» » Эталонная модель взаимодействия открытых систем. Эталонная модель взаимосвязи открытых систем (эмвос)

Эталонная модель взаимодействия открытых систем. Эталонная модель взаимосвязи открытых систем (эмвос)

Базовая ЭМВОС - это модель, принятая ISO для описания общих принципов взаимодействия информационных систем. ЭМВОС признана всеми международными организациями как основа для стандартизации протоколов информационных сетей.

В ЭМВОС информационная сеть рассматривается как совокупность функций, которые делятся на группы, называемые уровнями . Разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

ЭМВОС содержит семь уровней. Ниже приведены их номера, названия и выполняемые функции.

7-й уровень - прикладной (Application) : включает средства управления прикладными процессами; эти процессы могут объединяться для выполнения поставленных заданий, обмениваться между собой данными. Другими словами, на этом уровне определяются и оформляются в блоки те данные, которые подлежат передаче по сети. Уровень включает, например, такие средства для взаимодействия прикладных программ, как прием и хранение пакетов в "почтовых ящиках" (mail-box).

6-й уровень - представительный (Presentation): реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из кода ЕBCDIC в ASCII и т.п.

5-й уровень - сеансовый (Session): предназначен для организации и синхронизации диалога, ведущегося объектами (станциями) cети. На этом уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответаами взаимодействующих партнеров.

4-й уровень - транспортный (Transport) : предназначен для управления сквозными каналами в сети передачи данных; на этом уровне обеспечивается связь между оконечными пунктами (в отличие от следующего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка-разборка пакетов), обнаружение и устранение ошибок в передаче данных, реализация заказанного уровня услуг (например, заказанной скорости и надежности передачи). На транспортном уровне пакеты обычно называют сегментами.

3-й уровень - сетевой (Network) : на этом уровне происходит управление передачей пакетов через промежуточные узлы и сети, контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети, маршрутизация пакетов, т.е. определение и реализация маршрутов, по которым передаются пакеты. Маршрутизация сводится к определению логических каналов. Логическим каналом называется виртуальное соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала необязательно соответствие некоего физического соединения линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения.

2-й уровень - канальный (Link, уровень звена данных ): предоставляет услуги по обмену данными между логическими объектами предыдущего сетевого уровня и выполняет функции, связанные с формированием и передачей кадров, обнаружением и исправлением ошибок, возникающих на следующем, физическом уровне. Кадром называется пакет канального уровня, поскольку пакет на предыдущих уровнях может состоять из одного или многих кадров. В ЛВС функции канального уровня подразделяют на два подуровня: управление доступом к каналу (МАС - Medium Access Control) и управление логическим каналом ( LLC - Logical Link Control). К подуровню LLC относится часть функций канального уровня, не связанных с особенностями передающей среды. На подуровне МАС осуществляется доступ к каналу передачи данных.

1-й уровень - физический (Physical): предоставляет механические, электрические, функциональные и процедурные средства для установления, поддержания и разъединения логических соединений между логическими объектами канального уровня; реализует функции передачи битов данных через физические среды. Именно на физическом уровне осуществляются представление информации в виде электрических или оптических сигналов, преобразования формы сигналов, выбор параметров физических сред передачи данных.

В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда соответственно в сети имеется лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней.

Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень На сетевом уровне сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т.е. происходит инкапсуляция сегментов в пакеты). При передаче между узлами промежуточной ЛВС может потребоваться разделение пакетов на кадры (т.е. инкапсуляция пакетов в кадры). В приемном узле сегменты декапсулируются и восстанавливается исходное сообщение.

Билет №9

1. Методы доступа в локальных вычислительных сетях

Локальная вычислительная сеть включаетединицы-десятки, реже сотни компьютеров, объединяемых средой передачи данных, общей для всех узлов. Одна из типичных сред передачи данных в ЛВС - отрезок (сегмент) коаксиального кабеля. К нему через аппаратуру окончания канала данных подключаются узлы (станции данных), которыми могут быть компьютеры и разделяемое узлами периферийное оборудование. Поскольку среда передачи данных общая, а запросы на сетевые обмены у узлов появляются асинхронно, то возникает проблема разделения общей среды между многими узлами, другими словами, проблема обеспечения доступа к сети.

Доступом к сети называют взаимодействие узла сети со средой передачи данных для обмена информацией с другими узлами. Управление доступом к среде - это установление последовательности, в которой узлы получают полномочия по доступу к среде передачи данных. Под полномочием понимается право инициировать определенные действия, динамически предоставляемые объекту, например станции данных в информационной сети.

Методы доступа могут быть случайными или детерминированными. Основным используемым методом случайного доступа является метод множественного доступа с контролем несущей и обнаружением конфликтов (МДКН/ОК). Англоязычное название метода - Carrier Sense Multiple Access /Collision Detection (CSMA/CD). Этот метод основан на контроле несущей в линии передачи данных (на слежении за наличием в линии электрических колебаний) и устранении конфликтов, возникающих из-за попыток одновременного начала передачи двумя или более станциями. Устранение осуществляется путем прекращения передачи конфликтующими узлами и повторением попыток захвата линии каждым из этих узлов через случайный отрезок времени.

МДКН/ОК является децентрализованным широковещательным (broadcasting) методом. Все узлы имеют равные права по доступу к сети. Узлы, имеющие данные для передачи по сети, контролируют состояние линии передачи данных. Если линия свободна, то в ней отсутствуют электрические колебания. Узел, желающий начать передачу, обнаружив в некоторый момент времени t 1 отсутствие колебаний, захватывает свободную линию, т.е. получает полномочия по использованию линии. Любая другая станция, желающая начать передачу в момент времени t 2 > t 1 при обнаружении электрических колебаний в линии, откладывает передачу до момента t + t d , где t d - задержка.

Различают настойчивый и ненастойчивый МДКН/ОК в зависимости от того, как определяется t d . В первом случае попытка захвата канала происходит сразу после его освобождения, что допустимо при слабой загрузке сети. При заметной загрузке велика вероятность того, что несколько станций будут претендовать на доступ к сети сразу после ее освобождения, и, следовательно, конфликты станут частыми. Поэтому обычно используют ненастойчивый МДКН/ОК, в котором задержка t d является случайной величиной.

При работе сети каждая станция анализирует адресную часть передаваемых по сети кадров с целью обнаружения и приема кадров, предназначенных для нее.

Рис. 4.1 . Алгоритмы доступа по методу МДКН/ОК

На рис. 4.1 представлены алгоритмы приема и передачи данных в одном из узлов при МДКН/ОК.

Конфликты (столкновения ) возникают, когда два или большее число узлов "одновременно" пытаются захватить линию. Понятие "одновременность событий" в связи с конечностью скорости распространения сигналов по линии конкретизируется как отстояние событий во времени не более чем на величину 2d , называемую окном столкновений , где d - время прохождения сигналов по линии между конфликтующими узлами. Если какие-либо узлы начали передачу в окне столкновений, то наложение сигналов этих узлов друг на друга приводит к распространению по сети искаженных данных. Это искажение и используется для обнаружения конфликта. Это можно сделать либо сравнением в передатчике данных, передаваемых в линию (неискаженных) и получаемых из нее (искаженных), либо по появлению постоянной составляющей напряжения в линии. Последнее обусловлено тем, что используемый для представления данных манчестерский код не имеет постоянной составляющей, которая однако появляется при его искажении. Обнаружив конфликт, узел должен оповестить об этом партнера по конфликту, послав дополнительный сигнал затора, после чего станции должны отложить попытки выхода в линию на время t d . Очевидно, что значения t d должны быть различными для станций, участвующих в конфликте; поэтому t d - случайная величина. Ее математическое ожидание должно иметь тенденцию к росту по мере увеличения числа идущих подряд неудачных попыток захвата линии.

Среди детерминированных методов доступа к сети передачи данных преобладают маркерные методы доступа . Маркерные методы основаны на передаче полномочий на передачу одному из узлов сети с помощью специального информационного объекта, называемого маркером.

Применяется ряд разновидностей маркерных методов доступа. Например, в эстафетном методе передача маркера выполняется в порядке очередности; в способе селекторного опроса (квантированной передачи) сервер опрашивает станции данных и передает полномочие одной из тех станций, которые готовы к передаче. В кольцевых одноранговых сетях широко применяется тактируемый маркерный доступ, при котором маркер циркулирует по кольцу и используется станциями для передачи своих данных.

2. Комплексные автоматизированные системы. Технология EPD

Комплексная автоматизация проектирования вносит коренные изменения в технологию проектирования, начиная от подготовки исходных данных, представления справочно-информационных материалов, методов решения и оценки и до конечных операций, т. е. до изготовления и размножения проектно-сметной документации.

В настоящее время значительное число проектных институтов страны уже имеет опыт использования программ для автоматизации отдельных этапов в процессе проектирования. Опыт комплексной автоматизации проектирования пока совершенствуется и поэтому еще окончательно не отработаны стабильные методы и процедуры такого проектирования. Однако переходным звеном между применением частных программ и комплексной автоматизацией процесса проектирования" являются технологические линии автоматизированного проектирования (ТЛП), которые разрабатываются в ряде научно-исследовательских институтов нашей страны и за рубежом. ТЛП объединяют несколько совместно работающих групп (бригад) автоматизированного проектирования. Основной задачей ТЛП является повышение качества проектно-сметной документации и производительности труда проектировщиков.

При разработке проектов ТЛП может выполнять определенный комплекс проектных работ. При этом структура ТЛП имеет две подсистемы: проектирующие и обеспечивающие. Проектирующие подсистемы непосредственно участвуют в процессах разработки проекта, а обеспечивающие - занимаются технологической подготовкой процессов автоматизированного проектирования (рис. II.7)

Организацию, управление и планирование процесса проектирования в ТЛП осуществляют с помощью разработанных технологических карт, которые имеют следующие три вида: технологические карты проектирования (ТКП), исполнительные технологические карты (ИТК) и организационные технологические карты (ОТК). Основной из них при составлении поточной технологии проектирования на ТЛП является ТКП (табл. II.3), которая составляется в процессе анализа всех операций, выполняемых на технологической линии, с определением сроков проектирования и трудозатрат на каждом этапе.

Основой организации процесса проектирования является ОТК (табл. П.4), которые предназначаются для представления сведений о наличии программного обеспечения и перечня проектных операций, составляющих рассматриваемый проектный процесс.

ТЛП использует комплекс технических средств, включающих вычислительную систему, организационную технику, средства связи.

Одной из первых в нашей стране была технологическая линия по проектированию несущих каркасов гражданских зданий на основе серии ИИ-04-КОРТ (каркас ортогональный).

EPD-технологии (Elect-ronic Product Definition электронное описание изделия). В соответствии с EPD-подходом вся информация, относящаяся к одному изделию, структурируется по типу, назначению и увязывается с последовательностью технологических производственных процессов (причем, в соответствии со структурой самого изделия). EPD-технология обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия (включая маркетинг, концептуальное и рабочее проектирование, технологическую подготовку, производство, эксплуатацию, ремонт и утилизацию)

Билет №10

Разновидности САПР

Классификацию САПР осуществляют по ряду признаков, например по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы - ядра САПР.

По приложениям наиболее представительными и широко используемыми являются следующие группы САПР:

  • САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или системами MCAD (Mechanical CAD);
  • САПР для радиоэлектроники: системы ECAD (Electronic CAD) или EDA (Electronic Design Automation);
  • САПР в области архитектуры и строительства.

Кроме того, известно большое число специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т. п.

По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты (страты) проектирования. Так, в составе MCAD появляются рассмотренные выше CAE/CAD/CAM-системы.

По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например: комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.

По характеру базовой подсистемы различают следующие разновидности САПР:

1. САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т. е. определение пространственных форм и взаимного расположения объектов. К этой группе систем относится большинство САПР в области машиностроения, построенных на базе графических ядер.

В настоящее время широко используют унифицированные графические ядра, применяемые более чем в одной САПР (ядра Parasolid фирмы EDS Urographies и ACIS фирмы Intergraph).

2. САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например при проектировании бизнес-планов, но они имеются также при проектировании объектов, подобных щитам управления в системах автоматики.

3. САПР на базе конкретного прикладного пакета. Фактически это автономно используемые ПМК, например имитационного моделирования производственных процессов, расчета прочности по МКЭ, синтеза и анализа систем автоматического управления и т. п. Часто такие САПР относятся к системам САЕ. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.

4. Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.

PAGE 2

Общие положения

В начале 80-х годов ISO признала необходимость создания модели сети, на основе которой поставщики оборудования телекоммуникаций могли создавать взаимодействующие друг с другом сети. В 1984 году такой стандарт был выпущен под названием " Эталонная модель взаимодействия открытых систем " (Open System Interconnect - OSI) или OSI/ISO.

Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений. При рассмотрении конкретных прикладных телекоммуникационных систем производится сравнение их архитектуры с моделью OSI/ISO. Эта модель является наилучшим средством для изучения современной технологии связи.

Эталонная модель OSI делит проблему передачи информации между абонентами на семь менее крупных и, следовательно, более легко разрешимых задач. Конкретизация каждой задачи производилась по принципу относительной автономности. Очевидно, автономная задача решается легче.

Каждой из семи областей проблемы передачи информации ставится в соответствие один из уровней эталонной модели. Два самых низших уровня эталонной модели OSI реализуются аппаратным и программным обеспечением, остальные пять высших уровней, как правило, реализуются программным обеспечением. Эталонная модель OSI описывает, каким образом информация проходит через среду передачи (например, металлические провода) от прикладного процесса-источника (например, по передаче речи) до процесса-получателя.

В качестве примера связи типа OSI предположим, что Система А на Рис. 2.1 имеет информацию для отправки в Систему В. Прикладной процесс Системы А сообщается с Уровнем 7 Системы А (верхний уровень), который сообщается с Уровнем 6 Системы А, который в свою очередь сообщается с Уровнем 5 Системы А, и так далее до Уровня 1 Системы А. Задача Уровня 1 - отдавать (а также забирать) информацию в физическую среду. После того, как информация проходит через физическую среду и принимается Системой В, она поднимается через слои Системы В в обратном порядке (сначала Уровень 1, затем Уровень 2 и т.д.), пока она, наконец, не достигнет прикладного процесса Системы В.

Каждый из уровней сообщается с выше- и нижестоящими уровнями данной системы. Однако для выполнения присущих уровню задач необходимо сообщение с соответствующим уровнем другой системы, т.е. главной задачей Уровня 1 Системы А является связь с Уровнем 1 Системы В; Уровень 2 Системы А сообщается с Уровнем 2 Системы В и т.д.

Уровневая модель OSI исключает прямую связь между соответствующими уровнями разных систем. Следовательно, каждый уровень Системы А использует услуги, предоставляемые ему смежными уровнями, чтобы осуществить связь с соответствующим ему уровнем Системы В. Нижестоящий уровень называется источником услуг , а вышестоящий - пользователем услуг . Взаимодействие уровней происходит в так называемой точке предоставления услуг . Взаимоотношения между смежными уровнями отдельной системы показаны на Рис. 2.2.

Рис. 2.2. Взаимодействие между уровнями отдельной системы

Обмен управляющей информацией между соответствующими уровнями разных систем производится в виде обмена специальными " заголовками ", добавляемыми к полезной информационной нагрузке. Обычно заголовок предшествует фактической прикладной информации. Каждый нижележащий уровень передающей системы добавляет к поступившему от вышележащего уровня информационному блоку свой заголовок с необходимой управляющей информацией для соответствующего уровня другой системы (Рис. 2.3).

Рис. 2.3. Формирование информационных блоков

В принимающей системе производится анализ данной управляющей информации и удаление соответствующего заголовка перед передачей информационного блока вышележащему уровню. Таким образом, размер информационного блока увеличивается при движении сверху вниз по уровням в передающей системе и уменьшается при движении снизу вверх по уровням в принимающей системе.

Эталонная модель OSI не является реализацией сети. Она только определяет функции протокола каждого уровня.

2.2. Описание уровней эталонной модели OSI

Каждый уровень имеет заранее заданный набор функций, которые он должен выполнить для проведения связи.

Прикладной уровень (уровень 7) - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI. Он обеспечивает услугами прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить процессы передачи речевых сигналов, базы данных, текстовые процессоры и т.д.

Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные процессы, а также устанавливает и согласовывает процедуры устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи. На этом уровне информация представляется в виде файлов, таблиц, баз данных и т. п. объектов

Представительный уровень (уровень 6) отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня и, если необходимо выполняет шифрование и дешифрование данных.

Сеансовый уровень (уровень 5) устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними.

Кроме того, сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней. Данные на сеансовом уровне представляются блоками заданной длины.

Транспортный уровень (уровень 4). Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами высших (прикладных) уровней и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Транспортный уровень обеспечивает услуги по транспортировке данных, что избавляет высшие слои от необходимости вникать в ее детали. Функцией транспортного уровня является надежная транспортировка данных через сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы). На этом уровне информация представляется в виде сообщений, которыми обмениваются процессы.

Сетевой уровень (уровень 3) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами.

Поскольку две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов. На сетевом уровне информация представляется пакетами, в которых содержится адресная информация для выполнения соединения.

Канальный уровень (уровень 2) (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления об ошибках, упорядоченной доставки блоков данных и управления потоком информации. На канальном уровне информация представляется блоками бит, которые называют фреймами или пакетами данных. Границы пакетов отмечаются флагами – последовательностями бит, которые не встречаются в области данных. Флаг конца пакета 01111110 для процедуры HDLC показан на рис 2.1 затененной областью.

Физический уровень (уровень 1) определяет электротехнические, механические, процедурные и функциональные характеристики установления, поддержания и разъединения физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как величины напряжений, параметры синхронизации, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

Физической средой в различных телекоммуникационных системах могут быть самые разнообразные средства от простейшей пары проводов до сложной системы передачи синхронной цифровой иерархии. На этом уровне информация представляется в виде электрических сигналов тока, электромагнитного поля или световой энергии.

Л_02. Вопросы для самопроверки.

1 Опишите форму представления данных на уровнях эталонной модели.

2 Опишите функции каждого из уровней.

Телекоммуникации являются специфической сферой деятельности человека назначение продуктов, производимых данной отраслью является обеспечения взаимодействия удаленных информационных систем. Зачастую эти системы оказываются построенными на аппаратуре различных производителей. Именно поэтому для данной отрасли очень важными являются вопросы стандартизации.

Для разработчика и изготовителя телекоммуникационного оборудования соответствие действующим и перспективным стандартам отрасли является ключевым фактором, который обеспечивает необходимый рынок сбыта для производимого оборудования.

Для потребителя данного оборудования фактор соответствия тоже очень важен, так как соответствие телекоммуникационной аппаратуры стандартам гарантирует эффективное использование вложенных в нее средств. Поэтому значительной является роль специалиста по информационным технологиям (IT), задачей которого является находить грамотные и экономичные решения, которые отвечают текущим и перспективным информационным потребностям фирмы.

Стандарт ISO 7498

Данный стандарт имеет тройной заголовок «Информационно-вычислительные системы — Взаимодействие открытых систем — Эталонная модель». Обычно его называют короче «Эталонная модель взаимодействия открытых систем». Публикация этого стандарта в 1983 году подвела итог многолетней работы многих известных телекоммуникационных компаний и стандартизующих организаций.

Основной идеей, которая положена в основу этого документа, является разбиение процесса информационного взаимодействия между системами на уровни с четко разграниченными функциями.

Преимущества слоистой организации взаимодействия заключаются в том, что такая организация обеспечивает независимую разработку уровневых стандартов, модульность разработок аппаратуры и программного обеспечения информационно-вычислительных систем и способствует тем самым техническому прогрессу в данной области.

В соответствии с ISO 7498 выделяются семь уровней (слоёв) информационного взаимодействия:

  1. Уровень приложения
  2. Уровень представления
  3. Уровень сессии
  4. Транспортный уровень
  5. Сетевой уровень
  6. Канальный уровень
  7. Физический уровень

Информационное взаимодействие двух или более систем, таким образом, представляет собой совокупность информационных взаимодействий уровневых подсистем, причем каждый слой локальной информационной системы взаимодействует только с соответствующим слоем удаленной системы.

Протоколом называется набор алгоритмов (правил) взаимодействия объектов одноименных уровней.

Интерфейсом называется совокупность правил, в соответствии с которыми осуществляется взаимодействие с объектом данного уровня.

Процесс помещения фрагментированных блока данных одного уровня в блоки данных другого уровня называют инкапсуляцией .

Уровень приложения — уровень 7 модели OSI

Протоколы, которые определены на седьмом уровне OSI, предназначены для обеспечения доступа к ресурсам сети программ-приложений пользователя. На данном уровне определяется интерфейс с коммуникационной частью приложения.

В качестве примера протоколов прикладного уровня можно привести протокол Telnet, который обеспечивает доступ пользователя к хосту в режиме удаленного терминала.

Уровень представления — уровень 6 модели OSI

На этом уровне выполняются алгоритмы преобразования формата представления данных — ASCII, КОИ-8.

Уровень сессии — уровень 5 модели OSI

На данном уровне устанавливаются, обслуживаются и разрываются сессии между представительными объектами приложений. В качестве примера протокола сеансового уровня можно рассмотреть протокол RPC (remote procedure call). Как следует из названия, данный протокол предназначен для отображения результатов выполнения процедуры на удаленном хосте. В процессе выполнения этой процедуры между приложениями устанавливается сеансовое соединение. Назначением данного соединения является обслуживание запросов, которые возникают при взаимодействии приложения — клиент с приложением — сервером.

Транспортный уровень — уровень 4 модели OSI

Существует два типа протоколов транспортного уровня — сегментирующие протоколы и дейтаграммные протоколы.

Сегментирующие протоколы транспортного уровня, разбивают исходное сообщение на блоки данных транспортного уровня — сегменты. Основной функцией таких протоколов транспортного уровня является обеспечение доставки этих сегментов до объекта назначения и восстановление сообщения.

Дейтаграммные протоколы не сегментируют сообщение и отправляют его одним куском, который называется «дейтаграмма».

Управление потоком является важной функцией надежных транспортных протоколов, поскольку этот механизм позволяет обеспечивать передачу данных по сетям с нестабильной структурой. Управление потоком заключается в обязательном ожидании передатчиком подтверждения приема ограниченного числа сегментов приемником.

Количество сегментов, которое передатчик может отправить без подтверждения их получения от приемника, называется окном .

Сетевой уровень — уровень 3 модели OSI

Основной задачей протоколов сетевого уровня является определение пути, который будет использован для доставки блоков данных протоколов верхних уровней.

Для того чтобы блок данных был доставлен до какого-либо хоста, этому хосту должен быть поставлен в соответствие известный передатчику сетевой адрес. Группы хостов, объединенные по территориальному принципу образуют сети. Для упрощения решения задачи маршрутизации сетевой адрес хоста составляется из двух частей: адреса сети и адреса хоста. Таким образом, задача маршрутизации распадается на две подзадачи — поиск сети и поиск хоста в этой сети.

Канальный уровень — уровень 2 модели OSI

Назначением протоколов канального уровня является обеспечение передачи данных по физическому носителю — среде передачи. На канальном уровне данные передаются в виде блоков, которые называются кадрами. Тип используемой среды передачи и её топология во многом определяют вид кадра протокола транспортного уровня, который должен быть использован. При использовании топологий «общая шина» и «point-to-multipoint» средствами протокола канального уровня должны быть определены физические адреса, с помощью которых будет производиться обмен данными по разделяемой среде передачи и процедура доступа к этой среде. Примерами таких протоколов являются протоколы Ethernet (в соответствующей части) и HDLC. Протоколы транспортного уровня, которые предназначены для работы в среде типа «точка-точка», не определяют физических адресов и имеют упрощенную процедуру доступа. Примером протокола такого типа является протокол PPP.

Физический уровень — уровень 1 модели OSI

Протоколы физического уровня обеспечивают непосредственный доступ к среде передачи данных для протоколов канального и последующих уровней. Данные передаются протоколами данного уровня в виде битов (для последовательных протоколов) или групп бит (для параллельных протоколов). На данном уровне определяются набор сигналов, которыми обмениваются системы, параметры этих сигналов — временные и электрические и последовательность формирования этих сигналов при выполнении процедуры передачи данных. Кроме того, на данном уровне формулируются требования к электрическим, физическим и механическим характеристикам среды передачи и коннекторов.

Наиболее распространенным протоколом транспортного уровня до недавних пор был V.24, который обеспечивал интерфейс последовательного обмена IBM PC.

Для удобства модернизации сложные информационные системы делают максимально открытыми, т. е. приспособленными для внесения изменений в некоторую часть системы при сохранении неизменными остальных частей. В отношении вычислительных сетей реализация концепции открытости привела к появлению эталонной модели взаимосвязи открытых систем (ЭМВОС), предложенной Международной организацией стандартизации (ISO - International Standard Organization). В этой модели дано описание общих принципов, правил, соглашений, обеспечивающих взаимодействие информационных систем и называемых протоколами.

Информационную сеть в ЭМВОС рассматривают как совокупность функций (протоколов), которые подразделяют на группы, называемые уровнями. Именно разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

Различают семь уровней ЭМВОС.

На физическом (physical) уровне осуществляется представление информации в виде электрических или оптических сигналов, преобразование формы сигналов, выбор параметров физических сред передачи данных, организуется передача информации через физические среды.

На канальном (link) уровне выполняется обмен данными между соседними узлами сети, т. е. узлами, непосредственно связанными физическими соединениями без других промежуточных узлов. Отметим, что пакеты канального уровня обычно называют кадрами.

На сетевом (network) уровне происходит формирование пакетов по правилам тех промежуточных сетей, через которые проходит исходный пакет, и маршрутизация пакетов, т. е. определение и реализация маршрутов, по которым передаются пакеты. Другими словами, маршрутизация сводится к образованию логических каналов. Логическим каналом называют виртуальное соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала не обязательно соответствует физическое соединение линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения. Еще одной важной функцией сетевого уровня после маршрутизации является контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети.

На транспортном (transport) уровне обеспечивается связь между оконечными пунктами (в отличие от предыдущего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка/разборка сообщений на пакеты в конечных пунктах), обнаружение и устранение ошибок в переданных данных, задание требуемого уровня услуг (например, заказанных скорости и надежности передачи).


На сеансовом (session) уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответами взаимодействующих партнеров.

На представительном (presentation) уровне реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из одного кода в другой, в частности, с целью шифрования.

На прикладном (application) уровне определяются и оформляются в сообщения те данные, которые подлежат передаче по сети.

В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда, соответственно, сеть будет содержать лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней. Одновременно сложность функций канального уровня делает целесообразным его разделение в ЛВС на два подуровня:

управление доступом к каналу (MAC - Medium Access Control);

управление логическим каналом (LLC - Logical Link Control).

К подуровню LJLC, в отличие от подуровня MAC, относится часть функций канального уровня, независящих от особенностей передающей среды.

Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень.

Сегментом обычно называют пакет транспортного уровня. Сетевой уровень организует передачу данных через промежуточные сети. Для этого сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т. е. происходит инкапсуляция сегмента в пакет сетевого уровня). При передаче между узлами промежуточной ЛВС требуется инкапсуляция пакетов в кадры с возможной разбивкой пакета. Приемник декапсулирует сегменты и восстанавливает исходное сообщение.

Обмен информацией в телœекоммуникационных сетях осуществляться по определœенным, заранее оговоренным правилам (стандартам). Эти правила разрабатываются рядом международных организаций.

Взаимодействие в современных телœекоммуникационных сетях организуется в соответствии с эталонной моделью взаимодействия открытых систем (ЭВОС), которая была предложена в 1980 году Международной организацией по стандартизации МОС (ISO – International Organisation for Standartisation) для вычислительных сетей. Открытыми называются системы, использующие одинаковые протоколы взаимодействия. Протокол – набор правил, регламентирующих взаимодействие для обмена сообщениями между независимыми устройствами или процессами.

Общая проблема связи состоит из двух частей:

1) первая часть касается сети связи – данные, передаваемые по сети должны поступить по назначению в правильном виде и своевременно;

2) вторая часть – обеспечение распознавания данных для дальнейшего использования – функции оконечного оборудования пользователя.

Все задачи, решаемые для организации взаимодействия пользователœей, разделœены на семь групп – уровней эталонной модели (рисунок 1.7).

Рисунок 1.7 – Эталонная модель взаимодействия открытых систем

Три нижних уровня представляют услуги сети. Протоколы, реализующие эти уровни, должны быть предусмотрены в каждом узле сети. Четыре верхних уровня представляют услуги оконечным пользователям и связаны с ними, а не с сетью. Нижние уровни используются для того, чтобы направлять данные от одного пользователя к другому. Верхние уровни решают задачи представления данных пользователю в такой форме, которую он может распознать. Выбор семи уровней продиктован следующими соображениями:

1) крайне важно иметь достаточно уровней, чтобы каждый из них не был чересчур сложным с точки зрения разработки протокола;

2) желательно иметь не чересчур много уровней, чтобы их интеграция и описания не стали чересчур сложными;

3) желательно выбрать естественные границы, чтобы родственные функции были собраны на одном уровне.

В эталонной модели модуль уровня n взаимодействует с модулями только сосœедних уровней (n-1) и (n+1).

Уровни модели выполняют следующие функции:

1) Физический уровень обеспечивает передачу последовательности бит в виде сигналов определœенной физической природы со скоростью, соответствующей пропускной способности канала.

2) Канальный уровень формирует блоки данных – кадры, осуществляет управление доступом к передающей среде, обнаруживает и исправляет ошибки.

3) Сетевой уровень реализует функцию маршрутизации. Блоки данных сетевого уровня называются пакетами.

Физический, канальный и сетевой уровни являются сетезависимыми, в связи с этим их функционирование меняется исходя из типа сети связи.

4) Транспортный уровень занимает центральное место в иерархии уровней, обеспечивает взаимодействие процессов в подключаемых оконечных устройствах и сквозное управление движением пакетов между этими процессами. Наличие этого уровня освобождает пользователœей от крайне важно сти изучения всœех функций коммутации, маршрутизации и отбора (селœекции) данных.

Четыре нижних уровня (физический, канальный, сетевой, транспортный) составляют транспортную сеть.

5) Сеансовый уровень обеспечивает поддержание диалога между процессами, выполняя функции по организации передачи данных и по синхронизации процедур взаимодействия (рисунок 1.8).

Рисунок 1.8 – Пример диалога в сети

6) Уровень представления обеспечивает интерпретацию данных. На этом уровне реализуется синтаксис (анализируется представление символов, формат страниц, кодирование и др.).

7) Прикладной уровень реализует функции, которые не бывают приписаны предыдущим уровням. Протоколы прикладного уровня придают соответствующий смысл (семантику) обмениваемой информации. Прикладной уровень обеспечивает выполнение всœех информационно-вычислительных процессов.

Многоуровневая организация взаимодействия порождает крайне важно сть модификации информации на каждом уровне в соответствии с функциями уровня (рисунок 1.9).

Рисунок 1.9 – Взаимодействие уровней

При передаче на каждом уровне блок данных принимается от вышестоящего уровня, к данным добавляется управляющая информация и блок передается нижестоящему уровню. На приемном конце каждый уровень использует только соответствующий заголовок, не просматривая остальную часть принятого блока данных. Следовательно, уровни самостоятельны и изолированы друг от друга. Это позволяет удалять и заменять протоколы и программы отдельных уровней, не затрагивая остальную часть модели.

Многоуровневая организация обеспечивает независимость управления на уровне n от порядка функционирования нижних и верхних уровней:

Управление информационным каналом происходит независимо от физических принципов функционирования физического канала;

Управление сетью не зависит от способов обеспечения надежности информационного канала;

Транспортный уровень взаимодействует с сетью как с единой системой, обеспечивающей доставку сообщений пользователям;

Прикладной процесс создается только для выполнения определœенных функций обработки данных без учета структуры сети, способов выбора маршрута͵ типа каналов связи и т.д.

Пользователи для организации взаимодействия опираются на службу взаимодействия. Взаимодействие между пользователями организуется средствами управления сеансами (уровень 5), которые работают на базе транспортного канала, обеспечивающего передачу сообщений в течение сеанса. Транспортный канал, создаваемый на уровне 4, включает в себя сеть связи, которая организует информационные каналы между пользователями (рисунок 1.10).

Рисунок 1.10 – Организация взаимодействия между пользователями

Эталонная модель взаимодействия открытых систем - понятие и виды. Классификация и особенности категории "Эталонная модель взаимодействия открытых систем" 2017, 2018.