» » Тригонометрические примеры. Тригонометрические уравнения

Тригонометрические примеры. Тригонометрические уравнения

Простейшими тригонометрическими уравнениями называют уравнения

Cos (x) = a, sin (x) = a, tg (x) = a, ctg (x) =a

Уравнение cos (x) = a

Объяснение и обоснование

  1. Корни уравнения cosx = а. При | a | > 1 уравнение не имеет корней, по-скольку | cosx | < 1 для любого x (прямая y = а при а > 1 или при а < -1 не пересекает график функцииy = cosx).

Пусть | а | < 1. Тогда прямая у = а пересекает график функции

у = cos х. На промежутке функция y = cos x убы-вает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение cos x = а имеет на этом промежутке только один корень, который по опреде-лению арккосинуса равен: x 1 = arccos а (и для этого корня cos x = а).

Косинус — четная функция, поэтому на промежутке [-п; 0] уравнение cos x = а также имеет только один корень — число, противоположное x 1 , то есть

x 2 = -arccos а.

Таким образом, на промежутке [-п; п] (длиной 2п) уравнение cos x = а при | а | < 1 имеет только корни x = ±arccos а.

Функция y = cos x периодическая с периодом 2п, поэтому все остальные корни отличаются от найденных на 2пп (n € Z). Получаем следующую фор-мулу корней уравнения cos x = а при

x = ±arccos а + 2пп, n £ Z.

  1. Частные случаи решения уравнения cosx = а.

Полезно помнить специальные записи корней уравнения cos x = а при

а = 0, а = -1, а = 1, которые можно легко получить, используя как ори-ентир единичную окружность.

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что cos x = 0 тогда и только тогда, когда соответ-ствующей точкой единичной окружности является точка A или точка B.

Аналогично cos x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C, следовательно,

x = 2πп, k € Z.

Также cos х = —1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка D, таким образом, х = п + 2пn,

Уравнение sin (x) = a

Объяснение и обоснование

  1. Корни уравнения sinx = а. При | а | > 1 уравнение не имеет корней, по-скольку | sinx | < 1 для любого x (прямая y = а на рисунке при а > 1 или при а < -1 не пересекает график функции y = sinx).

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной. Алгебра и начала математического анализа (10-11) (баз.)

Как научить решать тригонометрические уравнения и неравенства: методика преподавания

Курс математики корпорации «Российский учебник», авторства Георгия Муравина и Ольги Муравиной, предусматривает постепенный переход к решению тригонометрических уравнений и неравенств в 10 классе, а также продолжение их изучения в 11 классе. Представляем вашему вниманию этапы перехода к теме с выдержками из учебника «Алгебра и начало математического анализа» (углубленный уровень).

1. Синус и косинус любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример задания. Найти приближенно углы, косинусы которых равны 0,8.

Решение. Косинус - это абсцисса соответствующей точки единичной окружности. Все точки с абсциссами, равными 0,8, принадлежат прямой, параллельной оси ординат и проходящей через точку C (0,8; 0). Эта прямая пересекает единичную окружность в двух точках: P α ° и P β ° , симметричных относительно оси абсцисс.

С помощью транспортира находим, что угол α° приближенно равен 37°. Значит, общий вид углов поворота с конечной точкой P α°:

α° ≈ 37° + 360°n , где n - любое целое число.

В силу симметрии относительно оси абсцисс точка P β ° - конечная точка поворота на угол –37°. Значит, для нее общий вид углов поворота:

β° ≈ –37° + 360°n , где n - любое целое число.

Ответ: 37° + 360°n , –37° + 360°n , где n - любое целое число.

Пример задания. Найти углы, синусы которых равны 0,5.

Решение. Синус - это ордината соответствующей точки единичной окружности. Все точки с ординатами, равными 0,5, принадлежат прямой, параллельной оси абсцисс и проходящей через точку D (0; 0,5).

Эта прямая пересекает единичную окружность в двух точках: P φ и P π–φ , симметричных относительно оси ординат. В прямоугольном треугольнике OKP φ катет KP φ равен половине гипотенузы OP φ, значит,

Общий вид углов поворота с конечной точкой P φ :

где n - любое целое число. Общий вид углов поворота с конечной точкой P π–φ :


где n - любое целое число.

Ответ: где n - любое целое число.

2. Тангенс и котангенс любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример 2.

Пример задания. Найти общий вид углов, тангенс которых равен –1,2.

Решение. Отметим на оси тангенсов точку C с ординатой, равной –1,2, и проведем прямую OC . Прямая OC пересекает единичную окружность в точках P α ° и P β° - концах одного и того же диаметра. Углы, соответствующие этим точкам, отличаются друг от друга на целое число полуоборотов, т.е. на 180°n (n - целое число). С помощью транспортира находим, что угол P α° OP 0 равен –50°. Значит, общий вид углов, тангенс которых равен –1,2, следующий: –50° + 180°n (n - целое число)

Ответ: –50° + 180°n , n ∈ Z.

По синусу и косинусу углов 30°, 45° и 60° легко найти их тангенсы и котангенсы. Например,

Перечисленные углы довольно часто встречаются в разных задачах, поэтому полезно запомнить значения тангенса и котангенса этих углов.

3. Простейшие тригонометрические уравнения

Вводятся обозначения: arcsin α, arccos α, arctg α, arcctg α. Не рекомендуется торопиться с введением объединенной формулы. Две серии корней значительно удобнее записывать, особенно, когда нужно отбирать корни на интервале.

При изучении темы «простейшие тригонометрические уравнения», уравнения чаще всего сводятся к квадратам.

4. Формулы приведения

Формулы приведения являются тождествами, т. е. они верны для любых допустимых значений φ . Анализируя полученную таблицу, можно заметить, что:

1) знак в правой части формулы совпадает со знаком приводимой функции в соответствующей четверти, если считать φ острым углом;

2) название меняют только функции углов и

φ + 2πn

5. Свойства и график функции y = sin x

Простейшие тригонометрические неравенства решаются либо по графику, либо на окружности. При решении тригонометрического неравенства на окружности важно не перепутать, какую точку указывать первой.

6. Свойства и график функции y = cos x

Задачу построения графика функции y = cos x можно свести к построению графика функции y = sin x . Действительно, поскольку график функции y = cos x можно получить из графика функции y = sin x сдвигом последнего вдоль оси абсцисс влево на

7. Свойства и графики функций y = tg x и y = ctg x

Область определения функции y = tg x включает в себя все числа, кроме чисел вида где n Z . Как и при построении синусоиды, сначала постараемся получить график функции y = tg x на промежутке


В левом конце этого промежутка тангенс равен нулю, а при приближении к правому концу значения тангенса неограниченно увеличиваются. Графически это выглядит так, как будто график функции y = tg x прижимается к прямой уходя вместе с ней неограниченно вверх.

8. Зависимости между тригонометрическими функциями одного и того же аргумента

Равенства и выражают соотношения между тригонометрическими функциями одного и того же аргумента φ. С их помощью, зная синус и косинус некоторого угла, можно найти его тангенс и котангенс. Из этих равенств легко получить, что тангенс и котангенс связаны между собой следующим равенством.

tg φ · ctg φ = 1

Есть и другие зависимости между тригонометрическими функциями.

Уравнение единичной окружности с центром в начале координат x 2 + y 2 = 1 связывает абсциссу и ординату любой точки этой окружности.

Основное тригонометрическое тождество

cos 2 φ + sin 2 φ = 1

9. Синус и косинус суммы и разности двух углов

Формула косинуса суммы

cos (α + β) = cos α cos β – sin α sin β

Формула косинуса разности

cos (α – β) = cos α cos β + sin α sin β

Формула синуса разности

sin (α – β) = sin α cos β – cos α sin β

Формула синуса суммы

sin (α + β) = sin α cos β + cos α sin β

10. Тангенс суммы и тангенс разности двух углов

Формула тангенса суммы

Формула тангенса разности

Учебник входит в УМК по математике для 10–11 классов, изучающих предмет на базовом уровне. Теоретический материал разделен на обязательный и дополнительный, система заданий дифференцирована по уровню сложности, каждый пункт главы завершается контрольными вопросами и заданиями, а каждая глава - домашней контрольной работой. В учебник включены темы проектов и сделаны ссылки на интернет-ресурсы.

11. Тригонометрические функции двойного угла

Формула тангенса двойного угла

cos2α = 1 – 2sin 2 α cos2α = 2cos 2 α – 1

Пример задания. Решить уравнение

Решение.

13. Решение тригонометрических уравнений

В большинстве случаев исходное уравнение в процессе решения сводится к простейшим тригонометрическим уравнениям. Однако для тригонометрических уравнений не существует единого метода решения. В каждом конкретном случае успех зависит от знания тригонометрических формул и от умения выбрать из них нужные. При этом обилие различных формул иногда делает этот выбор довольно трудным.

Уравнения, сводящиеся к квадратам

Пример задания. Решить уравнение 2 cos 2 x + 3 sinx = 0

Решение . С помощью основного тригонометрического тождества это уравнение можно свести к квадратному относительно sinx :

2cos 2 x + 3sinx = 0, 2(1 – sin 2 x ) + 3sinx = 0,

2 – 2sin 2 x + 3sinx = 0, 2sin 2 x – 3sinx – 2 = 0

Введем новую переменную y = sin x , тогда уравнение примет вид: 2y 2 – 3y – 2 = 0.

Корни этого уравнения y 1 = 2, y 2 = –0,5.

Возвращаемся к переменной x и получаем простейшие тригонометрические уравнения:

1) sin x = 2 – это уравнение не имеет корней, так как sin x < 2 при любом значении x ;

2) sin x = –0,5,

Ответ :

Однородные тригонометрические уравнения

Пример задания. Решить уравнение 2sin 2 x – 3sinx cosx – 5cos 2 x = 0.

Решение. Рассмотрим два случая:

1) cosx = 0 и 2) cosx ≠ 0.

Случай 1. Если cos x = 0, то уравнение принимает вид 2sin 2 x = 0, откуда sinx = 0. Но это равенство не удовлетворяет условию cosx = 0, так как ни при каком x косинус и синус одновременно в нуль не обращаются.

Случай 2. Если cos x ≠ 0, то можно разделить уравнение на cos 2 x «Алгебра и начало математического анализа. 10 класс» , как и многие другие издания, можно на платформе LECTA. Для этого воспользуйтесь предложением .

#ADVERTISING_INSERT#

При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

Чтобы решить тригонометрическое уравнение, надо попытаться:

1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.

Рассмотрим основные методы решения тригонометрических уравнений.

I. Приведение к простейшим тригонометрическим уравнениям

Схема решения

Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

Шаг 2. Найти аргумент функции по формулам:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Шаг 3. Найти неизвестную переменную.

Пример.

2 cos(3x – π/4) = -√2.

Решение.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Замена переменной

Схема решения

Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

Шаг 3. Записать и решить полученное алгебраическое уравнение.

Шаг 4. Сделать обратную замену.

Шаг 5. Решить простейшее тригонометрическое уравнение.

Пример.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Решение.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Пусть sin (x/2) = t, где |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Ответ: x = π + 4πn, n Є Z.

III. Метод понижения порядка уравнения

Схема решения

Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Шаг 2. Решить полученное уравнение с помощью методов I и II.

Пример.

cos 2x + cos 2 x = 5/4.

Решение.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Ответ: x = ±π/6 + πn, n Є Z.

IV. Однородные уравнения

Схема решения

Шаг 1. Привести данное уравнение к виду

a) a sin x + b cos x = 0 (однородное уравнение первой степени)

или к виду

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Шаг 2. Разделить обе части уравнения на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

и получить уравнение относительно tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Шаг 3. Решить уравнение известными способами.

Пример.

5sin 2 x + 3sin x · cos x – 4 = 0.

Решение.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Пусть tg x = t, тогда

t 2 + 3t – 4 = 0;

t = 1 или t = -4, значит

tg x = 1 или tg x = -4.

Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод преобразования уравнения с помощью тригонометрических формул

Схема решения

Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

Шаг 2. Решить полученное уравнение известными методами.

Пример.

sin x + sin 2x + sin 3x = 0.

Решение.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 или 2cos x + 1 = 0;

Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Простейшие тригонометрические уравнения решаются, как правило, по формулам. Напомню, что простейшими называются вот такие тригонометрические уравнения:

sinx = а

cosx = а

tgx = а

ctgx = а

х - угол, который нужно найти,
а - любое число.

А вот и формулы, с помощью которых можно сразу записать решения этих простейших уравнений.

Для синуса:


Для косинуса:

х = ± arccos a + 2π n, n ∈ Z


Для тангенса:

х = arctg a + π n, n ∈ Z


Для котангенса:

х = arcctg a + π n, n ∈ Z

Собственно, это и есть теоретическая часть решения простейших тригонометрических уравнений. Причём, вся!) Совсем ничего. Однако, количество ошибок по этой теме просто зашкаливает. Особенно, при незначительном отклонении примера от шаблона. Почему?

Да потому, что масса народу записывает эти буковки, не понимая их смысла совершенно! С опаской записывает, как бы чего не вышло...) С этим надо разобраться. Тригонометрия для людей, или люди для тригонометрии, в конце концов!?)

Разберёмся?

Один угол у нас будет равен arccos a, второй: -arccos a.

И так будет получаться всегда. При любом а.

Если не верите, наведите курсор мышки на картинку, или коснитесь рисунка на планшете.) Я изменил число а на какое-то отрицательное. Всё равно, один угол у нас получился arccos a, второй: -arccos a.

Следовательно, ответ можно всегда записать в виде двух серий корней:

х 1 = arccos a + 2π n, n ∈ Z

х 2 = - arccos a + 2π n, n ∈ Z

Объединяем эти две серии в одну:

х= ± arccos а + 2π n, n ∈ Z

И все дела. Получили общую формулу для решения простейшего тригонометрического уравнения с косинусом.

Если вы понимаете, что это не какая-то сверхнаучная мудрость, а просто сокращённая запись двух серий ответов, вам и задания "С" будут по плечу. С неравенствами, с отбором корней из заданного интервала... Там ответ с плюсом/минусом не катит. А если отнестись к ответу делово, да разбить его на два отдельных ответа, всё и решается.) Собственно, для этого и разбираемся. Что, как и откуда.

В простейшем тригонометрическом уравнении

sinx = а

тоже получается две серии корней. Всегда. И эти две серии тоже можно записать одной строчкой. Только эта строчка похитрее будет:

х = (-1) n arcsin a + π n, n ∈ Z

Но суть остаётся прежней. Математики просто сконструировали формулу, чтобы вместо двух записей серий корней, сделать одну. И всё!

Проверим математиков? А то мало ли...)

В предыдущем уроке подробно разобрано решение (безо всяких формул) тригонометрического уравнения с синусом:

В ответе получились две серии корней:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Если мы будем решать это же уравнение по формуле, получим ответ:

х = (-1) n arcsin 0,5 + π n, n ∈ Z

Вообще-то, это недоделанный ответ.) Ученик обязан знать, что arcsin 0,5 = π /6. Полноценный ответ будет:

х = (-1) n π /6 + π n, n ∈ Z

Тут возникает интересный вопрос. Ответ через х 1 ; х 2 (это правильный ответ!) и через одинокий х (и это правильный ответ!) - одно и то же, или нет? Сейчас узнаем.)

Подставляем в ответ с х 1 значения n =0; 1; 2; и т.д., считаем, получаем серию корней:

х 1 = π/6; 13π/6; 25π/6 и так далее.

При такой же подстановке в ответ с х 2 , получаем:

х 2 = 5π/6; 17π/6; 29π/6 и так далее.

А теперь подставляем значения n (0; 1; 2; 3; 4...) в общую формулу для одинокого х . Т.е возводим минус один в нулевую степень, затем в первую, вторую, и т.д. Ну и, разумеется, во второе слагаемое подставляем 0; 1; 2 3; 4 и т.д. И считаем. Получаем серию:

х = π/6; 5π/6; 13π/6; 17π/6; 25π/6 и так далее.

Вот всё и видно.) Общая формула выдаёт нам точно такие же результаты, что и два ответа по отдельности. Только все сразу, по порядочку. Не обманули математики.)

Формулы для решения тригонометрических уравнений с тангенсом и котангенсом тоже можно проверить. Но не будем.) Они и так простенькие.

Я расписал всю эту подстановку и проверку специально. Здесь важно понять одну простую вещь: формулы для решения элементарных тригонометрических уравнений есть, всего лишь, краткая запись ответов. Для этой краткости пришлось вставить плюс/минус в решение для косинуса и (-1) n в решение для синуса.

Эти вставки никак не мешают в заданиях, где нужно просто записать ответ элементарного уравнения. Но если надо решать неравенство, или далее нужно что-то делать с ответом: отбирать корни на интервале, проверять на ОДЗ и т.п, эти вставочки могут запросто выбить человека из колеи.

И что делать? Да либо расписать ответ через две серии, либо решать уравнение/неравенство по тригонометрическому кругу. Тогда исчезают эти вставочки и жизнь становится легче.)

Можно подвести итоги.

Для решения простейших тригонометрических уравнений существуют готовые формулы ответов. Четыре штуки. Они хороши для мгновенной записи решения уравнения. Например, надо решить уравнения:


sinx = 0,3

Легко: х = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Без проблем: х = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Запросто: х = arctg 1,2 + π n, n ∈ Z


ctgx = 3,7

Одной левой: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Если вы, блистая знаниями, мгновенно пишете ответ:

х= ± arccos 1,8 + 2π n, n ∈ Z

то блистаете вы уже, это... того... из лужи.) Правильный ответ: решений нет. Не понимаете, почему? Прочитайте, что такое арккосинус. Кроме того, если в правой части исходного уравнения стоят табличные значения синуса, косинуса, тангенса, котангенса, - 1; 0; √3; 1/2; √3/2 и т.п. - ответ через арки будет недоделанным. Арки нужно обязательно перевести в радианы.

А если уж вам попалось неравенство, типа

то ответ в виде:

х πn, n ∈ Z

есть редкая ахинея, да...) Тут надо по тригонометрическому кругу решать. Чем мы и займёмся в соответствующей теме.

Для тех, кто героически дочитал до этих строк. Я просто не могу не оценить ваши титанические усилия. Вам бонус.)

Бонус:

При записи формул в тревожной боевой обстановке, даже закалённые учёбой ботаны частенько путаются, где πn, а где 2π n. Вот вам простой приёмчик. Во всех формулах стоит πn. Кроме единственной формулы с арккосинусом. Там стоит 2πn. Два пиэн. Ключевое слово - два. В этой же единственной формуле стоят два знака в начале. Плюс и минус. И там, и там - два.

Так что, если вы написали два знака перед арккосинусом, легче вспомнить, что в конце будет два пиэн. А ещё наоборот бывает. Пропустит человек знак ± , доберётся до конца, напишет правильно два пиэн, да и спохватится. Впереди-то два знака! Вернётся человек к началу, да ошибку-то и исправит! Вот так.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Глава 15. Тригонометрические уравнения

15.6. Решение более сложных тригонометрических уравнений

В предыдущих пунктах 3-5 приведены решения простейших тригонометрических уравнений , , и . К ним посредством тождественных преобразований или решением вспомогательного алгебраического уравнения сводятся более сложные тригонометрические уравнения, содержащие несколько тригонометрических функций одинаковых или различных аргументов.

Общий прием решения таких уравнений состоит в замене всех входящих в уравнение тригонометрических функций через одну функцию на основании формул, связывающих эти функции. При решении уравнения стремимся делать такие преобразования, которые приводят к уравнениям, равносильным данному. В противном случае нужно сделать проверку полученных корней.

Потеря корней является распространенной грубой ошибкой. Другими такими ошибками являются неточное знание формул решений простейших уравнений, а также неумение правильно найти нужное значение аркфункции.

Рассмотрим примеры.

Решить уравнение .

Пример 2. (пример на приведение к одному аргументу).

Решить уравнение .

Решение:
Целесообразно перейти к аргументу . Произведение напоминает о формуле синуса двойного аргумента: .
Подставив в уравнение, получим: .
В левой части еще раз применим формулу синуса двойного аргумента, но сначала умножим обе части уравнения на .
; ; .
Получили простейшее уравнение типа и весь аргумент приравняем решению простейшего уравнения:
, откуда .

Решить уравнение .

Решение:
По одной из формул понижения степени получим .

После подстановки в уравнение имеем

Решите уравнение .

Решение:
Перенося в правую часть, получим , что равно :
; ; .
Здесь пришлось идти путем повышения степени уравнения, зато мы получили возможность применить хороший прием решения - перенести все члены в одну часть и разложить полученное выражение на множители:
.
Приравнивая нулю каждый множитель отдельно, получим совокупность уравнений,

которая, как правило, равносильна данному уравнению (исключение из этого правила рассмотрено в следующем примере).
Решаем уравнение , имеем
, и .
Решаем уравнение или , имеем , и .

Решить уравнение .

Включение в ответ постороннего корня считается грубой ошибкой. Чтобы избежать ее, надо убедиться, что полученные корни не обращают в нуль ни одну из функций, находящихся в знаменателе дроби данного уравнения (если там есть дроби) и что при этих корнях не теряет смысла ни одна из функций , в первоначальном уравнении (если они туда входят). Следует помнить, при каких значениях аргумента функция обращается в нуль и область определения каждой тригонометрической функции.По аналогии говорят об области определения уравнения (области допустимых значений, или ОДЗ, неизвестного). Область определения тригонометрического уравнения - общая часть (пересечение) областей определения левой и правой частей данного уравнения. Если полученный корень не принадлежит области определения уравнения, то он посторонний и его нужно отбросить.

Решить уравнение
.

Решение:
Перейдем к одной функции. Если выразить через , то получим иррациональное уравнение, что нежелательно. Заменим через :
; .
Решим полученное уравнение как квадратное относительно .
или .
Уравнение не имеет корней.
Для уравнения имеем:
. Но и означают одни и те же нечетные числа, поэтому решение запишем проще: .

Решить уравнение
.

Для получения однородного уравнения (все члены одной и той же степени - второй) умножим правую часть на выражение , которое равно .
;
.
Так как корни уравнения не являются корнями исходного уравнения (в этом легко убедиться подстановкой), то, чтобы перейти к одной функции, разделим обе части уравнения на .

Решаем квадратное уравнение относительно .
или .
Для уравнения имеем: .
Для уравнения получим .

Решить уравнение .

Выразим через и , получим
. Здесь должен быть отличен от нуля (в противном случае уравнение теряет смысл), поэтому область определениения уравнения составляют все . Так как , то умножим обе части уравнения на , чтобы освободиться от дробей.
;
;
.
Для уравнения имеем