чернобыльской АЭС. В гидрологических системах, связанных с зонами, загрязненными при этих авариях, существенно сказывается смыв стронция-90 с поверхности почвы.

Попадая в почву, стронций вместе с растворимыми соединениями кальция поступает в растения. Больше других накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше – злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне).

Из растений стронций-90 может непосредственно или через животных перейти в организм человека. У мужчин стронций-90 накапливается в большей степени, чем у женщин. В первые месяцы жизни ребенка отложение стронция-90 на порядок выше, чем у взрослого человека, он поступает в организм с молоком и накапливается в быстро растущей костной ткани.

Радиоактивный стронций сосредотачивается в скелете и, таким образом, подвергает организм длительному радиоактивному воздействию. Биологическое действие 90 Sr связано с характером его распределения в организме и зависит от дозы b -облучения, создаваемого им и его дочерним радиоизотопом 90 Y. При длительном поступлении 90 Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет.

Применение стронция-90.

Радиоизотоп стронция применяется в производстве атомных электрических батарей. Принцип действия таких батарей основан на способности стронция-90 излучать электроны, обладающие большой энергией, преобразуемой затем в электрическую. Элементы из радиоактивного стронция, соединенные в миниатюрную батарейку (размером со спичечную коробку), способны безотказно служить без перезарядки 15–25 лет, такие батареи незаменимы для космических ракет и искусственных спутников Земли. А швейцарские часовщики с успехом используют крохотные стронциевые батарейки для питания электрочасов.

Отечественными учеными создан изотопный генератор электрической энергии для питания автоматических метеостанций на основе стронция-90. Гарантийный срок службы такого генератора – 10 лет, в течение которых он способен снабжать электрическим током нуждающиеся в нем приборы. Все обслуживание его заключается лишь в профилактических осмотрах – раз в два года. Первые образцы генератора установлены в Забайкалье и в верховьях таежной речки Кручины.

В Таллинне работает атомный маяк. Главная его особенность – радиоизотопные термоэлектрические генераторы, в которых в результате распада стронция-90 возникает тепловая энергия, преобразуемая затем в световую.

Устройства, в которых используется радиоактивный стронций, применяются для измерения толщины. Это необходимо для контроля и управления процессом производства бумаги, тканей, тонких металлических лент, пластмассовых пленок, лакокрасочных покрытий. Изотоп стронция используется в приборах для измерения плотности, вязкости и других характеристик вещества, в дефектоскопах, дозиметрах, сигнализаторах. На машиностроительных предприятиях часто можно встретить так называемые b -реле, они контролируют подачу заготовок на обработку, проверяют исправности инструмента, правильность положения детали.

При производстве материалов, являющихся изоляторами (бумага, ткани, искусственное волокно, пластмассы и т. д.), вследствие трения возникает статическое электричество. Чтобы избежать этого, пользуются ионизирующими стронциевыми источниками.

Елена Савинкина

Характеристика загрязнений территории после аварии на ЧАЭС стронцием-90 и воздействие стронция-90 (90 Sr ) на биологические объекты.

Свойства радионуклида 90 Sr

Стронций -90 - чистый бета-излучатель с периодом полураспада 29.12 лет. 90 Sr - чистый бета-излучатель с максимальной энергией 0,54 эВ. При распаде он образует дочерний радионуклид 90 Y с периодом полураспада 64 ч. Как и 137 Сs, 90 Sr можетнаходиться в растворимой и нерастворимой в воде формах. После аварии на Чернобыльской АЭС во внешнюю среду его попало сравнительно немного - суммарный выброс оценивается в 0,22 МКи. Исторически сложилось так, что в радиационной гигиене уделяется много внимания этому радионуклиду. Причин тому несколько. Во-первых - на стронций-90 приходится значительная часть активности в смеси продуктов ядерного взрыва: 35% суммарной активности сразу после взрыва и 25% через 15-20 лет, во-вторых - ядерные аварии на ПО «Маяк» на Южном Урале в 1957 и 1967 годах, когда в окружающую среду было выброшено значительное количество стронция-90. И, наконец, особенности поведения этого радионуклида в организме человека. Практически весь попавший в организм стронция-9О центрируется в костной ткани. Объясняется это тем, что стронций - химический аналог кальция, а соединения кальция - основной минеральный компонент кости. У детей минеральный обмен в костных тканях интенсивней, чем у взрослых, поэтому в их скелете стронций-90 накапливается в большем количестве, но и выводится быстрее.

Для человека период его полувыведения стронция-90 - 90-154 суток. От депонированного в костной ткани стронция-90 страдает, в первую очередь, красный костный мозг - основная кроветворная ткань, которая к тому же очень радиочувствительная. От стронция-90 накопленного в тазовых костях, облучаются генеративные ткани. Поэтому для этого радионуклида установлены низкие ПДК - примерно в 100 раз ниже, чем для цезия-1З7.

В организм стронций-90 поступает только с пищей, причем в кишечнике всасывается до 20% от его поступления. Наибольшее содержание этого радионуклида в костной ткани жителей северного полушария было фиксировано в 1963-1965 гг. Тогда этот скачок был вызван глобальными выпадениями радиоактивных осадков от интенсивных испытаний ядерного оружия в атмосфере в 1961-1962 гг.

После аварии на чернобыльской АЭС вся территория со значительным загрязнением стронцием-90 оказалась в пределах 30- километровой зоны. Большое количество стронция-90 попало в водоемы, но в речной воде его концентрация нигде не превышала предельно допустимой для питьевой воды (кроме реки Припять в начале мая 1986 г. в ее нижнем течении).

Миграция стронция-90 в почвах

Радионуклид 90 Sr характеризуется большей подвижностью в почвах по сравнению с 137 Сs. Поглощение 90 Sr в почвах в основном обусловлено ионным обменом. Большая часть задерживается в верхних горизонтах. Скорость миграции его по почвенному профилю зависит от физико-химических и минералогических особенностей почвы. При наличии в почвенном профиле перегнойного горизонта, расположенного под слоем подстилки или дернины, 90 Sr концентрируется в этом горизонте. В таких почвах, как дерново-подзолистая песчаная, перегнойно-торфянисто-глеевая суглинистая на песке, черноземно-луговая оподзоленная, выщелоченный чернозем, наблюдается некоторое увеличение содержания радионуклида в верхней части иллювиального горизонта. В засоленных почвах появляется второй максимум, что связано с меньшей растворимостью сульфата стронция и его подвижностью. В верхнем горизонте он задерживается в солевой корке. Концентрирование в перегнойном горизонте объясняется высоким содержанием гумуса, большой величиной емкости поглощения катионов и образованием малоподвижных соединений с органическим веществом почв.

В модельных экспериментах при внесении 90 Sr в разные почвы, помещенные в вегетационные сосуды, было установлено, что скорость его миграции в условиях опыта возрастает с увеличением содержания обменного кальция. Повышение миграционной способности 90 Sr в почвенном профиле при увеличении содержания кальция наблюдалось и в полевых условиях. Миграция стронция-90 возрастает также с увеличением кислотности и содержания органического вещества.

Миграция стронция-90 в растения

В миграции 90 Sr большую роль играет лесная растительность. В период интенсивных радиоактивных выпадений после аварии на ЧАЭС деревья выполняют роль экрана, на котором осаждались радиоактивные аэрозоли. Задержанные поверхностью листьев и хвои радионуклиды поступают на поверхность почвы с опавшими листьями и хвоей. Особенности лесной подстилки оказывают существенное влияние на содержание и распределение стронция-90. В лиственных подстилках содержание 90 Sr постепенно падает от верхнего слоя к нижнему, в хвойных происходит значительное накопление радионуклида в нижней гумусированной части подстилки.

Литература:

1.Бударников В.А., Киршин В.А., Антоненко А.Е. Радиобиологический справочник. – Мн.: Уражай, 1992. – 336 с.

2.Чернобыль не отпускает… (к 50-летию радиоэкологических исследований в Республике Коми). – Сыктывкар, 2009 – 120 с.

Стронций (Strontium, Sr) - это химический элемент II группы периодической системы элементов Д. И. Менделеева. Щелочноземельный металл: порядковый номер 38, атомный вес 87,62. Стронций имеет 4 стабильных изотопа с массовыми числами 84, 86, 87, 88 и несколько радиоактивных изотопов. В земной коре содержится в небольших количествах. Стронций может концентрироваться животными и растительными организмами, при этом у животных и человека он отлагается главным образом в костях в виде фосфата.

В медицине наибольшее применение получил радиоактивный изотоп стронция - Sr90, который при распаде (Т = 28,4 года) испускает бета-частицы с энергией 0,535 Мэв (см. Бета-излучение).

Sr90 применяют для лучевой терапии (см.) методом аппликации при болезнях глаз (опухоли) и поверхностных поражениях кожи и слизистых оболочек (капиллярные ангиомы, гиперкератозы, болезнь Боуэна, эрозии, лейкоплакии и др.). Малопроникающее бета-излучение Sr90 в основном оказывает воздействие на Поверхностно расположенные патологические очаги, тогда как глубже расположенные здоровые ткани остаются неповрежденными. Доза излучения от стронциевого аппликатора, помещенного на кожу, составляет на глубине 5 мм всего лишь 2,8%.

Токсикологическое значение имеют радиоактивные изотопы стронция, образующиеся в ядерных реакторах (см. Реакторы ядерные) и при взрывах атомных бомб (см. Радиоактивные осадки). Стронций радиоактивный, образовавшийся при взрывах, попадает в почву и воду, усваивается растениями и затем с растительной пищей или с молоком животных, питающихся этими растениями, проникает в организм человека. В организме радиоактивный стронций концентрируется в костях и прочно фиксируется там. Эффективный период (см.) полувыведения Sr90 из организма человека составляет 15,3 года. Таким образом, в организме создается постоянный очаг радиоактивности, воздействующий на костную ткань и костный мозг. Исходом такого облучения в отдаленные сроки могут быть лучевые остеосаркомы и лейкозы.

При попадании больших количеств радиоактивного стронция в организм имеется опасность развития острого лучевого поражения; длительное поступление в малых дозах может вызвать хроническую форму лучевой болезни (см.).

Работа со стронцием радиоактивным должна проводиться с большой осторожностью. Меры защиты от попадания стронция радиоактивного внутрь организма (см. Атомная промышленность. Противолучевая защита, физическая).

Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Для человека внутреннее облучение представляет большую опасность, чем внешнее. Радионуклиды при внутреннем облучении поступают в организм человека через органы дыхания (с вдыхаемым воздухом); желудочно-кишечный тракт (с пищей и водой); через раны.

Радионуклиды, попав в организм человека различными путями, распределяются в организме неравномерно, они сорбируются в определенных органах и системах.

В первые дни после аварии наибольшую опасность для здоровья человека представляют радиоактивные изотопы иода-131, составляющие основную массу радиоактивных выбросов.

Иод-131 , попавший в организм человека, более чем на 90% поглощается щитовидной железой. Это объясняется тем, что для функции щитовидной железы в нормальных условиях необходим йод, так как он входит в состав гормонов, вырабатываемых железой, которые регулируют обмен веществ в организме человека. В обычных условиях в щитовидную железу йод поступает из воды, поэтому радиоактивный изотоп йод-131 также устремляется в щитовидную железу. В начале йод-131 вызывает воспаление железы, что приводит к перерождению железистой ткани в раковую. По данным некоторых авторов после аварии на ЧАЭС частота онкологических заболеваний щитовидной железы выросла в некоторых населенных пунктах в десятки раз. Для предупреждения поражения радиоактивным йодом-131 необходимо проводить йодную профилактику.

Цезий-137 сорбируется печенью, вызывая ее воспаление, и в результате наступает так называемый цезиевый гепатит. Цезий-137 выводит из организма соли калия, поэтому в пищу необходимо включать продукты, содержащие соли калия (баклажаны, зеленый горошек, картофель, помидоры, арбузы, бананы и др.).

Стронций-90 сорбируется в костной ткани. Его ионным конкурентом является нерадиоактивный кальций. Поэтому достаточное количество кальция в организме препятствует накоплению стронция-90 в костях и способствует его выведению. И наоборот, дефицит солей кальция в пище способствует накоплению стронция. По данным Всемирной организации здравоохранения (ВОЗ), для нормального кальциевого баланса необходимо ежедневно употреблять по 1 литру молока или кисломолочных продуктов, или принимать ежедневно глюконат кальция (взрослым по 0,4-0,5 г, подросткам – 0,7 г, беременным женщинам 1,0-1,2 г). Соли кальция всасываются в желудке гораздо быстрее, чем стронций-90, в этом и заключается профилактические мероприятия по защите от стронция-90.

Известно, что в биологической ткани 60 — 70 % по массе составляет вода. В результате ионизации молекулы воды образуются свободные радикалы Н и ОН . В присутствии кислорода образуются также свободный радикал гидроперекиси (НО 2) и перекись водорода (Н2О2), являющиеся сильными окислителями.

Получающиеся в процессе радиолиза воды свободные радикалы и окислители, обладая высокой химической активностью, вступают в химические реакции с молекулами белка, ферментов и других структурных элементов биологической ткани, что приводит к изменению биохимических процессов в организме. В результате нарушаются обменные процессы, подавляется активность ферментных систем, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму — токсины. Это приводит к нарушению жизнедеятельности отдельных функций или систем и организма в целом.

Индуцированные свободными радикалами химические реакции развиваются с большим выходом и вовлекают в этот процесс многие сотни и тысячи молекул, не затронутые излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты, заключающаяся в том, что производимый им эффект обусловлен не столько количеством поглощенной энергии в облучаемом объекте, сколько той формой, в которой эта энергия передается.

Изменения, происходящие в организме под воздействием радиации, могут проявиться в виде клинических эффектов, либо через сравнительно короткий промежуток времени после облучения — острые лучевые поражения, либо через длительный промежуток времени — отдаленные последствия. Кроме того, в организме под воздействием излучения может произойти нарушение структурных элементов, ответственных за наследственность. Поэтому при оценке опасности облучения, которому могут подвергаться отдельные контингенты людей и популяция в целом, радиационные эффекты принято дифференцировать на соматические и генетические. Соматические эффекты проявляются в виде острой или хронической лучевой болезни, локальных лучевых повреждений отдельных органов или тканей, а также в виде отдаленных реакций организма на облучение.

Основным структурным элементом ядра клетки являются хромосомы, основу строения которых составляет молекула ДНК. Чем крупнее молекула, тем более вероятно ее разрушение при каких-либо внешних воздействиях. Поэтому наиболее радиационно-чувствительным структурным элементом клетки являются хромосомы, состоящие из таких огромных молекул, как ДНК. Ионизирующее излучение вызывает хромосомные аберрации (поломку хромосом), за которыми обычно следуют соединения разорванных концов в новых сочетаниях. Это приводит к изменению генного аппарата, а следовательно, к образованию дочерних клеток, не идентичных с исходными.

Возникновение стойких хромосомных аберраций в половых клетках ведет к мутациям, т. е. к появлению у облученных особей потомства с другими признаками. Такие изменения признаков могут быть как полезными, так и вредными. Мутации полезны, если приобретенные признаки способствуют повышению жизнестойкости организма. Вредные мутации проявляются в виде различного типа врожденных пороков у потомства. Большинство мутаций, возникающих и спонтанно, и под воздействием излучения или других факторов внешней среды, оказываются вредными. Видимо, это обусловлено тем, что данный вид живого организма за миллионы лет эволюции достаточно хорошо приспособился к условиям окружающей среды и выработал оптимальные условия своей жизнедеятельности. Поэтому вероятность возникновения полезных мутаций очень мала.

Наблюдения за последствиями облучения человека дают очень мало информации для определения генетической опасности, обусловленной ионизирующим излучением, особенно при воздействии малых доз. Последствия малых доз трудно заметить и отделить от других неблагоприятных условий проживания населения (загрязненность окружающей природной среды химическими веществами, вредные привычки и т. д.).

Радиостронций – изотоп стронций-90

Однако ученые продолжают разрабатывать методы изучения воздействия таких доз на человека.

Окончательного представления о воздействии РВ на организм человека у ученых всего мира, занимающихся медицинской радиологией, до сих пор не сложилось. Ясно одно, что РВ действуют на клеточном уровне, они нарушают процесс деления клеток (блокирует синтез ДНК), в первую очередь поражаются клетки крови — лейкоциты, затем тромбоциты, и в меньшей степени эритроциты, что приводит к острой или хронической лучевой болезни или другим заболеваниям. В зависимости от полученной дозы у пораженных различают четыре степени тяжести острой лучевой болезни (ОЛБ):

I степень (легкая) ОЛБ развивается при однократном облучении дозой 1-2 Зв.;

II степень (средняя) ОЛБ – при дозе 2-4 Зв.;

III степень (тяжелая) ОЛБ – при дозе 4-6 Зв.;

IV степень (крайне тяжелая) ОЛБ – при дозе более 6 Зв.

Радионукли́ды , радиоакти́вные нукли́ды (менее точно - радиоакти́вные изото́пы , радиоизото́пы ) - нуклиды, ядра которых нестабильны и испытывают радиоактивный распад. Большинство известных нуклидов радиоактивны (стабильными являются лишь около 300 из более чем 3000 нуклидов, известных науке). Радиоактивны все нуклиды, имеющие зарядовое числоZ , равное 43 (технеций) или 61 (прометий) или большее 82 (свинец); соответствующие элементы называются радиоактивными элементами. Радионуклиды (главным образом бета-неустойчивые) существуют у любого элемента (то есть для любого зарядового числа), причём у любого элемента радионуклидов существенно больше, чем стабильных нуклидов.

Поскольку бета-распад любого типа не изменяет массовое числоA нуклида, среди нуклидов с одинаковым значением массового числа (изобаров) существует как минимум один бета-стабильный нуклид, отвечающий минимуму на зависимости избытка массы атома от заряда ядра Z при данном A (изобарической цепочке); бета-распады происходят по направлению к этому минимуму (β−-распад - с увеличением Z , β+-распад и электронный захват - с уменьшением Z ), спонтанные переходы в обратном направлении запрещены законом сохранения энергии. Для нечётных A такой минимум один, тогда как для чётных значений A бета-стабильных изотопов может быть 2 и даже 3.

Стронций-90

Большинство лёгких бета-стабильных нуклидов стабильны также и по отношению к другим видам радиоактивного распада и, таким образом, являются абсолютно стабильными (если не принимать во внимание до сих пор никем не обнаруженный распад протона, предсказываемый многими современными теориями-расширениями Стандартной Модели).

Начиная с А = 36 на чётных изобарических цепочках появляется второй минимум. Бета-стабильные ядра в локальных минимумах изобарических цепочек способны испытывать двойной бета-распад в глобальный минимум цепочки, хотя периоды полураспада по этому каналу очень велики (1019 лет и более) и в большинстве случаев, когда такой процесс возможен, он экспериментально не наблюдался. Тяжёлые бета-стабильные ядра могут испытывать альфа-распад (начиная с A ≈ 140), кластерный распад и спонтанное деление.

Большинство радионуклидов получаются искусственным путём, однако существуют и природные радионуклиды, к которым относятся:

  • радионуклиды с большими периодами полураспада (>5·107 лет, например уран-238, торий-232, калий-40), которые не успели распасться с момента нуклеосинтеза за время существования Земли, 4,5 млрд лет;
  • радиогенные радионуклиды - продукты распада вышеуказанных долгоживущих радионуклидов (например, радон-222 и другие радионуклиды из ряда тория);
  • космогенные радионуклиды, возникающие в результате действия космического излучения (тритий, углерод-14, бериллий-7 и др.).

Примечания

  1. Исключение - бета-стабильные нуклиды с А = 5 (гелий-5, распадается на альфа-частицу и нейтрон) и А = 8 (бериллий-8, распадается на две альфа-частицы).

CC© wikiredia.ru

Главная / Справочная информация / База знаний по микроэлементам / Микроэлемент Стронций / Как определить количество стронция в организме человека

Важно знать:

Почему люди выбирают клинику МЧС России?

Вы из другого региона или страны проживания? Это не проблема, следуйте инструкциям по данной ссылке

Что необходимо для прохождения исследования?

Справочная информация

База знаний по 33 исследуемым микроэлементам

Как определить количество стронция в организме человека

Здравствуйте Друзья!

В данном обзоре речь пойдет о Стронции (Strontium(Sr)), 38 порядковый элемент в таблице Менделеева.

Данный микроэлемент относится к группе потенциально токсичных и является вредным для здоровья человека.

История открытия элемента обозначена 1790 годом, после исследования найденного в Шотландии минерала стронцианита, и выделения соединения под названием стронциан, в честь одноименной деревни где были найдены первые образцы данного микроэлемента.

Стоит отметить, что тенденция нахождения данного токсичного микроэлемента в организме исследуемых людей, заставляет бить тревогу, т.к.

накопления его в организме напрямую связано с дефицитом жизненно полезных элементов и происходит в процессе их взаимного замещения.

Необходимо контролировать наличие стронция в теле человека, т.к. при его накоплении происходят серьезные изменения в костных тканях, скелете, процессах усвоения жизненно необходимых микроэлементов и др.

При высоких составляющих стронция в организме, происходят следующие патологии:

— задержка формирования костей (стронциевый рахит);

— эндемическая остеодистрофия;

— болезнь Кашина-Бека;

— атрофия мышц;

— остеоартроз и др.

Стоит отметить, что в пределах нормы, наличие стронция в организме необходимо по причине его важной роли в образовании зубной эмали, костеобразовании, цитопротекторного действия и др., но данная необходимость крайне мала исходя из количественных соотношений.

Говоря о вопросах, которые рассматривают люди при поиске информации относительно микроэлемента стронций, стоит выделить следующие вариации:

Как определить сколько стронция в организме человека;

Как проверить уровень стронция в организме;

Как понизить уровень стронция в организме;

Как уменьшить уровень стронция в организме людей;

Как узнать уровень стронция в организме человека;

Как понять какой уровень стронция в организме;

Как убрать стронций в организме;

Как узнать сколько в человеке стронция;

Как определить норму стронция у ребенка и человека;

Чем опасен стронций для организма человека;

Чем опасен стронций для человека;

Чем опасно превышение стронция в организме человека;

Почему опасен стронций для человека;

Опасность стронция для человека;

Опасность стронция для здоровья человека.

Важно отметить что стронций является антагонистом кальция, говоря проще, они друг друга взаимно замещают, при наличии дефицита жизненно полезного элемента - кальций, на его место в скелет человека встраивается вредный для здоровья стронций, по причине схожих физико-химических свойств.

При необходимом уровне кальция в организме человека, стронций усваивается в необходимых для здорового баланса количестве с выведением излишков во внешнюю среду без вредя для организма.

Так же высокое наличие стронция в организме, приводит к дефициту магния, марганца, меди, цинка, кобальта и др. необходимых полезных микроэлементов.

Рассматривая вопрос - “как определить сколько стронция в организме человека / как узнать сколько в человеке стронция ”, существует единственный метод исследования — масс-спектрометрия с индуктивно связанной плазмой, если говорить более доступно, исследование волос, ногтей, костей и других неорганических проб, посредством спектрального анализа.

Данный метод позволяет точнейшим образом проверить уровень стронция в организме, а так же и еще ряда других 32 микроэлементов, что позволяет получить полную картину о биоэлементном статусе организма, и выявить дефицит / переизбыток жизненно необходимых и опасно токсичных элементов в теле человека.

Пример пройденного исследования, можно изучить по данной ссылке.

Как Вы могли заметить, Наш проект полностью посвящен данной методике и раскрывает ее уникальность, пользу и применяемость в различных ситуациях.

Стоит отметить, что существует лишь одно место в России, позволяющее провести исследование спектральным анализом на официально одобренном Минздравом уровне, в лаборатории элементного анализа ФГБУ «Всероссийский центр экстренной и радиационной медицины им. А.М. Никифорова» МЧС России», все остальные частные лаборатории не имеют на это аккредитации и по сути скрывают данные факты во имя коммерческих целей. Будьте бдительны!

Мы будем рады ответить на возникшие у Вас вопросы, относительно определения Вашего элементного статуса посредством спектрального анализа волос и при необходимости помочь с прохождением исследования.

Спасибо за Ваше внимание, с уважением компания 33 Элемента!

Большинство из нас к этому времени уже перестали задумываться о радиации вокруг нас. А представители молодого поколения и вообще никогда о ней не думали.

Ведь события Чернобыля так далеки и, кажется, что всё уже давно минулось. Однако, к сожалению, это далеко не так. Выбросы после аварии на ЧАЭС были столь велики, что, по оценкам экспертов, в несколько десятков раз превысили радиационное загрязнение после Хиросимы и постепенно покрыли собой весь Земной шар, оседая на полях, в лесах и т. п.

Источники радиационного загрязнения

В последние годы основными источниками радиационного загрязнения атмосферы являлись испытания ядерного оружия и аварии на объектах атомной энергетики. В 1996 году все ядерные и многие безъядерные государства подписали договор о полном запрещении ядерных испытаний. Не подписавшие договор Индия и Пакистан, провели последние ядерные испытания в 1998 году. 25 мая 2009 года о проведении ядерного испытания заявила КНДР. То есть количество испытаний ядерного оружия в последние годы заметно уменьшилось. А вот что касается эксплуатации АЭС, то здесь ситуация обстоит сложнее. При нормальных условиях эксплуатации АЭС выбросы радионуклидов незначительны. Подавляющее количество продуктов ядерного деления остаётся в топливе. По данным дозиметрического контроля, концентрация радионуклидов, в частности цезия, в районах расположения АЭС лишь незначительно превышает концентрацию нуклидов в районах, где загрязнение среды происходит за счёт испытаний ядерного оружия (Гусев Н. Г. // Атомная энергия. 1976. Вып. 41. №4. С.254-260.).
Наиболее сложные ситуации возникают после аварий на самих АЭС или в хранилищах радиоактивных отходов, когда во внешнюю среду поступает огромное количество радионуклидов и загрязнению подвергаются большие территории. Наиболее известные из аварий – Кыштым (1957 г., СССР), Три-Майл-Айленд (1979г., США), Чернобыль (1986г., СССР), Гояния (1987г., Бразилия), Токаймура (1999г., Япония), Флёрюс (2006г., Бельгия), Фукусима (2011г., Япония). Можно заметить, что география аварий весьма обширна и охватывает весь Земной шар – от Азии до Европы и Америки. А сколько ещё происходило и происходит более мелких аварий, малоизвестных, а то и вовсе неизвестных общественности, каждая из которых, как правило, сопровождается выбросом радиации в окружающую среду, то есть радиационным загрязнением. Источником радиационного загрязнения могут быть и радиохимические заводы по переработке отработанных твэлов, и хранилища радиоактивных отходов.

Радиоактивные изотопы и их воздействие на человека

радиоактивных изотопов. Все эти изотопы при распаде являются источниками гамма- и бета-излучений, имеющих самую большую энергию проникновения.

Элемент йод необходим для синтеза гормонов щитовидной железы, регулирущей работу всего организма. Гормоны, которые она вырабатывает (тиреоидные) влияют на размножение, рост, дифференцировку тканей и обмен веществ, поэтому нехватка йода является скрытой причиной многих заболеваний, называемых йододефицитными. А вот его радиоактивный изотоп йод-131, наоборот, оказывает негативное действие – вызывает мутации и гибель клеток, в которые он проник, и окружающих тканей на глубину нескольких миллиметров. Для пополнения запасов организма йодом необходимо употреблять в пищу желтые овощи и фрукты – грецкие орехи, мёд и т. п.

Стронций

Стронций является составной частью микроорганизмов, растений и животных. Это аналог кальция, поэтому он наиболее эффективно откладывается в костной ткани. Никакого негативного влияния на организм он не производит, за исключением случаев недостатка кальция, витамина Д, неполноценного питания и других факторов. А вот радиоактивный стронций-90 практически всегда негативно воздействует на организм человека. Откладываясь в костной ткани, он облучает костную ткань и костный мозг, что увеличивает риск заболевания раком костного мозга, а при поступлении большого количества может вызвать лучевую болезнь. Наибольшими источниками радиоактивного излучения изотопа стронций-90 являются лесные ягоды, мхи и лекарственные травы. Перед употреблением ягод их необходимо как можно более тщательно промывать под проточной водой.
Продукты, содержащие кальций способствуют выведению стронция из организма — творог и др. Венгерский врач Кромпхер с группой медиков и биологов в результате 10 — летних исследований установил, что яичная скорлупа — прекрасное выводящее средство радионуклидов, препятствует накоплению в костном мозге ядер стронция-90. Перед употреблением скорлупы её необходимо прокипятить не менее 5-ти минут, растолочь в ступе (но не в кофемолке), растворить в лимонной кислоте, принимать на завтрак с творогом или кашей. Также в число факторов способных снижать усвоение радиоактивного стронция, входит потребление хлеба из темных сортов муки.

Особого к себе внимания требует радиоактивный цезий-137, как один из основных источников, формирующих дозы внешнего и внутреннего облучения людей. Из 34 изотопов цезия только один цезий-133 не радиоактивный и является постоянным микроэлементом растительных и животных организмов. Биологическая роль цезия пока ещё окончательно не раскрыта.
В первые годы после выпадения (после ядерных испытаний, аварий и т.

п.) радиоактивный цезий-137 в основном содержится в верхнем, 5-10-сантиметровом, слое почвы независимо от её вида. Под воздействием природных факторов цезий постепенно мигрирует в горизонтальном и вертикальном направлениях. При проведении сельскохозяйственных работ цезий проникает вглубь земли на глубину пахоты и из года в год снова и снова перемешивается с землёй, создавая определённый фон радиоактивного излучения (Павлоцкая Ф. И. Миграция продуктов глобальных выпадений в почвах. М., 1974).
В организм животных и человека радиоактивный цезий проникает в основном через органы дыхания и пищеварения. Наибольшее количество цезия-137 поступает в организм с грибами и продуктами животного происхождения – молоко, мясо, яйца и пр., а также с зерновыми и овощами.
В коровьем молоке относительное содержание цезия-137 в 10-20 раз меньше, нежели в козьем или овечьем молоке (Василенко И. Я. // Вопросы питания. 1988. № 4. С. 4-11.). Кроме того, содержание цезия-137 заметно уменьшается в продуктах переработки молочного сырья – сыре, масле и пр.
Больше всего цезий-137 оседает в мышечной ткани животных, причём относительное его содержание в мясе свиней и кур (кроме белка яиц) в 5-6 раз больше, нежели в мясе коров. Перед приготовлением мяса его желательно предарительно вымачивать в уксусной воде.
Для уменьшения поступлений в организм радиоактивного цезия с овощами необходимо качественно их промывать и обрезать корни овощных культур перед их употреблением в пищу. У капусты целесообразно удалять хотя бы верхний слой листьев и не использовать в пищу кочерыжку. Любой отваренный продукт теряет при варке до половины радионуклидов (в пресной воде до 30%, соленой до 50%).
Что касается грибов, то наиболее подвержены накоплению радиоактивного цезия-137 белый гриб и поддубовик, наименее — опята. Перед употреблением в пищу любых грибов вначале необходимо пообрезать им ножки, желательно ближе к шляпке, вымочить и поддать термической обработке – три раза прокипятить в течении 30 минут для каждого кипячения, с полной сменой воды. Слитую воду нигде использовать нельзя. При этом, как показывает практика, не менее 90% нуклидов будет выведено из обработанных таким образом грибов.
Очень высока степень накопления радиоактивного цезия в тканях пресноводных рыб, что также необходимо учитывать при её приготовлении. Желательно перед приготовлением рыбы вымочить её в воде с добавлением большого количества уксуса.
Выводится цезий-137 из организма через почки (мочой) и кишечник. По данным Международной комиссии по радиологической защите, биологический период выведения половины накопленного цезия-137 для человека принято считать равным 70 суток. Неотложная помощь при облучении цезием-137 должна быть направлена на его немедленное выведение из организма и включает промывание желудка, назначение сорбентов, рвотных, слабительных, мочегонных средств и дезактивацию кожных покровов.

Заключение

Для уменьшения влияния радиоизлучения изотопов на растительность сельскохозяйственных угодий, а также лесную растительность необходимо проводить нейтрализацию этих излучений, используя соответствующие нейтрализаторы. Например, для нейтрализации радиоизлучений радиоактивного изотопа стронций-90 необходимо использовать удобрения на основе кальция, а для нейтрализации изотопа цезий-137 – калиевые удобрения. Такой процесс принято называть дезактивацией. Дезактивировать можно не только поля, но и леса.
В странах, пострадавших от Чернобыльской аварии существуют государственные программы дезактивации зараженных территорий. Так, в Беларуси на дезактивацию зараженных территорий государство выделяет 23% средств от общей суммы, выделяющейся на все Чернобыльские программы, в том числе и на выплаты пострадавшим, в России выделяется немного меньше, в Украине же на эти цели выделяется менее 1%, что говорит само за себя.