» » Химия в кулинарии. Химия в повседневной жизни химия и кулинария: что общего? Крем-брюле в воздушной карамельной оболочке

Химия в кулинарии. Химия в повседневной жизни химия и кулинария: что общего? Крем-брюле в воздушной карамельной оболочке

Одно из моих увлечений - это наука на кухне. Не просто приготовить по рецепту, а понять почему, как и что. В этой непростой науке мне очень помогают книги, увы, так и не переведенные на русский. Для начала - Гарольд Макги

Одно из моих увлечений - это наука на кухне. Не просто приготовить по рецепту, а понять почему, как и что. В этой непростой науке мне очень помогают книги, увы, так и не переведенные на русский.

Для начала - Гарольд Макги - его книга «On Food & Cooking: The Science & Lore of the Kitchen», изданная в далеком 1984 г, до сих пор остается бестселлером (дополненное и исправленное издание вышло в 2004 г.). И хотя Гарольд - не повар, и даже не химик, его живой интерес к науке в повседневной жизни, желание разобраться в сложных процессах, протекающих во время приготовления пищи сделали его настоящим экспертом. В книге Гарольда Макги вы найдете объяснение практически каждому кулинарному процессу наряду с бесценными советами для наилучшего приготовления еды. Книга достаточно сложная, но в ней можно найти ответ практически на любой кулинарный вопрос.

Следующий «сумасшедший ученый» - Элтон Браун и его книги «I’m Just Here for the Food» и «I’m Here for more the Food». Его метод не столь научен, как у Макги, но это только на первый взгляд. Элтон Браун старается донести науку проще и доступнее, сопровождая свои объяснения забавными иллюстрациями. Также у него есть собственное теле-шоу.

Итак, «The science of good cooking» - это обзор 50 понятий о продуктах и их приготовлении. В книге берется одно утверждение, например, «Горечь чили перцев сосредоточена в сердцевине и семенах» и разбирается так оно или нет, приводятся данные экспериментов и исследований, далее следуют несколько рецептов.

Специально для любителей химии есть книга «Culinary Reactions» - я еще не успела прочитать ее, но то, что просмотрела - как раз по теме. Ведь в кулинарии точно так же есть кислоты и основания, суспензии и эмульсии, гели и пена. При приготовлении пищи мы денатурируем белки, кристаллизуем соли, активируем ферменты и прочее и прочее. В общем, целое поле для деятельности химика.

В закромах есть еще несколько книг, но до них пока руки не дошли:

Жалко, что на русском языке таких книг не найти. По крайней мере я не видела. Единственная, которую я знаю (и зачитала до дыр) - это Н.И. Ковалев, В.В. Усов «Рассказы о тайнах домашней кухни. Химия для вас», но она не охватывает и малой толики того, что меня интересует.

Другая, более узкоспециализированная переводная книга - это «Профессиональная выпечка: теория и практика» Полы Фигони. В ней нет ни одного рецепта, зато много объяснений именно физики и химии, исторических справок и норм. Очень достойный учебник!

Like Share 1181 Views

Download Presentation

ХИМИЯ В ПОВСЕДНЕВНОЙ ЖИЗНИ Химия и кулинария: что общего?

E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

    1 of 5

Presentation Transcript

    Класс МБОУ ХМР СОШ п. Горноправдинск ХИМИЯ В ПОВСЕДНЕВНОЙ ЖИЗНИ Химия и кулинария: что общего?

    Казалось бы, всё, что можно, уже приготовлено и испробовано, но кулинария продолжает развиваться. На смену стилю фьюжн в «высокой кулинарии» приходит молекулярная кулинария, изменяющая консистенцию и форму продуктов до неузнаваемости. Анализ химических процессов в ходе приготовления еды и использование новых технологий породили направление, которое можно назвать молекулярной кулинарией.

    Существует ли связь между кулинарией и химией, или продукты кулинарии получают, не применяя химических веществ

    1) Познакомиться с термином «кулинария»; 2) Найти информацию о том, как химия «служит» кулинарии 3) Пролить свет на «еду будущего» - «новейшие технологии в нашем желудке» 4) Составить выводы и умозаключения.

    Кулинария (от лат. culina - кухня) - искусство приготовления пищи, а также собирательное название кушаний. По преданию, Кулина была служанкой и помощницей мифического врачевателя Эскулапа (покровителя медицины) и его дочери Гигеи (покровительницы здоровья). Кулинария - древнейшая отрасль человеческой деятельности. Одним из первых приемов тепловой кулинарной обработки была жарка на открытом огне, в золе и на раскаленных камнях Кулинария отражает коллективный опыт народа и поэтому во многом физиологически целесообразна, т. к. пища олицетворяет собой древнейшую связь, соединяющую все живое, в т. ч. и человека, с окружающей его природой.

    Национальная кухня каждого народа - неотъемлемая часть его материальной культуры. Различают народную и профессиональную Кулинарию. Последняя возникла на основании народной, которую развили и усовершенствовали повара-профессионалы. Профессиональная Кулинария, с одной стороны, искусство, а с другой - наука, опирающаяся на достижения физики, химии, физиологии питания и других отраслей естествознания. Кулинарией увлекались многие известные деятели культуры: Леонардо да Винчи, С. Боттичелли, А. Дюма, В. Одоевский и др. Основоположником научной Кулинарии в России был Д. Каншин. После появления механизированных предприятий внедомашнего питания кулинария превратилась в техническую дисциплину - технологию приготовления пищи.

    С этим интереснейшим вопросом мы обратились к нашему учителю химии и экологии, Коржевской Оксане Владимировне, и получили много ответов. Мы выбрали самые, по-нашему мнению важные.

    Селитре Селитра применяется при мясообработке и копчении мясных продуктов. Во-первых, она является консервантом, способствующим более длительному хранению продукта. Во-вторых (и это - главное!), помогает мясному продукту после термообработки сохранить более-менее натуральный цвет: от глубокого красного в твердокопченых колбасах, до аппетитного розового в окороках. Селитра должна быть особенная - пищевая, с высокой степенью очистки, а не та, что употребляется при изготовлении порохов или взрывчатых устройств. Важно соблюдать осторожность в дозировке. В больших, количествах и пищевая селитра может превратиться в страшный яд.Не следует думать, что на промышленных предприятиях мясопродукт перед копчением буквально замачивают в растворе селитры. Конечно, на самом деле все сложнее. Отмытое мясо перед копчением выдерживается (слегка маринуется) в растворе с более сложной композицией: с содержанием соли, уксуса, специй и пряностей и с. незначительной добавкой этой самой селитры.

    Глютаминате натрия Правильное название вещества, упомянутого в вопросе,- мононатриевая соль глутаминовой кислоты. Глютаминовая кислота - органическое вещество. Некоторые представители растительного мира - грибы, богатые белками, тоже содержат глютаминовую кислоту. Кстати, именно этой кислоте отдельные грибы (после их приготовления) обязаны слабо выраженным мясным вкусом и способностью улучшать. вкус других блюд. Вы уже начинаете догадываться о назначении добавок? Да, глютаминовые добавки улучшают, усиливают мясной вкус мясосодержащих блюд и, можно сказать, придают его даже тем изделиям, где мяса и в помине не было.Вреден или полезен глютаминат натрия? То, что не полезен, очевидно. Ведь он не витамин, не минеральная соль с полезными для организма микроэлементами. Он своего рода обманка для улучшения вкуса изделия. Глютаминат натрия провоцирует аппетит, он своего рода «наркотик»: съел что-то с глютаминатом, вкусно, хочется еще того же, или чего-то подобного...Если у вас появится желание попробовать применить глютаминат у себя на кухне, один совет: обязательно покупайте его только в магазинах, в отделах специй. На рынке спокойно можно покупать зелень, а с белым порошком глютамината возможны фальсификации.

    Коптильных жидкостях Вкусно поесть любили во все времена. Но главной целью применения копчения продуктов были не утехи гурманов, а стремление подольше сохранить, продукт. Со временем, при возникновении и совершенствовании средств консервации и появлении рефрижераторной техники акценты сместились. Конечно, сегодня копчение применяется, главным образом, для придания продукту определенного вкуса.Изобретательные люди придумали способы конденсации ароматных дымов, ведь в них содержится и влага в паровой фракции. (Ближайшие аналоги процесса конденсации - дегтеварение из березовой коры или, простите, самогоноварение.)Полученный из дыма жидкий конденсат, пройдя соответствующие очистки, пригоден к применению как очень концентрированный натуральный ароматизатор, придающий блюдам привкус копчености.Коптильные жидкости сейчас широко используются в пищевой индустрии как одна из добавок в мясной фарш для некоторых сосисок и колбас.Возможно, в этих случаях применяются синтезированные ароматизаторы с коптильным вкусом? Современная химия всемогуща...

    Приготовлении Повидла, джема и приготовлении компотов Сульфитация целых плодов и ягод, пюре из них, соков и других продуктов сернистым ангидридом - более прогрессивный способ обработки. Он не связан с необходимостью получать ангидрид из серы и безопасен. Для того чтобы сульфитированные фруктовые продукты (в основном полуфабрикаты для повидла, джема, варенья, желе) были устойчивыми в хранении, технологическими инструкциями установлены допустимые нормы внесения в них сернистого ангидрида (% к массе). Целые плоды и ягоды сульфитируют в бочках, заполняя на 90% их объема, затем укупоривают, оставляя открытым шпунтовое отверстие в верхнем днище для заливки при помощи шланга рабочего раствора 1-2%-ной концентрации в количестве не более 10-15% (реже - 20%) массы плодов, или вводят в бочки сернистый ангидрид. Значительную часть фруктовых полуфабрикатов (особенно пюре) сульфитируют в крупных стационарных бассейнах, цистернах емкостью 10-25-50 т и более. Жидкий сернистый ангидрид применяют и для окуривания плодов вместо обработки сернистым газом.

    Кулинария, которая изменяет консистенцию и форму продуктов до неузнаваемости уже не новость. Яйцо с белком внутри и желтком снаружи, вспененное мясо с гарниром из вспененного картофеля, желе со вкусом маринованных огурцов и редиса, сироп из крабов, тонкие пластинки свежего молока, мороженое с табачным ароматом существуют не в фантастических романах, а уже в нашем времени. Возможно, пища станет «цифровой», а блюда будут «скачивать» из Интернета и «распечатывать» на специальных «принтерах».

    Еда, которая нас ожидает в будущем на прилавках супермаркетов или на столиках ресторанов, внешне ничем не будет отличаться от сегодняшней еды. Однако она будет производиться, обрабатываться и готовиться иным образом. Гораздо более привлекательной станет «функциональная еда» - продукты и напитки с добавлением витаминов, минералов, полиненасыщенных жирных кислот Омега–3. Молекулярная кулинария позволит создавать принципиально новые виды еды, соединяя несоединимое. Появятся запахи и вкусы, которых не знал мир. В частности, химики и биологи швейцарского парфюмерного гиганта Givaudan, создавшие свыше 20 тысяч искусственных ароматов (300 только для одной клубники), организовали экспедиции в леса Мадагаскара в поисках молекул, из которых можно извлечь новые запахи.

    Новые виды продуктов готова предложить и космическая отрасль. Факторы космического полета (невесомость, скученность, трудности с разогревом) предъявляют жесткие требования к продуктам питания. Но самое важное требование - сохранить свежесть и вкусовые качества продуктов на протяжении недель, а то и месяцев. В составе американского космического агентства НАСА работает Advance food technology, которое специализируется на приготовлении продуктов питания для космических экспедиций. Чтобы увеличить срок годности космической еды, специалисты проводят ее обработку высоким давлением, пульсирующим электрическим полем. Таким способом уже был приготовлен сэндвич, съедобный даже через семь лет!

    Итак, в начале нашего исследования нами была поставлена гипотеза. В конце исследования, мы можем с уверенностью сказать, что гипотеза подтверждена полностью, химия и кулинария являются примером слаженной и дружной «команды». Эта «команда» заставляет ученых напрягать мозг, а нас – пробовать и пробовать все более усложненные и более вкусные продукты. Но не стоит забывать и о «вредностях» химии – в больших количествах она может стать губительной для «первоиспытателей» – ученых, а также и для таких потребителей, как мы с вами. Но настоящие сюрпризы ждут нас впереди - рецепты, созданные в результате молекулярных исследований, генетических открытий и космических исследований. И возможно, что через десять лет применяемые технологии, используемые в научной гастрономии, вроде быстрой заморозки в жидком азоте, найдут применение и в домашней кухне. Удачи вам - в кулинарных (и в прочих!) делах,И всем - приятного аппетита!

Муниципальное бюджетное общеобразовательное учреждении

«Средняя общеобразовательная школа №26 с углубленным изучением отдельных предметов» г. Нижнекамска РТ

«Химия пищевых производств»

подготовила

учитель химии высшей

квалификационной

Ларина Светлана Вячеславовна

г. Нижнекамск РТ 2014 г.

«Химия пищевых производств»


Пояснительная записка
Проблема пищи всегда была одной из самых важных проблем, стоящих перед человеческим обществом.
Все, кроме кислорода, человек получает для своей жизнедеятельности
из пищи.
Правильная организация питания требует знаний, хотя бы в самом общем виде, химического состава пищевого сырья и готовых продуктов питания, представлений о способах их получения, о превращениях, которые происходят при их получении и при кулинарной обработке продуктов, а так же сведений о пищеварительных процессах. Главная задача и обязанность учителя помочь ученику сделать правильный выбор, определится в сфере своих познавательных интересов.
Данный курс по выбору поможет обеспечить более глубокое и полное усвоение учебного материала по химии и биохимии.
Он содержит много интересных и практических знаний о пищевых
продуктах и их производствах. Современный уровень развития пищевой химии позволяет обобщить сведения о химических процессах, происходящих при производстве основных пищевых продуктов. Важно научить учащихся применять полученные сведения о
рациональном питании в повседневной практике и на научной основе организовать свое питание.
Данный курс рассчитан на
17 часов, включает лекции, решение задач различной степени сложности, семинары, тестирование.
При изучении данного элективного курса значительная часть времени отводится теоретическому материалу,
активизирующему
познавательный интерес учащихся.
При работе по предполагаемой программе необходимо научить учащихся навыкам самостоятельного обращения с литературными источниками, познакомить с научными методами анализа вещества, отобрать материал, соответствующий уровню подготовки учащихся,
соблюдая принципы доступности и научности.
Цели курса: Создание условий для формирования и развития у учащихся:
- -интеллектуальных и практических умений, позволяющих применять полученные знания
-расширить знания учащихся о химическом производстве пищи
-развивать внутреннюю мотивацию обучения, интерес к познанию химии
-умение самостоятельно приобретать и применять знания
-оказание помощи в выборе профиля дальнейшего образования.

Задачи курса:
1. Обобщение, систематизация, расширение и углубление знаний учащихся о строении, свойствах и получении питательных веществ, содержащихся в наиболее часто употребляемых продуктах питания.
2. Отработка навыков проведения химического эксперимента,
знакомство с методами определение белков, жиров, углеводов.
3. Пропаганда здорового образа жизни.
Программой предусмотрено проведение занятий в форме лекций, бесед, семинаров, зачётов и практических научно-исследовательских работ.
Актуальность данного курса подкрепляется практической значимостью рассматриваемых тем, что способствует повышению интереса к химии и ориентирует на профессии, связанные с изучением химии. Содержание курса предполагает разнообразие видов деятельности учащихся,
работу с различными источниками информации, включая интернет-ресурсы.
В
результате изучения данного курса учащиеся должны знать:
-состав и свойства веществ, входящих в состав пищевых продуктов,

основы гигиены питания
-режим приема пищи

- -химический состав и энергетическую ценность пищевых продуктов
уметь:
- анализировать состав пищевых продуктов по этикеткам
-
применять простейшие методы очистки питьевой воды
-правильно готовить
-правильно хранить и употреблять продукты питания
Формой отчетности по изучению элективного курса являются
викторины , сообщения, защита проектных реферативных работ, рациональные рецепты приготовления популярных блюд.
Темы проектных работ и сообщений:
1. Биологическая активность микроэлементов
2.Витамины. Работы Н.Н.Лунина, И.И.Бессонова.
З.Определение жирности молока.
4. Экологически безопасная посуда.
5.Способы хранения мясных и рыбных блюд.
6.Энергетическая ценность пищевых продуктов.
7. Химия в консервной банке.
8. Слайд-шоу “О вкусной и здоровой пище”
9. Химические секреты агронома.
10. Первая помощь при пищевых отравлениях.

Учебно – тематическое планирование

Актуальность выбранного курса:

Целями валеологического образования в школе является сохранение и повышение уровня здоровья каждого ученика. Уровень здоровья обучающихся включает уровни их физического, психического и нравственного здоровья. Здоровьесберегающая среда в школе представляет каждому ученику реальную возможность получать полноценное образование, адекватное его способностям, склонностям, возможностям, потребностям и интересам При выполнении таких условий адаптивные возможности организма соответствуют постоянным изменениям образовательной среды на каждом возрастном этапе. Взаимная адаптация возможностей ученика и образовательной среды является основой комплексной стратегии улучшения здоровья школьников. Этому же способствует формирование и развитие валеологических знаний, умений и навыков, которые происходят в процессе как урочной, так и внеурочной и внеклассной работы. Главными направлениями валеологического образования являются: - изучение основ здорового образа жизни, обеспечивающего полноценную и безопасную жизнедеятельность и реализацию способностей и потребностей личности в повседневной деятельности; -
ознакомление с опасностями, угрожающими человеку в повседневной жизни, при работе с химическими веществами, в ситуациях природного и техногенного характера;
-организация учебного процесса и внеурочной деятельности на основе принципа природосообразности и в соответствии с санитарно-гигиеническими требованиями, нормами и правилами; -сохранение благоприятного психологического микроклимата; -индивидуализация процессов обучения, воспитания и развития; -снятие перегрузки учащихся и освобождение времени на двигательную активность. За последние годы увеличилось число детей, страдающих хроническими заболеваниями, причем есть дети, страдающие двумя и более заболеваниями (бронхиальная астма, аллергия и заболевание органов пищеварения). Процент нарушения состояния здоровья резко растет в начальной школе и повышается к окончанию школы. К системным соматическим заболеваниям добавляются сколиоз, близорукость, гиподинамия. Резкое изменение и ухудшение экологической обстановки во многих регионах нашей страны ставит решение проблемы экологического и валеологического образования в разряд первостепенных и неотложных.


Тема №1
Основные химические вещества пищи.
Урок №1 Белковые вещества. Строение и аминокислотный состав белков, классификация и свойства белков, пищевая ценность белков, ферменты.
Урок №2 Липиды. Строение и классификация липидов, основные превращения липидов, пищевая ценность, масел и жиров; превращения липидов при производстве продуктов питания.
Урок №3 Углеводы. Строение, классификация и свойства углеводов, превращения углеводов в технологических процессах; пищевая ценность углеводов.
Урок №4 Витамины. Гиповитаминозы и авитаминозы. Антивитамины. Водорастворимые витамины и жирорастворимые витамины.
Урок №5 Минеральные вещества. Макро- и микроэлементы.
Урок №6 Пищевые добавки. Вещества, улучшающие внешний вид продуктов, подслащивающие вещества, консерванты; пищевые антиокислители, ароматизаторы.
Урок №7 Чайный интерес. Виды чая, их польза, традиции вкуса, нетрадиционный чай.

Тема № 2 Химия пищевых производств: состав и процессы.
Урок №8. Зерновые продукты. Продукты из зерна, хлеб и хлебобулочные изделия, макаронные изделия.
Урок №9. Кон дитерские изделия. Сахар и крахмал, кондитерские изделия.
Урок №10. Овощи, фрукты и ягоды. Сырые продукты, хранение овощей, фруктов и ягод переработка овощей, фруктов и ягод; тепловая обработка.
Урок №11. Молочные продукты. Сырье; процессы, происходящие при хранении и переработке молочного сырья.
Урок №12. Мясные продукты . Сырье, тепловая обработка мяса.
Урок №13. Рыбные продукты. Сырье; сроки хранения рыбы;
Тема № 3.Химия рационального питания,
Урок №14. Химия пищеварения и рационального питания. Химия пищеварения. Рациональное питание - баланс энергий, основной обмен. Расход энергии на мышечную деятельность; удовлетворение потребности в основных пищевых веществах.
Урок №15. Путь к долголетию. Факторы, влияющие на продолжительность жизни, влияние экологии на здоровье человека.
Урок №16. Решение задач по теме: «Помощь пищеварению».
Урок 17. Некоторые рациональные рецепты приготовления
популярных блюд,
(заключительный урок - семинар). Представление учащимися различных блюд, выводы, обсуждение результатов.

Урок № 1 Тема: Белковые вещества Цель: Рассмотреть строение и аминокислотный состав белков, классификацию и свойства белков.

Белки или протеины (от греч. «протес»- первый, самый главный), являются основной частью нашего организма. Около 85% тканей и органов человека приходится на их долю. Помимо того, что протеин является материалом для построения тканей и плазмы, он еще активно участвует в синтезе различных гормонов, ферментов, антител. При больших энергозатратах организма белки выступают как источник энергии, компенсируя недостаток жиров и углеводов. Кроме того, в функцию белков входит поддержание жидкостного баланса в спинном и головном мозге и кишечнике, а также транспортировка различных питательных веществ и лекарств.

Историческая справка: Вещества белковой природы известны с древних времен. Изучение их начато в середине 18 века итальянцем Я.Беккари, но только через 100 лет ученым удалось систематизировать свойства изученных белков, определить их атомный состав и сделать вывод, что белки- это главный компонент живых организмов. Затем из белков- гидролизатов были получены продукты неполного расщепления, и возникли гипотезы о строении белков. Еще в 1888 г. русский биохимик А.Я.Данилевский предложил теорию белкового строения и указал на наличие пептидных групп в белковой молекуле. Постепенно вырабатывается идея. Что молекула белка построена из конечных продуктов белкового распада- аминокислот. Торжество ее связано с работами немецкого химика Э.Г.Фишера. Он экспериментально выяснил, как устроены молекулы белка, и заложил основы химического синтеза. В начале 60-х годов 20 века пептидная (амидная) теория Фишера была подтверждена синтезом полипептида, состоящего из 18 аминокислот.

Белки- природные полимеры (молекулярная масса варьируется от 5-10 тыс. до 1 млн. и более), состоящие из остатков ά-аминокислот.

Вопросы к классу:

-В чем причины многообразия белков?

-К какому классу органических веществ можно отнести белки?

- Какой уровень организации белка опосредованно влияет на его биоактивность?

Биологические функции белков крайне разнообразны. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген, фиброин), двигательные (миозин), транспортные(гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (казеин, альбумин) и другие функции. Среди белков встречаются антибиотики и вещества, оказывающие токсическое действие.

Белки составляют основу биомембран, важнейшей составной части клетки и клеточных компонентов. Они играют ключевую роль в жизни клетки, составляя как бы материальную основу ее химической деятельности. Исключительное свойство белка- самоорганизация структуры, т. е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру.

Белки- важнейшая составная часть пищи человека и животных; поставщик необходимых им аминокислот.

Классификация белков.

Существует несколько классификаций белков.

По степени сложности(простые и сложные)

По форме молекул (глобулярные и фибриллярные)

По растворимости(водорастворимые, растворимые в слабых солевых растворах- альбумины, спирторастворимые- проламины, растворимые в щелочах- глютелины)

По выполняемым функциям (запасные, скелетные) и т.д.

Свойства белков.

Белки- амфотерные электролиты. Они связывают воду, т.е. проявляют гидрофильные свойства. При этом они набухают, увеличивается их масса и объем. Набухание белка сопровождается его частичным растворением.

Гидрофильные свойства белка, т.е. способность набухать, образовывать студни имеют большое значение в биологии и пищевой промышленности.

Очень подвижным студнем, построенным в основном из молекул белка, является цитоплазма- полужидкое содержимое клетки. Сильно гидратированный студень- сырая клейковина, выделенная из пшеничного теста, она содержит 65% воды.

Гидрофильность белков зерна и муки играет большую роль при хранении и переработке зерна, в хлебопечении.

Денатурация. Денатурация белков- сложный процесс, при котором под влиянием внешних факторов(температуры, механического воздействия, действия химических реагентов и др.) происходит изменение вторичной, третичной и четвертичной структуры белковой макромолекулы. Первичная структура,а следовательно, и химический состав белка не меняются.

При денатурации изменяются физические свойства белка, снижается растворимость. Способность к гидратации, теряется его биологическая активность.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков. Степень тепловой денатурации белков зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработки пищевого сырья. Полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, получении макаронных изделий.

Пенообразование. Под этим процессом понимают способность белков образовывать высококонцентрированные системы жидкость-газ. Такие системы называются пенами.

Белки в качестве пенообразователей широко используются в кондитерской промышленности (пастила, зефир, суфле). Структуру пены имеет хлеб.

Пищевая ценность белка. Белок- наиболее важный компонент пищи человека.

Основные источники пищевого белка: мясо, молоко, рыба, продукты переработки зерна, хлеб, овощи. Потребность человека в белке зависит от его возраста, пола, характера трудовой деятельности.

Суточная потребность взрослого человека в белке разного вида 1-1,5 г. белка на 1 кг массы тела (85-100 г) Доля животных белков должна составлять приблизительно 55% от общего его количества в рационе.

Ферменты. Ферментами называют сложные биологические катализаторы белковой природы, изменяющие скорость химической реакции.

Ферменты играют очень важную роль в пищевой промышленности помогая осуществлять многие технологические процессы, иногда затрудняя их. Достаточно напомнить, что превращение исходного сырья в готовые продукты в таких отраслях пищевой промышленности,как виноделие, хлебопечение, сыроделие, производство ряда кисломолочных продуктов, осуществляется при непосредственном участии ферментов.

Ферменты имеют большую молекулярную массу: от 10000 до 1000000. Молекула фермента может состоять из белка или белковой и небелковой частей.

Белковые продукты используются для лечения ряда заболеваний . Их основные характеристики.

МОЛОКО является источником биоценных белков, легкоусваиваемых жиров, незаменимых жирных кислот, витаминов А, В 2 , С,РР.,нормализует содержание холестерина в крови, используется в целях профилактики и лечения гастрита, язвы желудка, туберкулеза., стимулирует распад жира и синтез других белков в организме.

СЫРЫ возбуждающе действуют на нервную систему, не рекомендуется их употребление перед сном.

ТВОРОГ повышает содержание метионина, предотвращает жировые отложения в печени, на его усвоение тратится меньше ферментов, желудочного сока и соляной кислоты.

ЯЙЦА содержат в белке все незаменимые аминокислоты, желток- жирные кислоты и холестерин, который выводится с желчью. Легче усваивается яйцо сваренное всмятку.

Мясо является основным источником ценных белков, повышает желудочную секрецию, возбуждает нервную систему, содержит железо, витамины группы С и В.

РЫБА не уступает белкам мяса, содержит важные микроэлементы и активный йод.

Доктор химических наук Александр Рулёв, академик Михаил Воронков (Иркутский институт химии им. А. Е. Фаворского СО РАН).

Издревле приготовление пищи находилось под покровительством греческой богини Кулины, имя которой дало название кулинарии - искусству создания блюд. Союз этого искусства и химии способствовал рождению новой отрасли науки - кулинохимии.

В 1899 году французский художник Жан Марк Коте выпустил серию открыток, на которых попытался представить жизнь своих соотечественников через сто лет.

Итальянская этикетка мясного экстракта Либиха (1900 г.).

Восхитительный аромат кофе создаётся букетом более тысячи душистых веществ. Возбуждающее действие этого напитка связано с присутствием кофеина, формула которого изображена на чашке.

Формулы, демонстрирующие зависимость запаха от незначительных изменений в структуре соединения. (R)- и (S)-лимонены имеют соответственно апельсиновый и лимонный аромат. У (R)-карвона - запах остролистной мяты, у (S)-карвона - тмина и укропа.

Грибы, обжаренные на оливковом масле: слева - на открытой сковороде, справа - при помешивании под крышкой. Фото: http://zapisnayaknigka.ru.

«Никто не сделал так много для улучшения условий жизни людей, как химики», - справедливо утверждал нобелевский лауреат Гарольд Крото. Но, несмотря на неоценимую пользу, которую химия приносит человечеству, в мире процветает хемофобия - боязнь химии. Парадокс состоит ещё и в том, что каждый из живущих на земле людей - в той или иной степени химик. Например, когда проводит генеральную уборку, затевает стирку или хлопочет на кухне.

В самом деле, современная кухня во многом напоминает химическую лабораторию. С той лишь разницей, что кухонные полки заняты баночками, наполненными всевозможными крупами и специями, а лабораторные - уставлены склянками с не предназначенными для пищи реактивами. Вместо химических названий «хлорид натрия» или «сахароза» на кухне звучат более привычные слова «соль» и «сахар». Приготовление блюда по кулинарному рецепту можно сравнить с методикой проведения химического эксперимента.

Несомненно, помимо необходимых ингредиентов шеф-повар вкладывает в каждое блюдо и свою душу. При этом неважно, придерживается ли он классических традиций или предпочитает импровизацию. Всё это делает кулинарию особым видом искусства и одновременно сближает с химической наукой.

«Кухонная химия» зародилась давно. В XVIII-XIX столетиях изучением проблем, так или иначе связанных с пищей, всерьёз занимались многие известные учёные, и прежде всего французские химики (не потому ли французская кухня считается одной из самых утончённых в мире?). Основатель современной химии Антуан Лоран Лавуазье обнаружил зависимость качества мясного бульона от его плотности. Он же, проводя термохимические исследования, пришёл к выводу о важности соблюдения баланса калорий, потребляемых человеком с пищей и расходуемых им при физической активности. Его соотечественник Антуан Огюст Пармантье стал одним из основоположников школы хлебопечения, агитировал за использование сахара, полученного из свёклы, винограда и других овощей и фруктов, предложил способы консервации продуктов питания. Другой французский учёный, Мишель Шеврёль, установил состав и строение жиров. Увлёкшись анализом мясного сока, выдающийся немецкий химик Юстус фон Либих изобрёл так называемый мясной экстракт, доживший до наших дней под именем «бульонные кубики». Он также разработал молочные смеси - предшественники современного детского питания. Наконец, знаменитый французский химик Марселен Бертло экспериментально доказал возможность синтеза природных жиров из глицерина и жирных карбоновых кислот. Он полагал, что в скором будущем химия избавит человека от тяжёлого сельскохозяйственного труда, заменив привычные хлеб, мясо и овощи специальными таблетками. В их составе будут все необходимые компоненты - азотсодержащие вещества (прежде всего, аминокислоты и белки), жиры, сахара и немного приправ. Какая же скучная жизнь начнётся, когда, произнося на торжественном приёме тост, вместо бокала с игристым шампанским придётся держать в руках пилюлю!

Действительно, за прошедшие десятилетия химия в немалой степени изменила ассортимент «скатерти-самобранки» человека. В начале XX века, когда химическая наука переживала настоящий бум, Владимир Маяковский утверждал, что она сможет создать даже искусственную пищу:

Завод.
Главвоздух.
Делают вообще они
воздух
прессованный
для междупланетных сообщений.
<…>
Так же
вырабатываются
из облаков
искусственная сметана
и молоко.

Его предсказания оказались пророческими: современные химики научились «вырабатывать» молоко, сыр, простоквашу и другие продукты из сои, а на основе белков куриных яиц и пищевого желатина полвека назад в Институте элементоорганических соединений им. А. Н. Несмеянова впервые получили искусственную зернистую чёрную икру. Однако и сегодня о реакциях, протекающих на Солнце, мы знаем, пожалуй, больше, чем о сложнейших процессах, которые происходят, когда мы варим, жарим, тушим или запекаем что-либо.

Как известно, основными компонентами пищи человека являются белки, жиры, углеводы, витамины и минеральные вещества. Большинство их претерпевает химические превращения при кулинарной обработке, определяя структуру и вкусовые качества будущего съедобного шедевра.

Однако природу происходящих химических процессов человек начал понимать относительно недавно. Как это часто бывает в науке, первый шаг в этом направлении был сделан случайно. «Сегодня мы можем провести конденсацию определённого сахара с какой-либо аминокислотой» - так в январе 1912 года французский врач и химик Луи Камилл Майяр резюмировал суть своего удивительного открытия. Изучая возможность синтеза белков при нагревании, он получил вещества, которые, как оказалось, определяют цвет и запах многих готовых блюд. Почти четыре десятилетия спустя американский химик Джон Ходж установил механизм открытой Майяром реакции и её роль в процессах приготовления пищи. Опубликованная им в «Journal of Agricultural and Food Chemistry» работа до сих пор является самой цитируемой среди когда-либо вышедших в этом журнале статей.

Учёные по праву считают реакцию Майяра одной из самых интересных и важных в химии пищи и медицине: несмотря на солидный возраст, она хранит ещё немало тайн. Достижениям в изучении реакции Майяра было посвящено несколько международных научных форумов. Последний, одиннадцатый по счёту, состоялся в сентябре 2012 года во Франции.

Строго говоря, реакция Майяра - это не одна, а целый комплекс последовательных и параллельных процессов, происходящих при варке, жарке и выпечке. Каскад превращений начинается конденсацией восстанавливающих сахаров (к ним относятся глюкоза и фруктоза) с соединениями, молекулы которых содержат первичную аминогруппу (аминокислоты, пептиды и белки). Образующиеся продукты реакции претерпевают затем дальнейшие превращения при взаимодействии с другими компонентами пищи, давая смесь разнообразных соединений - ациклических, гетероциклических, полимерных, которые и отвечают за запах, вкус и цвет подвергшихся термической обработке полуфабрикатов. Понятно, что в зависимости от условий протекают разные реакции, приводящие к разным конечным продуктам. В реакции Майяра образуются как интенсивно окрашенные, так и бесцветные продукты, которые могут быть вкусными и ароматными или, напротив, прогорклыми и неприятно пахнущими,быть как антиоксидантами, так и ядами. Таким образом, реакция Майяра может повышать питательную ценность пищи, но может и делать её опасной для употребления.

Любая хозяйка знает, что цвет блюда существенно зависит от того, как оно готовилось, иными словами - от условий проведения реакции Майяра. Например, если грибы обжарить в оливковом масле на открытой сковороде, то они приобретут аппетитный золотистый оттенок. Если же их готовить при помешивании под крышкой, содержащаяся в грибах влага не позволит им подрумяниться.

Известен любопытный психологический эксперимент, когда стол, уставленный аппетитными закусками, осветили так, что цвета последних изменились до неузнаваемости: мясо приобрело серый оттенок, салат стал фиолетовым, а молоко - фиолетово-красным. Участники эксперимента, только что испытывавшие обильное слюноотделение в предвкушении роскошной трапезы, были не в силах даже попробовать столь необычно окрашенную пищу. Тот же, чьё любопытство пересилило неприязнь и кто всё-таки осмелился отведать угощение, чувствовал себя скверно.

О роли запаха в привлекательности блюда знает каждый, у кого хотя бы однажды закладывало нос: пища в этот момент кажется абсолютно безвкусной. Как правило, за запах того или иного блюда отвечает набор соединений. Так, восхитительный аромат кофе представляет собой букет более тысячи (!) душистых веществ. А запах свежеиспечённого хлеба формируют около двухсот компонентов, относящихся к различным классам органических соединений. Среди них спирты, альдегиды, кетоны, сложные эфиры, карбоновые кислоты. Только последних в нём не один десяток: муравьиная, уксусная, пропионовая, масляная, валерьяновая, гексановая, октановая, додекановая, бензойная…

Хотя единой теории ароматов до сих пор не создано, химики установили, что даже незначительная модификация структуры молекулы способна иногда существенно изменить запах вещества. Наиболее яркие примеры подобного рода, имеющие отношение к еде, - терпеновый углеводород лимонен и его кислородсодержащее производное карвон. Так, (R)- и (S)-лимонены, различающиеся только пространственным расположением заместителей, имеют апельсиновый и лимонный аромат соответственно. Оптические изомеры карвона также пахнут по-разному: один из них, (S)-карвон, имеет запах тмина и укропа, а его антипод пахнет остролистной мятой. Хотя, конечно, правильнее говорить, что запах всех этих фруктов и растений обусловлен присутствием упомянутых соединений.

Очевидно, что, «играя» с запахами, химики могут заставить любое блюдо источать неповторимый аромат. Например, при смешивании двух частей (R)-карвона и трёх частей бутанона запах мяты исчезает, уступая место … тминному аромату.

Со вкусом тоже всё не так просто. Известны вещества, имеющие «несколько вкусов». Например, бензоат натрия кому-то кажется сладковатым, кому-то кислым, у кого-то после дегустации во рту остаётся горечь, а некоторые вообще находят его безвкусным. Рассказывают, что некий химик любил пошутить, предлагая своим гостям попробовать раствор этой соли (до сих пор солидные компании и предприятия пищевой промышленности используют её в качестве консерванта). К радости хозяина, после дегустации этого угощения между гостями разгоралась перебранка: каждый пытался доказать, что его ощущения от напитка - самые верные.

Четверть века назад появилась заманчивая идея разделить тот или иной продукт на составляющие его компоненты, а затем сложить из них блюдо с оригинальным букетом вкусов и запахов. Так родилась научная дисциплина, получившая название «молекулярная гастрономия». Её основателями считаются профессор физики Оксфордского университета Николас Курти и французский физикохимик Эрве Тис. Основные цели новой науки Э. Тис изложил в диссертации «Молекулярная и физическая гастрономия», которую успешно защитил в 1995 году в Университете Пьера и Марии Кюри. Среди членов жюри по присуждению ему учёной степени были нобелевские лауреаты Жан-Мари Лен (премия по химии 1987 года) и Пьер-Жиль де Жен (премия по физике 1991 года). Фундаментальную задачу молекулярной гастрономии её создатели видели в исследовании различных процессов, происходящих при кулинарной обработке пищевых продуктов, и применении полученных результатов для приготовления оригинальных яств. Иными словами, предлагали подойти к кулинарии с научной точки зрения.

Методы обработки и консервации продуктов, применяемые в молекулярной гастрономической химии, заметно отличаются от привычных. Одним из впечатляющих результатов синтеза кулинарии и естественных наук стал низкотемпературный способ приготовления мясных блюд. Оказалось, что самое сочное и нежное мясо получается при 55оС. Более высокая температура способствует интенсивному испарению воды и разрушению мясного сока. Знание физико-химических свойств пищевых продуктов позволяет заменять один ингредиент другим. Так, при приготовлении крутого заварного крема вместо куриного белка, который, как известно, является аллергеном, можно с успехом использовать агар-агар. Эта смесь полисахаридов, добываемая из красных и бурых морских водорослей, - эффективный природный пенообразователь.

В 1992 году в Италии прошёл первый Международный семинар по молекулярной и физической гастрономии. С тех пор встречи приверженцев этой науки стали регулярными. На них собираются учёные, диетологи, повара и рестораторы, заинтересованные в использовании новых технологий для достижения баланса вкусов, близкого к идеальному, и создания настоящих кулинарных шедевров.

Не так давно престижные европейские рестораны открыли у себя специальные кулинарные лаборатории. Предполагается, что к 2014 году в Испании распахнёт двери первая в мире Академия гастрономических наук. Однако уже сегодня в некоторых университетах и колледжах мира начали готовить бакалавров кулинологии. Новая дисциплина объединяет кулинарное искусство и науку о продуктах питания и технологии их переработки. Возможно, со временем кулинология выльется в новый раздел органической или пищевой химии.

Несмотря на достаточно активную пиар-кампанию в прессе, идеи молекулярной гастрономии не стали пока модным трендом современной кулинарии: большинство шеф-поваров (не говоря уже о домашних хозяйках) по-прежнему готовят по известным рецептам, передающимся от повара к ученику, не прибегая к помощи химии и физики для улучшения уже существующих фирменных блюд или разработки новых рецептур.

Впрочем, химики не только лучше других разбираются в процессах, происходящих при приготовлении пищи, но и, как правило, гурманы и искусные кулинары. Так, основоположник химической термодинамики Джозайя Гиббс увлекался приготовлением салатов, которые удавались ему лучше, чем кому-либо из его домочадцев. Приготовленные учёным аппетитные кушанья назывались незамысловато: «гетерогенные равновесия».

Конечно, вопросов о том, что происходит с питательными веществами при нагревании в кастрюле и на сковородке, пока остаётся много. Понимание этих процессов необходимо не только для традиционной кухни, но и для развития новых технологий приготовления пищи.

Хозяйке - на заметку

В 2009 году в издательстве Wiley VCH увидела свет книга «Что стряпают в химии: как ведущие химики преуспевают на кухне», в которой известные химики мира (в том числе и нобелевские лауреаты) поделились своими достижениями на «научной кухне» и рецептами любимых блюд кухни домашней. Профессор Геттингенского университета Армин де Майере - один из тех, кто, придя домой, не прочь сменить лабораторный халат на кухонный фартук. Область его научных интересов - химия производных циклопропана - оригинальных соединений, которые лишь на первый взгляд кажутся простыми. С читателями книги он поделился рецептом, сохранившимся у него ещё со студенческой скамьи. Он признавался, что блюдом, приготовленным по этому рецепту в мае 1960 года, ему удалось удивить свою подругу Уте Фитцнер, которая четыре года спустя стала его женой. Вот этот рецепт. Для приготовления трапезы на четыре персоны требуется: 600 г мясного фарша (свинина: говядина, 50:50), 4-5 луковиц среднего размера, 100 г жирного бекона, 50 г томатной пасты или 50-100 г кетчупа, 400 г спагетти, соль, сладкий и острый перец. Тонко нарезанный жирный бекон поджарьте на большой сковороде, добавьте мелко порезанный лук и при постоянном перемешивании обжарьте его до золотистого цвета (проведите реакцию Майяра!). Затем добавьте мясной фарш и продолжайте жарить, не забывая хорошо помешивать. Когда мясо будет готово, добавьте томатную пасту или кетчуп. По желанию можно использовать также различные приправы или острый соус. Содержимое сковороды продолжайте перемешивать, при необходимости добавляя воду, чтобы получилась кашеобразная масса. Сварите спагетти и, не давая им остыть, смешайте с полученной мясной заправкой. Блюдо подавайте горячим. Предложенная рецептура, возможно, один из первых примеров комбинаторной кухни. В самом деле, как и в комбинаторной химии, изменяя соотношения используемых в рецепте ингредиентов, можно получать разные блюда.